A Preliminary Report of Testate Amoebae (Protozoa : Tubulinea and Cercozoa) in Govind National Park, Uttarakhand, India Original Research Article #### **ABSTRACT** Studies relating to testate amoebae in Uttarakhand have been sporadic and testates have been documented only from a few protected areas and so far there are no records from Govind National Park, Uttarakhand. Therefore, as a part of faunistic survey in Uttarakhand, a study to document the moss inhabitant testate diversity was carried out in Govind Wildlife Sanctuary in October 2019 and has filled the lacuna of Testate Amoebae study in the sanctuary to form the foundation for further investigation. The study revealed the occurrence of a total of 42 species belonging to 16 genera and 9 families. Of these, 4 species *viz.*, *Cyclopyxis tronconica* Godeanu, 1972, *Certesella martiali* Certes, 1889, *Quadrulella madibai* Kosakyan *et al.*, 2016 and *Assulina discoides* Bobrov, Shimano and Mazei, 2012 are novel records to India. This report forms the baseline information for testate amoebae of Govind WLS suggesting the high diversity of testate fauna in the protected area which can be still higher if further explored. Keywords: Testate amoebae; protozoa; tubulinea; cercozoa; govind wildlife sanctuary; Uttarakhand; India. # 1. INTRODUCTION Govind National Park (GNP) and Govind Pashu Vihar Wildlife Sanctuary (GWS) are part of high Western Himalayan highland situated in the Uttarkashi district of Uttrakhand. The protected area landscape lies between latitudes 31.1425° N and longitude 78.3387° E, covering an area of about 958 km². Part of the Upper Tones Valley was notified as a Sanctuary in 1955 while GNP was notified in 1991, with a varying altitude of 1300 meters to 6323 meters above sea level, of which 472.08 km² has been demarcated as National Park. Inspite of its diverse and rich floral and faunal elements, no work has been done so far on the free-living protozoans of this renowned national park. It is very important to understand the diversity of free-living protists because it plays a very significant role in the ecological health and make up a large part of earth's biodiversity [1,2]. Testate amoebae (Protista) are a polyphyletic eukaryotic unicellular shelled organisms (3,4,5] present in a variety of habitats like terrestrial, freshwater, estuarine and marine from the tropics to polar areas [6,7,8]. Testate amoebae research has increased significantly over the past two decades due to their increasing use in different as bioindicators applied aspects palaeoecological studies, in environmental monitoring, studies on their role in the cycling of elements in the terrestrial ecosystems and biogeographical and evolutionary studies [9]. According to the present estimate 1600 species of freeliving protozoa have been recorded from India including the estuarine species. Of these 185 species are rhizopods [10] and there is no consolidated checklist is published till date. Despite the important role in food chain and also as bioindicators for environmental monitoring, the • immense majority of protist diversity in many protected areas and other parts of India have not so far been seriously analysed and the review of literature revealed that from Govind National Park no work has been done so far. In this context, this article is the first-time effort to provide information on testate amoebae fauna of Govind National Park. This study represents the first attempt to construct a species checklist and analyze the