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Abstract:  

Staphylococcus aureus (S. aureus) is one of the most common human pathogens causing various 

infectious diseases. Further, its ability to form biofilm and the emergence of antibiotic resistance 

strains has made it difficult to treat the infection. A nanoparticle-based therapeutic approach is an 

emerging area to treat S. aureus infection. Among the different methods to synthesize nanoparticles 

(NPs), the use of microorganisms to fabricate metal nanoparticles with the antibacterial property 

against S. aureus has been investigated by several studies. The microbial approach is cost-effective, 

eco-friendly, and devoid of toxic byproducts produced in other methods of nanoparticles formation. 

The review details the use of bacteria, fungi, yeast, algae, and lichens for producing nanoparticles of 

various metals, such as silver, gold, zinc, copper, iron, cerium, etc., of varying sizes and shapes and 

their effective use against S. aureus. The present review focuses on the reports of microbial-

fabricated nanoparticles as therapeutic agents for treating S. aureus infection. 
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Introduction 

Due to pathogenic microorganisms and related infectious diseases, the modern world faces a 

difficult situation. Staphylococcus aureus, a Gram-positive bacteria belonging to the 

genus Staphylococcus, is one of the most aggressive and commonly found human pathogens (Tong 

et al., 2015). Although the substantial population infected with S. aureus generally remain 

asymptomatic, with bacteria commonly present on the skin or mucosal surface (Sakr et al., 2018), it 

can gain access to the bloodstream through any cut present in the skin surface (McCaig et al., 2006) 

and consequently can cause debilitating infections like necrotizing fasciitis, impetigo, 

pyomyositis, S. aureus bacteremia, mediastinitis, osteomyelitis, septic arthritis, meningitis, infective 

endocarditis, etc. and thus affecting various tissues like blood, muscle, and skin and vital internal 

organs like bone, brain, lungs, hearts, etc. (David and Daum, 2017; Lowy, 1998; Tong et al., 2015). 

The problem is further made complicated by the emergence of drug-resistant strains of S. aureus, 

such as Methicillin-resistant Staphylococcus aureus (MRSA) that is resistant to the beta-lactam class 

of antibiotics, for example, methicillin, oxacillin, carbapenems, nafcillin, and cephalosporins (Rao et 

al., 2019; VanEperen and Segreti, 2016). The MRSA can be classified based on genotypic 

characteristics into either hospital-acquired MRSA (HA-MRSA), isolated from patients admitted to 

healthcare facilities such as nursing homes and hospitals, or community-acquired MRSA (CA-

MRSA), found in the community with no previous history of contact with healthcare environment 

(David and Daum, 2010; Lindsay, 2013; Otto, 2013). The infections due to S. aureus affect many 

people and cause a significant number of death annually in the United States (Kourtis et al., 2019). 

Similarly, MRSA has also spread to other parts of the world. It is frequently isolated from different 

geographical regions, including East Asia, South Asia, the Middle East, Europe, and North Africa 

(Lakhundi and Zhang, 2018). The therapeutic approach against MRSA generally involves the 

application of a non-beta-lactam class of antibiotics such as vancomycin, daptomycin, delafloxacin 

(Bassetti and Righi, 2015). Vancomycin, a glycopeptide antibiotic, was initially used to treat MRSA 



 

strains. However, later new strains of S. aureus that were resistant to it were clinically isolated from 

different parts of the world; these strains were named vancomycin‐intermediate Staphylococcus 

aureus (VISA) and vancomycin‐resistant Staphylococcus aureus (VRSA) (Appelbaum, 2006). 

Recently, a research group has isolated MRSA strains showing resistance towards delafloxacin, a 

fluoroquinolone antibiotic commonly used to treat MRSA infection (Iregui et al., 2019). The S. 

aureus strains resistant to delafloxacin were found in community-acquired MRSA and MRSA 

isolated from healthcare-related infections, thus indicating the gravity of the problem caused by S. 

aureus (Iregui et al., 2019). 

Similarly, other approved antibiotics, such as daptomycin, a lipopeptide antibiotic, also have 

witnessed resistance emerging against them by S. aureus (Stefani et al., 2015). Also, according to a 

report published by World Health Organization (2014), antibiotic-resistant strains pose a serious 

health risk to the population, a threat to food security, and a hindrance to the development of a 

country. Such antibiotic resistance strains have made the use of any conventional antibiotics 

obsolete and limited the efficacy of another therapeutic approach. In the face of such overwhelming 

odds, new therapeutic tools must be added to the shrinking arsenal of antibacterial agents in the fight 

against S. aureus infection.  

      Nanomedicine entails the application of nanotechnology in the medical field for screening, 

diagnosis, and therapy of the disease (Freitas, 2005; Fülöp et al., 2012). Nanomedicine has 

effectively emerged as a potential therapeutic alternative for leading cancer and other non-infectious 

diseases (Dube, 2019). However, nanotechnology for treating infectious diseases is continuously 

growing (Huh and Kwon, 2011; Blecher et al., 2011). Nanomaterials, specifically nanoparticles, are 

efficacious against various infectious diseases (Khan et al., 2016). The nanoparticles are small-sized 

particles generally between 1 and 100 nm (Kim et al., 2010). The nanoparticles that have been 

utilized in research studies against S. aureus are generally synthesized via three different methods: 

chemical, microbial-synthesized, and plant-synthesized. Chemical methods are inherently energy-



 

intensive, involve complex methodology, and produce byproducts injurious to the environment (Li 

et al., 2011). The chemical method was in vogue a few years ago. However, it has given way to the 

more environment-friendly methods that utilize either microbial extract or biomass or plant extract 

as reducing and capping agents for the synthesis of nanoparticles. 

On the other hand, although plant-mediated nanoparticles synthesis is time-efficient and 

straightforward, it generally produces polydispersed nanoparticles due to the presence of 

phytochemicals, such as polyphenols, proteins, flavonoids, terpenoids, etc. (Ovais et al., 2016; 

Salunke et al., 2014). Further, the availability of a plant is hinged on certain factors, like the 

geography of the region and season of the year, that in turn affect the phytochemical profile of a 

plant extract to be used for the biogenic synthesis of nanoparticles (Singh et al., 2013). In 

comparison, the microbial route of nanoparticles synthesis is devoid of any such requirement, and 

the experimental conditions (temperature, pH, pressure, humidity, etc.) can be easily varied to 

control the size and shape of nanoparticles. The microbial methods take advantage of 

microorganisms like bacteria, actinomycetes, cyanobacteria, fungi, yeast, and algae to fabricate 

nanoparticles. The microbial-mediated synthesis of metallic nanoparticles can be either extracellular 

or intracellular, depending on the location where the formation of the nanoparticles takes place 

(Singh et al., 2013; Golinska et al., 2014). The extracellular synthesis has an advantage over the 

intracellular mode of synthesis because it does not require downstream processing to recover 

nanoparticles from within the confine of the bacterial cell wall (Iravani, 2014; Singh et al., 2016D). 

A distinct advantage of nanoparticles synthesis using microbial methods is that its production can be 

increased by scaling up microbial biomass via fermentation techniques (Moon et al., 2010). 

Moreover, nature is abundant with various microbes containing diverse biomolecules that can 

reduce nanoparticle synthesis (Zhang et al., 2011; Li et al., 2011). The microbes-based synthesis of 

green nanoparticles involves bioreduction of the ionic state of metal (e.g., Au3+, Ag+) to the 

elemental form of the metal (e.g., Au0, Ag0) by biomolecules and enzymes found in 



 

microorganisms (Kharissova et al., 2013; Iravani, 2014). Further, the microbial biomass can not 

only be used to prepare metal NPs but can also be utilized for fabricating metal oxide NPs and bi-, 

tri-, or multi-metallic NPs. Given such advantages, it is no surprise that several research groups have 

successfully synthesized metallic nanoparticles with antibacterial potential against S. aureus from 

microorganisms (Figure-1). 

 

Figure 1: Synthesis of metal nanoparticles from microorganisms. The lichen image is taken from 

http://www.stridvall.se/lichens/gallery/Protoparmeliopsis/AAAA1582?full=1. 

 

Bacterial-fabricated nanoparticles against S. aureus 

Bacteria is an excellent source for nanoparticle synthesis because of their ability to acclimatize to 

the surrounding environment, their ready availability, and contain biomolecules that can reduce 

metal ions into their corresponding nanoparticles and modify the surface of NPs functionalization 

(Ovais et al., 2018). Many bacterial species have been utilized to synthesize metal nanoparticles 

http://www.stridvall.se/lichens/gallery/Protoparmeliopsis/AAAA1582?full=1


 

with toxic properties toward S. aureus. Bacteria belonging to many phyla, especially Actinobacteria, 

have been explored to synthesize nanoparticles showing antibacterial activities toward S. aureus in 

Table-1. Examples of bacteria belonging to the phylum Actinobacteria that have been studied for the 

synthesis of metal NPs to control the growth of S. aureus (Table-1).  

Table1: Antibacterial activities toward S. aureus strains 

 
S.No. Actinobacteria sp. References  

 

1. Streptomyces aureofaciens MTCC 356  Sundarmoorthi et al., 2011 

2. Streptomyces sp. VITBT7  Subashini and Kannabiran, 2013 

3. Streptomyces sp. JAR1  Chauhan et al., 2013  

4. Nocardiopsis sp. MBRC-1  Manivasagan et al., 2013 

5. Streptomyces enissocaesilis  Shaaban et al., 2018 

6. Streptomyces sp. SSHH-1E  El-Naggar et al., 2016 

7. Kocuria rosea BS-1  Kumar and Sujitha, 2014 

8. Nocardiopsis valliformis  Rathod et al., 2016 

9. Streptomyces viridogens strain HM10 Balagurunathan et al., 2011 

10. Streptomyces sp. B5 Shanmugasundaram et al., 2017 

11. Micrococcus yunnanensis strain J2 Jafari et al., 2018 

12. Streptomyces rochei MHM13 Abd-Elnaby et al., 2016 

13. Actinobacteria SH11 strain Wypij et al., 2017 

14. Streptomyces xinghaiensis OF1 Wypij et al., 2018 

15. Corynebacterium glutamicum  Gowramma et al., 2014 

16. Streptacidiphilus durhamensis  Buszewski et al., 2018 

17. Streptomyces sp. Al-Dhabi-87 Al-Dhabi et al., 2018 

18. Actinomycetes VITBN4 Nabila and Kannabiran, 2018 

19. Streptomyces zaomyceticus Oc-5 Hassan et al., 2019 

20. Streptomyces pseudogriseolus Acv-11 Hassan et al., 2019 

 

 

 

In one such study, Subashini and Kannabiran (2013) synthesized silver NPs from Streptomyces sp. 

and reported their antimicrobial activity against S. aureus. Similarly, in another study, biogenic 

silver NPs were synthesized from Streptomyces aureofaciens, an actinomycete, and found to be 

effective at a concentration as low as 50 μg/mL against S. aureus (Sundarmoorthi et al., 2011). 