diversity and distribution of testate amoebae in Govind WLS. Present diversity includes 42 testate amoebae species (16 genera and 9 families) of which 4 species are herewith reported for the first time from India. ### 2. MATERIALS AND METHODS Moss samples (100-200grams) were collected by quadrant sampling (1m2) by scrapping from rock and tree bark from the study area during the faunistic survey to Western Himalaya in October 2019. The samples were processed with non-flooded petri dish method as described by Foissner [11] and from each sample permanent mounts were prepared and studied under Nikon 50 i compound microscope for species level identification. ## 3. RESULTS AND DISCUSSION The study resulted in the documentation of 42 species belonging to 16 genera and 9 families (Table-1, Fig.2, Images 1- 42 as Annexure 1). Of these 4 species viz., Cyclopyxis tronconica Godeanu, 1972, Certesella martiali Certes, 1889., Quadrulella madibai Kosakyan et al., 2016 and Assulina discoides Bobrov, Shimano and Mazei, 2012 are new additions to Indian testate fauna. Testate amoebae from the family Centropyxidae was found to be the most dominant constituting 23.25% of the total species (10 species). Further 18.60% of the species (8 species) belonged to Hyalospheniidae making it the second dominant family. The families with lowest number of species (01 species) were Arcellidae and Difflugiidae. Perusal of literature revealed that 76 species of Testate Amoebae have been reported from North and North East India [12] and of these only 21 species from Uttarakhand with an addition of 30 species span over 8 familes are herewith recorded for the first time from the state (Table-2, Fig.3). Of which the family Hyalospheniidae represented the highest number of species (27%) and the families Arcellidae and Difflugiidae were represented by only one species. This documentation forms the baseline information of Testate Amoebae from Govind National Park suggesting the great diversity of the fauna from the protected area. The specimens were reposited in the National Zoological Collections repository of the Zoological Survey of India, Marine Biological Regional Centre, Chennai with specimen registration numbers. The systematic details of the species recorded from Govind National Park is provided as per the classification [13]. Phylum: Tubulinea Smirnov et al., 2005 Class: Elardia Kang et al., 2017 Order: Arcellinida Kent, 1880 Family: Arcellidae Ehrenberg, 1843 Genus *Arcella* Ehrenberg, 1830 1. Arcella artocrea Leidy, 1876 ## Family Netzeliidae Kosakyan *et al.*, 2016 Genus *Cyclopyxis* Deflandre, 1929 - 2. Cyclopyxis arcelloides Penard, 1902 - Cyclopyxis arenata (Cushman, 1930) Boltovskoy, 1956 - 4. Cyclopyxis eurystoma Deflandre, 1929 - 5. Cyclopyxis tronconica Godeanu, 1972 (New record from India) ## Incertae sedis Infraorder Sphaerothecina Genus Trigonopyxis Penard, 1912 6. Trigonopyxis arcula Penard, 1912 Genus Argynnia Vucetich, 1974 - 7. Argynnia teres Jung, 1942 Genus **Awerintzewia** - 8. Awerintzewia 2cyclostoma (Penard, 1902) Schouteden, 1906 Infraorder Longithecina Lahr et al., 2019 Family Difflugiidae Wallich, 1864 Genus *Difflugia* Leclerc, 1815 9. Difflugia globulosa Dujardin, 1837 Family **Centropyxidae** Jung, 1942 Genus **Centropyxis** Stein, 1857 - 10. Centropyxis aerophila Deflandre, 1929 - 11. Centropyxis cassis (Wallich, 1864) Deflandre, 1929 - 12. Centropyxis constricta (Ehrenberg, 1841) Penard, 1890 - 13. Centropyxis ecornis Ehrenberg, 1841 - 14. Centropyxis elongata (Penard, 1890) Thomas, 1959 - 15. Centropyxis minuta Deflandre, 1929 - 16. Centropyxis orbicularis Deflandre, 1929 - 17. Centropyxis oblonga (Deflandre, 1929) - 18. Centropyxis platystoma Penard, 1890 - 19. *Centropyxis sylvatica* (Deflandre, 1929) Bonnet et Thomas, 1955 **Family Hyalospheniidae** Schultze, 1977, emend. Kosakvan and Lara. 2012 Genus Certesella Loeblich and Tappan, 1961 20. Certesella martiali Certes, 1889 (New record from India) Genus Nebela Leidy, 1874 - 21. Nebela longitubulata Gautier-Lievre, 1953 - 22. Longinebela penardiana Deflandre, 1936 Genus Quadrulella Cockerell, 1909 - 23. Quadrulella madibai Kosakyan et al., 2016 (New record from India) - 24. Quadrulella tropica Wailes, 1912 - 25. Quadrulella quadrigera Deflandre, 1936 - 26. Quadrulella symmetrica(Wallich, 1863) Schulze, 1875 Family: Phryganellidae Jung, 1942 Genus: *Phryganella* Penard, 1902 27. Phryganella acropodia (Hertwig and Lesser, 1874) Hopkinson, 1909 **Phylum Cercozoa** Cavalier-Smith, 1998, emend. Adl *et al.*, 2005; emend. Cavalier-Smith, 2018 Class **Silicofilosea** Adl *et al.*, 2005, emend. Adl *et al.*, 2012 Order **Euglyphida** Copeland, 1956, emend. Cavalier-Smith, 1997 Family: **Assulinidae** Lara *et al.*, 2007 Genus **Assulina** Ehrenberg, 1872 - 28. Assulina discoides Bobrov, Shimano and Mazei, 2012 (New record from India) - 29. Assulina muscorum Greeff, 1888 - 30. Assulina quadratum Van Oye, 1957 - 31. Assulina seminulum Ehrenberg, 1848 Family **Euglyphidae** Wallich, 1864, emend. Lara et al., 2007 Genus Euglypha Dujardin, 1841 - 32. Euglypha acanthophora (Ehrenberg, 1841) Perty, 1849 - 33. Euglypha ciliata (Ehrenberg, 1848) Leidy, 1878 - 34. Euglypha denticulata Brown, 1912 - 35. Euglypha rotunda Wailes, 1915 - 36. Euglypha simplex Decloitre, 1965 - 37. Euglypha strigosa (Ehrenberg, 1871) Leidy, 1878 Family **Trinematidae** Hoogenraad and De Groot, 1940, emend Adl *et al.*, 2012 Genus **Corythion** Taranek, 1881 - 38. Corythion asperulum schonborn, 1988 - 39. Corythion dubium Taranek, 1881 Genus Trinema Dujardin, 1841 - 40. Trinema complanatum Penard, 1890 - 41. *Trinema enchelys* (Ehrenberg, 1938) Leidy, 1878 - 42. Trinema penardi Thomas et Chardez, 1958 Table 1. Testate amoebae species recorded from Govind Wildlife Sanctuary | SI no | Family | Scientific name | Reg. No | Image No. | |-------|---------------|--|----------|-----------| | 1 | Arcellidae | Arcella artocrea Leidy, 1876 | Mi-943 | 1 | | 2 | Netzeliidae | Cyclopyxis arcellodes Penard, 1902 | Mi-946 | 2 | | 3 | | Cyclopyxis arenata (Cushman, | Mi-948 | 3 | | | | 1930)Boltovskoy, 1956 | | | | 4 | | Cyclopyxis eurystoma Deflandre, 1929 | Mi-966 | 4 | | 5 | | Cyclopyxis tronconica Godeanu, 1972 | Mi-931 | 5 | | 6 | | Trigonopyxis arcula Penard, 1912 | Mi-953 | 6 | | 7 | | Argynnia teres Jung, 1942 | Mi-955 | 7 | | 8 | | Awerintzewia cyclostoma (Penard, 1902) | Mi-949 | 8 | | | | Schouteden, 1906 | | | | 9 | Difflugiidae | Difflugia globulosa Dujardin, 1837 | Mi-969 | 9 | | 10 | Centropyxidae | Centropyxis aerophila Deflandre, 1929 | Mi-929/2 | 10 | | 11 | | Centropyxis cassis (Wallich, 1864) | Mi-940 | 11 | | | | Deflandre, 1929 | | | | 12 | | Centropyxis constricta (Ehrenberg, 1841) | Mi-947 | 12 | | | | Penard, 1890 | | | | 13 | | Centropyxis ecornis Ehrenberg, 1841 | Mi-933 | 13 | | 14 | | Centropyxis elongata (Penard, 1890) | Mi-926 | 14 | | | | Thomas, 1959 | | | | 15 | | Centropyxis minuta Deflandre, 1929 | Mi-937 | 15 | | 16 | | Centropyxis orbicularis Deflandre, 1929 | Mi-945 | 16 | |----|-----------------|---|----------|----| | 17 | | Centropyxis oblonga (Deflandre, 1929) | Mi-959 | 17 | | 18 | | Centropyxis platystoma Penard, 1890 | Mi-939 | 18 | | 19 | | Centropyxis sylvatica (Deflandre, 1929) | Mi-961 | 19 | | | | Bonnet et Thomas, 1955 | | | | 20 | Family | Certesella martiali Certes, 1889 | Mi-958 | 20 | | | Hyalospheniidae | | | | | 21 | • | Nebela longitubulata Gautier-Lievre, 1953 | Mi-957 | 21 | | 22 | | Longinebela penardiana Deflandre, 1936 | Mi-954 | 22 | | 23 | | Quadrulella madibai Kosakyan et al., 2016 | Mi-941 | 23 | | 24 | | Quadrulella tropica Wailes, 1912 | Mi-950 | 24 | | 25 | | Quadrulella quadrigera Deflandre, 1936 | Mi-944 | 25 | | 26 | | Quadrulella symmetrica(Wallich, 1863) | Mi-933/1 | 26 | | | | Kosakyan et al., 2016 | | | | 27 | | Phryganella acropodia (Hertwig and Lesser, | Mi-941/3 | 27 | | | | 1874) Hopkinson, 1909 | | | | 28 | Family | Assulina discoides Bobrov, Shimano and | Mi-932 | 28 | | | Assulinidae | Mazei, 2012 | | | | 29 | | Assulina muscorum Greeff, 1888 | Mi-930 | 29 | | 30 | | Assulina quadratum Van Oye, 1957 | Mi-929 | 30 | | 31 | | Assulina seminulum Ehrenberg, 1848 | Mi-929/1 | 31 | | 32 | Family | Euglypha acanthophora (Ehrenberg, 1841) | Mi-942 | 32 | | | Euglyphidae | Perty, 1849 | | | | 33 | 371 | Euglypha ciliata (Ehrenberg, 1848) Leidy, | Mi-934 | 33 | | | | 1878 | | | | 34 | | Euglypha denticulata Brown, 1912 | Mi-956 | 34 | | 35 | | Euglypha rotunda Wailes, 1915 | Mi-922 | 35 | | 36 | | Euglypha simplex Decloitre, 1965 | Mi-963 | 36 | | 37 | | Euglypha strigosa (Ehrenberg, 1871) Leidy, | Mi-924 | 37 | | | | 1878 | | | | 38 | Family | Corythion asperulum schonborn, 1988 | Mi-951 | 38 | | | Trinematidae | 2.1,7. 2.2,2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | | | | 39 | | Corythion dubium Taranek, 1881 | Mi-952 | 39 | | 40 | | Trinema complanatum Penard, 1890 | Mi-923 | 40 | | 41 | | Trinema enchelys (Ehrenberg, 1938) Leidy, | Mi-927/1 | 41 | | | | 1878 | | | | 42 | | Trinema penardi Thomas et Chardez, 1958 | Mi-962 | 42 | | | | f an acies no conded for the first time from I | | | Table 2. List of species recorded for the first time from Uttarakhand, India | SI No. | Families | Names of species | |--------|-----------------|---| | 1 | Arcellidae | Arcella artocrea Leidy, 1876 | | 2 | Netzeliidae | Cyclopyxis arenata (Cushman, 1930) Boltovskoy, 1956 | | 3 | | Cyclopyxis eurystoma Deflandre, 1929 | | 4 | | Cyclopyxis tronconica Godeanu, 1972 | | 5 | | Trigonopyxis arcula Penard, 1912 | | 6 | | Argynnia teres Jung, 1942 | | 7 | | Awerintzewia cyclostoma (Penard, 1902) Schouteden, 1906 | | 8 | Difflugiidae | Difflugia globulosa Dujardin, 1837 | | 9 | Centropyxidae | Centropyxis ecornis Ehrenberg, 1841 | | 10 | | Centropyxis elongata (Penard, 1890) Thomas, 1959 | | 11 | | Centropyxis minuta Deflandre, 1929 | | 12 | | Centropyxis oblonga (Deflandre, 1929) | | 13 | | Centropyxis sylvatica (Deflandre, 1929) Bonnet et Thomas, | | | | 1955 | | 14 | Hyalospheniidae | Certesella martiali Certes, 1889 | | 15 | | Nebela longitubulata Gautier-Lievre, 1953 | | 16 | | Longinebela penardiana Deflandre, 1936 | | 17 | | Quadrulella madibai Kosakyan et al., 2016 | | 18 | | Quadrulella tropica Wailes, 1912 | | 19 | | Quadrulella quadrigera Deflandre, 1936 | | |----|--------------|--|--| | 20 | | Quadrulella symmetrica(Wallich, 1863) Kosakyan et al., 2016 | | | 21 | | Phryganella acropodia (Hertwig and Lesser, 1874) Hopkinson, 1909 | | | 22 | Assulinidae | Assulina discoides Bobrov, Shimano and