 

Manikprabhu and group (2016) prepared spherical silver NPs with a size range of 4-50 nm using 

actinobacteria Sinomonas mesophila MPKL 26 in a sunlight-mediated green synthesis. They 

reported good antibacterial activity for the nanoparticles against the multi-drug-resistant strain of S. 

aureus. Similarly, Raja and John (2017) fabricated spherical silver NPs of 80 nm size from a 

marine Micromonospora sp., actinobacteria, and clinically-isolated drug-resistant S. aureus. 

      Although most of the studies using Actinobacteria for the nanoparticles synthesis fabricate silver 

NPs, there are reports that synthesized gold NPs (Balagurunathan et al., 2011; Shanmugasundaram 

et al., 2017; Jafari et al., 2018), zinc NPs (Rajamanickam et al., 2012), selenium NPs (Shaaban et al., 

2018), and metal oxide NPs (Shaaban et al., 2018; Nabila and Kannabiran, 2018; Hassan et al., 

2019), with antibacterial activities against S. aureus. For example, Balagurunathan et al. (2011) 

reported intracellular biosynthesis of gold NPs by Streptomyces viridogens strain HM10, isolated 

from Himalayan mountain soil, and the biogenic gold NPs demonstrated antimicrobial action 

against S. aureus.  

      In addition to actinobacteria, other bacterial species have also been reported for the biogenic 

synthesis of metallic NPs showing antibacterial properties against S. aureus. These include species 

belonging to the genera in Table-2.  Nanda and Saravanan (2009) reported the extracellular 

synthesis of silver NPs of the size range 160 to 180 nm in a cost-effective process by utilizing the 

wild strain of S. aureus itself. Further, the authors showed that the synthesized silver NPs interfere 

with the cell wall synthesis of S. aureus and inhibit its growth (Nanda and Saravanan, 2009). In the 

same way, S. aureus and its drug-resistant strain MRSA were utilized to synthesize selenium NPs 

having antibacterial properties toward S. aureus (Cruz et al., 2018). The authors noted that the 

selenium NPs synthesized from S. aureus and E. coli had their highest antibacterial activities against 

the microbe S. aureus and E. coli, respectively. The authors proposed an attractive theory that the 

metallic NPs synthesized from a particular bacteria are generally most effective towards the same 

bacterial species from which they were synthesized (Cruz et al., 2018).  



 

Table 2:  Metallic NPs showing antibacterial properties against S. aureus. 

 
S.No. genera References 

 

1. Alcaligenes  Divya et al., 2019 

2. Aeromonas Singh et al., 2016A 

3. Bacillus Velmurugan et al., 2014; Ghiuță et al., 2018; Saravanan et al., 2018B; 

Sunkar and Nachiyar, 2012; Rehman et al., 2019; Shivashankarappa and 

Sanjay, 2015; Elbeshehy et al., 2015; Khiralla and El-Deeb, 2015; Dalvand 

et al., 2018; Piacenza et al., 2017; Deljou and Goudarzi, 2016; Zare et al., 

2012; Shakibaie et al., 2015; Abdallah et al., 2019),  

4. Delftia Shakibaie et al., 2019 

5. Enterococcus Shoeibi and Mashreghi, 2017 

6. Deinococcus  Li Sundarmoorthi et al., 2016 

7. Escherichia Cruz et al., 2018 

8. Halococcus Srivastava et al., 2015 

9. Halomonas  Taran et al., 2018 

10. Kinneretia  Singh et al., 2016B 

11. Klebsiella Shahverdi et al., 2007; Malarkodi et al., 2014 

12. Lysinibacillus Bhatia et al., 2016 

13. Novosphingobium Du et al., 2016 

14. Ochrobactrum Thomas et al., 2014; Zonaro et al., 2 

15. Pantoea  Monowar et al., 2018 

16. Pseudomonas Cruz et al., 2018; Barsainya and Singh, 2018; Ashengroph et al., 2019; Syed 

et al., 2016; Punjabi et al., 2018; Shakibaie et al., 2017; Gopinath et al., 

2017; Banerjee et al., 2019; Pandey et al., 2018; Baker et al., 2015 

17. Ralstonia  Srivastava and Mukhopadhyay, 2015 

18. Serratia  Dhandapani et al., 2014 

19. Shewanella  Vaigankar et al., 2018; Ramasamy et al., 2016) 

20. Sporosarcina  Singh et al., 2016E; Rahimi et al., 2018 

21. Staphylococcus  Nanda and Saravanan, 2009; Rauf et al., 2017; Cruz et al., 2018 

22. Stenotrophomonas  Zonaro et al., 2015; Cremonini et al., 2018 

23. Thermoactinomyces Deepa et al., 2013 

24. Weissella Singh et al., 2016C 

 

 

 

 

 



 

 

Similarly, Srivastava and Mukhopadhyay (2015) synthesized spherical-shaped selenium 

nanoparticles (SeNPs) with a 40–120 nm size range from non-pathogenic bacteria Ralstonia 

eutropha. They reported a very high (up to 99%) reduction in the growth of S. aureus in the 

presence of selenium NPs. Moreover, biogenic SeNPs exhibited higher efficiency, indicated by a 

lower MIC value of 100 μg/mL than conventional antibiotic ampicillin, with a MIC value of 250 

μg/mL, against S. aureus (Srivastava and Mukhopadhyay, 2015). Selenium NPs synthesized by 

many other bacteria such as Stenotrophomonas maltophilia SeITE02 (Zonaro et al., 

2015), Enterococcus faecalis (Shoeibi and Mashreghi, 2017), Staphylococcus aureus (Cruz et al., 

2018), MRSA (Cruz et al., 2018), Escherichia coli (Cruz et al., 2018), and Pseudomonas 

aeruginosa (Cruz et al., 2018) also have been shown to inhibit the growth of S. aureus. 

Similarly, Bacillus sp. is also reported for the biosynthesis of selenium NPs that can kill S. 

aureus bacteria. For instance, Shakibaie and others (2015) synthesized selenium and selenium oxide 

NPs from MSh-1 strain of Bacillus. They showed that the nanoparticles inhibit biofilm formation by 

clinically-isolated S. aureus, including other human pathogens. Coating medical implant devices 

with microbial-synthesized nanoparticles can be a novel approach to remove the possibility of S. 

aureus infection. For example, Sonkusre and Cameotra (2015) coated polystyrene, glass, and 

catheter surfaces with SeNPs synthesized from bacteria Bacillus licheniformis JS2 and found that 

the coated surface can inhibit the biofilm formation by S. aureus. 

      Bacteria can also synthesize nanoparticles of different morphology that act against S. aureus. 

Dhandapani and group (2014) grew ZnO nanocrystals of various shapes, such as spherical 

nanoflower, on the cotton fabric surface by successfully utilizing activated ammonia synthesized 

from ureolytic bacteria Serratia ureilytica. The authors further reported that the cotton fabrics loaded 

with ZnO NPs showed good antibacterial activity against S. aureus. Singh et al. (2015) obtained 

anisotropic silver NPs of various shapes such as nano bar, pentagonal, spherical, icosahedral, 



 

hexagonal, truncated triangle, and triangular shapes, with particle size ranging between 30 and 100 

nm from Bhargavaea indica in an extracellular synthesis process. Further, the synthesized silver 

NPs exhibited antibacterial activity against S. aureus. They improved commercial antibiotics' 

antimicrobial activity, including lincomycin, vancomycin, novobiocin, penicillin G, cycloheximide, 

and rifampicin against S. aureus (Singh et al., 2015). 

      To combat S. aureus, bacteria-synthesized metal oxide and multi-metal nanoparticles have also 

been synthesized successfully from bacteria. For example, Taran et al. (2017) synthesized ZnO and 

TiO2 NPs from the bacteria Halomonas elongata IBRC-M 1021 and reported the antibacterial 

activity of ZnO NPs against S. aureus. In another study, the bismuth oxide nanoparticles, i.e., 

Bi2O3, an oxide of non-toxic metal bismuth, were synthesized by Dalvand and others (2018) from 

the bacteria Bacillus licheniformis PTCC1320. The cube-shaped Bi2O3 NPs with sizes in the range 

of 26 to 62 nm were found to inhibit the growth of S. aureus in a concentration-dependent manner 

(Dalvand et al., 2018). Similarly, Ramasamy et al. (2016) prepared bimetallic gold-silver (Au-Ag) 

NPs from Shewanella oneidensis MR-1. They found that the bimetallic NPs are capable of inhibiting 

the growth and inhibiting the biofilm formation of S. aureus. Besides metal oxides, cadmium sulfide 

(CdS) and zinc sulfide (ZnS) nanoparticles have been synthesized from bacteria and possess suitable 

antibacterial activities against S. aureus. For example, Malarkodi and group (2014) synthesized 

spherical-shaped CdS and ZnS NPs, with sizes 10 to 25 and 65 nm, from Klebsiella 

pneumoniae (strain MAA) extracellularly. Further, the authors found excellent antibacterial 

activities for CdS and ZnS NPs against S. aureus in a concentration-dependent manner. Similarly, 

CDs NPs with an average size of 6.7 ± 2.4 nm obtained from the cell-free extract of 

bacteria Pseudomonas chlororaphis CHR05 also showed excellent antibacterial properties toward S. 

aureus (Ashengroph et al., 2019).  