Mazei, 2012 | | | 23 | | Assulina muscorum Greeff, 1888 | | | 24 | | Assulina quadratum Van Oye, 1957 | | | 25 | | Assulina seminulum Ehrenberg, 1848 | | | 26 | Euglyphidae | Euglypha acanthophora (Ehrenberg, 1841) Perty, 1849 | | | 27 | | Euglypha denticulata Brown, 1912 | | | 28 | | Euglypha simplex Decloitre, 1965 | | | 29 | Trinematidae | Corythion asperulum schonborn, 1988 | | | 30 | | Corythion dubium Taranek, 1881 | | Fig. 2.Testate amoebae species recorded from Govind National Park Fig. 3. Testate amoebae family abundance recorded for the first time from Uttarakhand, India #### 4. CONCLUSION This report forms the baseline information for testate amoebae of Govind WLS suggesting the high diversity of testate fauna in the protected area which can be still higher if further explored. #### **COMPETING INTERESTS** Authors have declared that no competing interests exist. ## **REFERENCES** - 1. Nguyen H, Gilbert D, Bernard N, Mitchell EAD, Badot PM. Relationship between atmospheric pollution characterized by NO2 concentrations and testate amoebae and diversity. Acta Protozoologica. 2004;43:233-329. - 2. Payne RJ. Seven reasons why protists make useful bioindicators. Acta Protozoologica. 2013; 52:105. - 3. Bobrov A, Charman DJ, Warner BG. Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist. 1999;150:125-136 - 4. Bobrov A, Shimano S, Mazei Y. Two New Species of Testate Amoebae from Mountain Forest Soils of Japan and Redescription of the Genus Deharvengia Bonnet, 1979. Acta Protozool. 2012;51: 55-63. - 5. Lamentowicz M, Tobolski K, Mitchell EAD. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. Holocene. 2007;17:1185-1196. - 6. Foissner W. Soil protozoa: Fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators, and guide to the literature. Progr. Protistol. 1987;2:69–212. - 7. Foissner W. Description of two new, mycophagous soil ciliates (Ciliophora, Colpodea): Fungiphrya strobli n. g., n. sp. and Grossglockneria ovata n. sp. J. Eukaryot. Microbiol. 1999; 46: 34–42. - 8. Kosakyan A, Lahr DJG, Mulot M, Meisterfeld R, Mitchell EAD, Lara E. Phylogenetic reconstruction based on COI reshuffles the taxonomy of hyalosphenid shelled (testate) amoebae and reveals the convoluted evolution of shell plate shapes. Cladistics. 2016;32:606–623. - Qin Y, Mitchell EAD, Lamentowicz M, Payne RJ, Lara E, Gu Y, Huang X, Wang H. Ecology of testate amoebae in peatlands of central China and development of a transfer function for palaeohydrological reconstruction. J Paleolimnol. 2013;50(3):319-330. - Kailash Chandra, Gopi KC, Rao DV, Valarmathi K, Alfred JRB. Current Status of Freshwater Faunal Diversity in India: 1- - 624 (Published by the Director, Zool. Surv. India, Kolkata);2017. - Foissner W. Estimating the species richness of soil protozoa using the "nonflooded Petri dish method". In: Lee JJ, Soldo AT (eds) Protocols in protozoology. Society of Protozoologists. Allen Press, Lawrence, Kansas. 1992;B101-B102 - 12. Chattopadhyaya P, Das AK. Morphology, Morphometry and Ecology of Moss - Dwelling Testate Amoebae (Protozoa:rhizopoda) of North and Northeast India. Memoirs of the ZSI 19 (4). Zoological Survey of India, Calcutta;2003. - Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A. Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes. J. Eukaryot. Microbiol. 2019;66:4-119. DOI:10.1111/jeu.12691 © 2022 Bindu and Kumar; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. #### **ANNEXURE 1** Images 1- 42. Testate amoebae species recorded from Govind Wildlife Sanctuary