      Cyanobacteria, alternatively known as blue-green algae, are particular bacteria capable of 

deriving energy through photosynthesis. Recently, aqueous extracts of 



 

cyanobacteria Trichodesmium erythraeum were utilized to synthesize silver NPs with the cube-

shaped and average size of 26.5 nm active against the tetracycline-resistant strain of strain S. 

aureus (Sathishkumar et al., 2019). The silver NPs with sizes in the range of 40 to 80 nm 

biosynthesized from cell biomass of cyanobacteria Microcoleus sp. isolated from mangrove acted as 

an excellent antibacterial agent toward S. aureus (Sudha et al., 2013). Uma Suganya et al. (2015) 

used protein extracted from cyanobacteria Spirulina platensis as a reducing and stabilizing agent to 

synthesize spherical-shaped gold NPs with sizes ranging from 2 to 8 nm. They reported the dose-

dependent killing of S. aureus due to the piercing of its thick peptidoglycan layer by gold NPs. 

Similarly, an aqueous extract of Spirulina platensis was used by Sharma et al. (2015) for the 

extracellular synthesis of anti-S. aureus silver NPs. The extracts of 

cyanobacteria Leptolyngbya JSC-1 were used to fabricate silver and gold NPs with antibacterial 

potential toward S. aureus (Zada et al., 2018A; Zada et al., 2018B). 

      One crucial thing in the microbial fabrication of NPS is that the bacteria for the synthesis of 

nanoparticle that acts against S. aureus must be carefully chosen because nanoparticles of a metal 

synthesized from two different bacteria may behave differently against S. aureus. For example, 

Wang and group (2016A) synthesized gold NPs from the bacteria Microbacterium resistance. They 

found no antibacterial activity for nanoparticles against S. aureus. In contrast, gold NPs synthesized 

from Deinococcus radiodurans (Li et al., 2016) and Pseudomonas fluorescens 417 (Syed et al., 

2016) could inhibit the growth of S. aureus. 

      Several studies have investigated the reduction of metal ions into nanoparticles by bacterial 

extract and concluded that bacterial enzymes like reductase, proteins, etc., are responsible for metal 

ion reduction (Iravani, S., 2014). Although bacteria have been used frequently to synthesize 

nanoparticles for inhibiting and killing S. aureus, bacterial-mediated synthesis entails a time-

consuming optimization step and complex nanoparticles extraction and purification step (Narayanan 

and Sakthivel, 2010; Iravani, 2014). 



 

Fungi-fabricated nanoparticles against S. aureus 

Fungi are another microorganism that has been used to synthesize effective metal nanoparticles 

versus S. aureus (Yadav et al., 2015; Khan et al., 2018A; Guilger-Casagrande and Lima, 2019). In 

comparison to the bacteria, NPs synthesis from fungi has advantages like tolerating high metal 

concentrations. They can endure higher flow pressure and agitation in bioreactors, the easier 

downstream processing, faster growth rate and easier maintenance, and excellent production of 

extracellular enzymes that can be used as a reducing agent (Mohanpuria et al., 2008; Narayanan and 

Sakthivel, 2010; Saha et al., 2010; Gudikandula and Maringanti, 2016; Feroze et al., 2020).  Silver 

nanoparticles with antibacterial properties toward S. aureus have been synthesized from the various 

fungal genus in Table-3.                  

Table 3:  Silver nanoparticles by means of antibacterial properties toward S. aureus, synthesized from the 

a number of fungal genus 

 
S.No. Fungus genus References 

 

1. Agaricus Mirunalini et al., 2012; ul-Haq et al., 2015; Sriramulu and Sumathi, 2017 

2. Alternaria  Ibrahim and Hassan, 2016; Shaheen and Abd El Aty, 2018; Singh et al., 2017 

3. Amylomyces Musarrat et al., 2010 

4. Aspergillus Nayak and Anitha, 2014; Rodrigues et al., 2013; Saravanan and Nanda, 2010; 

Bharathidasan and Panneerselvam, 2012; Naqvi et al., 2013; Rajakumar et al., 

2012; Barapatre et al.; 2016; Fatima et al., 2016; Shahzad et al., 2019; Sagar and 

Ashok, 2016; Kathiresan et al., 2010; Ottoni et al., 2017; Binupriya et al., 2010; 

Nanda et al., 2018; Balakumaran et al., 2016; Li et al., 2012; Devi and Joshi, 

2012; Netala et al., 2016; Khan et al., 2018B 

5. Beauveria  Prabakaran et al., 2016 

6. Bionectria Rodrigues et al., 2013 

7. Calocybe Mirunalini et al., 2012 

8. Chaetomium  Singh et al., 2018 

9. Colletotrichum Azmath et al., 2016 

10. Cordyceps Wang et al., 2016B 

11. Cryphonectria Dar et al., 2013 

12. Emericella Barapatre et al., 2016 

13. Fusarium Ingle et al., 2008; Bawskar et al., 2015; Gholami-Shabani et al., 2014; Joshi et al., 

2013; Husseiny et al., 2015; Mekkawy et al., 2017 

14. Ganoderma Gudikandula et al., 2017; Jogaiah et al., 2017; Mohanta et al., 2016; Sriramulu 

and Sumathi, 2017; Mirunalini et al., 2012 

15. Guignardia Balakumaran et al., 2015 

16. Macrophomina Joshi et al., 2013 

17. Monascus  El-Baz et al., 2016 



 

18. Mucor Aziz et al., 2016 

19. Nigrospora Shaheen and Abd El Aty, 2018; Muhsin and Hachim, 2014 

20. Penicillium Singh et al., 2014; Ma et al., 2017; Sarsar et al., 2015; Hamad, 2018; Shaheen and 

Abd El Aty, 2018; Majeed et al., 2016; Nayak et al., 2018; Bharathidasan and 

Panneerselvam, 2012; Feroze et al., 2020 

21. Pleurotus Kaur et al., 2018; Debnath et al., 2019; Al-Bahrani et al., 2017; Devika et al., 

2012; Mirunalini et al., 2012; Nithya and Raghunathan, 2009; Vigneshwaran et 

al., 2007 

22. Paecilomyces Devi and Joshi, 2012 

23. Pestalotia Raheman et al., 2011 

24. Phenerochaete Saravanan et al., 2018A 

25. Phomosis Bharathidasan and Panneerselvam, 2012 

26. Pycnoporus Chan and Don, 2012; Gudikandula and Maringanti, 2016 

27. Rhizopus Ottoni et al., 2017 

28. Schizophyllum Chan and Don, 2012; Gudikandula et al., 2015 

29. Sclerotinia  Saxena et al., 2016 

30. Scopulariopsis Hamad, 2018 

31. Trametes  Gudikandula et al., 2017 

32. Trichoderma  Kumari et al., 2017; Fayaz et al., 2010; Saravanakumar and Wang, 2018; Ottoni 

et al., 2017; Ahluwalia et al., 2014 

 

 

               In a study, authors isolated filamentous fungi (Aspergillus terreus SP5, Paecilomyces 

lilacinus SF1, and Fusarium sp. MP5) from the soil of high altitude and cold climatic regions of 

eastern Himalayan. They used them to synthesize silver NPs that exhibited antimicrobial activity 

against S. aureus MTCC96 (Devi and Joshi, 2012). Furthermore, the mycosynthesized silver NPs 

showed a synergistic effect with antibiotics like chloramphenicol, ciprofloxacin, erythromycin, and 

methicillin against S. aureus MTCC96 (Devi and Joshi, 2012). Likewise, Gudikandula et al. (2017) 

isolated multiple strains of Basidiomycetes from a forest region. Among these two 

strains, Ganoderma enigmatic and Trametes ljubarskyi were utilized to synthesize silver NPs that 

showed antibacterial activity against S. aureus. Similarly, Chan and Don (2012) employed two 

white-rot fungi, Schizophyllum commune and Pycnoporus sanguineus, for the biosynthesis of silver 

NPs and examined their potential to inhibit the growth of S. aureus. Silver NPs synthesized from S. 

commune were shown to be most effective against S. aureus, as observed by its zone of inhibition of 

about 2.0 cm (Chan and Don, 2012). Similarly, in another study, blight-causing pathogenic 



 

fungus Cryphonectria sp. was isolated from the stems of chestnut and was used for the extracellular 

synthesis of silver NPs (Dar et al., 2013). These silver NPs exhibited higher antibacterial activity 

than AgNO3 and conventional antibiotic streptomycin against S. aureus (Dar et al., 2013). 

Gudikandula and Maringant (2016) reported that fungus Pycnoporus sp. (HE792771) synthesized 

silver NPs showed more excellent antibacterial activity, with a higher zone of inhibition in the well-

diffusion assay than chemically synthesized silver NPs toward S. aureus. Some studies used fungi 

synthesized metal NPs in combination with conventional antibiotics and reported synergistic 

antibacterial effect towards S. aureus at a lower concentration than when both metal NPs and 

antibiotics were used individually (Fayaz et al., 2010; Raheman et al., 2011; Devi and Joshi, 2012). 

Such a therapeutic approach enhances the efficacy of chemical antibiotics by reducing its minimum 

inhibitory concentration significantly against S. aureus.  

      Metal nanoparticles other than silver have also been synthesized from fungi and shown to be an 

excellent antibacterial agent to treat S. aureus infection. For example, gold NPs synthesized from 

marine endophytic fungus Cladosporium cladosporioides isolated from seaweed Sargassum 

wightii were found to inhibit the growth of S. aureus by disrupting its cell membrane (Hulikere M et 

al., 2017). Further, as per the authors, the bioreduction of gold metal salts to nanoparticles was 

mediated by NADPH-dependent reductase and phenolic compounds present in the aqueous extract 

of the fungus (Hulikere M et al., 2017). In another study, authors fabricated gold NPs with spherical 

shape and size ranging from 10.3 to 38.7 nm from an aqueous extract of oyster 

mushroom, Pleurotus ostreatus (Jacq. ex. Fr.) Kummer reported its growth inhibition property 

against S. aureus (Bawadekji et al., 2018). Mohamed and group (2015) employed Alternaria 

alternata fungi to synthesize cubic-shaped iron oxide NPs with antibacterial potential toward S. 

aureus. 

Similarly, Sidkey et al. (2016) fabricated iron NPs intracellularly and extracellularly 

from Aspergillus foetidus. The size of the iron NPS ranges from 31.53 to 61.94 nm and 80 to 370 



 

nm for intra- and extracellular particles, respectively, and both for both types of nanoparticles 

showed the ability to inhibit the growth of S. aureus (Sidkey et al., 2016). Munusamy and group 

(2014) fabricated spherical-shaped cerium oxide NPs of size 5 to 20 nm from the precursor cerium 

chloride heptahydrate by using culture filtrate of fungi Curvularia lunata and further reported the 

antibacterial activity of synthesized nanoparticles versus S. aureus. Alrabadi et al. (2017) 

synthesized magnesium oxide NPs extracellularly by employing fungi Trichoderma 

viride. Moreover, reported better antibacterial activity for the green NPs than the antibiotic 

amoxicillin against S. aureus. 

Similarly, Ganesan and others (2020) utilized an aqueous extract of fungus belonging 

to Periconium sp. To synthesize ZnO NPs with hexagonal shape and size of 40 nm and found 

excellent antibacterial activity for the nanoparticles toward S. aureus in a concentration-dependent 

manner. In an exciting study, the authors used the fungus Aspergillus welwitschia to fabricate oval 

and spherical shaped tellurium NPs that exhibited antibacterial activity against MRSA; 

S. aureus was resistant toward the tellurium NPs (Abo Elsoud et al., 2018). Recently, some fungal 

strains such as Aureobasidium pullulans, Mortierella humilis, Trichoderma harzianum, and Phoma 

glomerata were utilized to biosynthesize selenium and tellurium NPs (Liang et al., 2019). Although 

authors did not study the antibacterial properties of fungal-synthesized selenium and tellurium NPs, 

these can be an excellent prospect for nanotherapeutic against S. aureus infection (Liang et al., 

2019). 

Yeast-fabricated nanoparticles against S. aureus 

Yeast is another crucial category of organisms that have been used for the green synthesis of 

nanoparticles exhibiting anti-S. aureus activity. Like fungi, yeast also possesses more advantages 

than bacteria, such as fast growth rate, simple nutrient requirement, adept in producing enzymes in 

high amounts, etc. (Dinesh et al., 2011). Few studies have applied yeast to synthesize metal 

nanoparticles to counter the growth of S. aureus. For example, Dinesh and group (2011) 



 

employed Candida sp. VITDKGB, a marine yeast, was collected from Nicobar Islands, India, to 

synthesize silver NPs of 87 nm size and reported the excellent antibacterial activity of NPS 

against S. aureus. Mishra et al. (2011) synthesized near-spherical silver and gold NPs in the size 

range of 10–20 nm and 50–70 nm, respectively, from the yeast Candida guilliermondii. They found 

both types of nanoparticles to be active against S. aureus. In a similar study, silver and gold NPs of 

the average size of 30 nm and 5 nm respectively were synthesized using cell-free extract of 

fungus Candida albicans. They inhibited the growth of S. aureus (Ahmad et al., 2013). Candida 

albicans was also utilized in another study to synthesize silver NPs having an average size in the 

range of 20-8 nm and of various shapes such as spherical, rod-like, decahedral, triangular, and 

platelet-like exhibited antibacterial activity against S. aureus in agar disc diffusion test (Rahimi et 

al., 2016). Bhat and group (2015) synthesized silver NPs utilizing Candida albicans and 

investigated their antibacterial effect when used alone and combined with the antibiotic 

ciprofloxacin on S. aureus. The authors found antibacterial activity for silver NPs when used alone. 

They observed an increase in antibacterial activity of the antibiotic when used in combination with 

the silver NPs against S. aureus (Bhat et al., 2015). Jalal and group (2018) isolated yeast Candida 

glabrata from oropharyngeal mucosa of human immunodeficiency virus patients and synthesized 

silver NPs. The synthesized silver NPs were spherical with size within the range of 2–15 nm and 

could inhibit the growth of S. aureus (Jalal et al., 2018). Waghmare et al. (2018) employed Candida 

utilize for the extracellular biosynthesis of silver NPs that was a spherical shape with size in the 

range of 20–80 nm and reported the bactericidal activity of silver NPs against S. aureus via agar disc 

diffusion assay. Eugenio and group (2016) biosynthesized silver NPs and AgCl NPs using 

yeast Candida lusitaniae isolated from the gut of termites and reported strong growth inhibitory 

potential of nanoparticles toward S. aureus. The yeast Kluyveromyces marxianus was employed for 

the bioproduction of silver NPs of spherical shape with a size range between 3 and 12 nm, and the 

obtained silver NPs showed antibacterial activity against the drug-resistant strain of S. 



 

aureus (Ashour et al., 2014). Badhusha and Mohideen (2016) biosynthesized silver NPs of different 

sizes and shapes by controlling pH from Saccharomyces cerevisiae; the synthesized silver NPs were 

toxic to the S. aureus growth in well diffusion test.  

      Metal nanoparticles other than silver metals have also been synthesized from yeast and 

investigated for their efficacy against S. aureus. To give an example, Moghaddam et al. (2017) used 

ZnO NPs of hexagonal wurtzite structure with size in the range of 10–61 nm synthesized from the 

yeast Pichia kudriavzevii and reported the effectiveness of green ZnO NPs to inhibit the growth of S. 

aureus. Similarly, Chauhan et al. (2014) reported extracellular biosynthesis of ZnO NPs from Pichia 

fermentans JA2 isolated from spoiled fruit pulp and observed zone of inhibition against S. aureus in 

disc diffusion assay. Peiris and group (2018) biosynthesized spherical-shaped titanium dioxide NPs 

(TiO2NPs) with an average size of 6.7±2.2 nm using Baker’s yeast, i.e., Saccharomyces cerevisiae. 

Further, the authors found that the combination of green TiO2NPs and sunlight is an excellent 

antibacterial agent toward S. aureus (Peiris et al., 2018). In another study, Venkat Kumar et al., 

2019) synthesized cadmium sulfide nanoparticles (CdS NPS) of spherical shape and in size range 

50-60 nm using Candida albicans and noted that the CdS NPs are capable of inhibiting the growth 

of S. aureus in a concentration-dependent manner. 

Algae-fabricated nanoparticles against S. aureus 

Algae are the photosynthetic eukaryotic organisms. That belong to a diverse group containing both 

unicellular and multicellular organisms. Algae are rich in biomolecules like carbohydrates, protein, 

fats, nucleic acids; pigments like carotenoids, chlorophylls, and phycobilins; and important 

secondary metabolites like alkaloids, terpenes, polyphenols, etc. (Michalak and Chojnacka, 2015). 

These natural chemicals can be an excellent reducing and stabilizing agent for the synthesis of 

nanoparticles. Algae, both microalgae and macroalgae have been employed in the eco-friendly and 

cost-effective green synthesis of metal NPS with the ability to kill S. aureus bacteria. To illustrate, 

Aziz et al. (2015) used a freshwater green algae Chlorella pyrenoidosa. They reported successful 



 

biosynthesis of silver NPs with the size distribution of 8±2 nm showing antibacterial activity 

against S. aureus. According to the authors, the silver NPs capped with protein disrupted the S. 

aureus cell membrane, reached inside the cells, and caused the production of active oxygen species, 

thus killing the bacteria (Aziz et al., 2015). Similarly, good antibacterial activity against S. 

aureus was exhibited by silver NPs, of spherical and triangular shape and size in the range of 5 to 25 

nm, synthesized from marine green algae Caulerpa racemosa isolated from the South-East coast of 

India (Kathiraven et al., 2015). Green algae Caulerpa serrulata was used by Aboelfetoh et al. (2017) 

to synthesize silver NPs with spherical shape and an average size of 10±2 nm to check the growth 

of S. aureus. The green algae such as Chlorella Vulgaris (Annamalai and Nallamuthu, 2016; 

Soleimani and Habibi-Pirkoohi, 2017), Enteromorpha flexuosa (wulfen) J. Agardh (Yousefzadi et 

al., 2014), Spirogyra sp (Pinjarkar et al., 2016; Salari et al., 2016), Urospora sp. (Suriya et al., 

2012), Pithophora oedogonia (Mont.) Wittrock (Sinha et al., 

2015), Enteromorpha compressa (Ramkumar et al., 2017) have also been reported for the synthesis 

of silver NPs with toxicity towards S. aureus. El-Rafie and group (2013) extracted water-soluble 

polysaccharides from red (Pterocladia capillaries, Jania rubins), green (Ulva facial), and brown 

(Colpmenia sinus) algae to reduce and stabilize silver ions for the preparation of silver NPs. The 

functionalized NPs were found to be stable for an extended period, and cotton fibers immobilized 

with the nanoparticles showed potential to be used as an antiseptic wound dressing (El-Rafie et al., 

2013). Silver NPs synthesized from brown marine weed Sargassum wightii Greville isolated from 

the infected silkworm Bombyx mori L. A strong zone of inhibition was obtained against S. 

aureus (Govindaraju et al., 2009). Similarly, other species of genus Sargassum, such as S. 

cinereum, S. ilicifolium, S. wightii, have also been utilized to synthesize silver NPs having the 

antibacterial potential to prevent S. aureus growth (Mohandass et al., 2013; Kumar et al., 2012A; 

Shanmugam et al., 2013). Further, another brown alga like Ecklonia cava (Venkatesan et al., 2016) 

and Turbinaria ornata (Krishnan et al., 2015) have also emerged as efficient vehicles for the anti-S. 



 

aureus silver NPs synthesis. Pugazhendhi et al. (2018), using marine red algae Gelidium 

amansii synthesized spherical-shaped silver NPs with size in the range 27-54 nm and reported its 

detrimental effect on S. aureus bacteria. Ethanolic extract of Acanthophora specific, marine red 

algae served as a capping and reducing agent in the formation of cubic-shaped silver NPs, with sizes 

ranging between 33 and 81 nm, that was destructive to S. aureus (Ibraheem et al., 2016). Similarly, 

Kumar et al. (2012B) also used Acanthophora specifera to fabricate silver NPs. However, in this 

case, the authors obtained spherical-shaped NPs, of 48 nm size that inhibited the biofilm formation 

by S. aureus. De Aragão and group (2019) extracted a polysaccharide from red 

algae Gracilaria birdie. They used it as a reducing and stabilizing agent for the synthesis of silver 

NPs to inhibit S. aureus growth. Aqueous extract of red algae Amphiroa fragilissima (Sajidha and 

Lakshmi, 2016) prepared silver NPs with effective antibacterial activity toward S. aureus. Silver 

chloride NPs with an average diameter of 9.8±5.7 nm prepared from Chlorella Vulgaris reduce the 

viability of S. aureus up to 98% in a dose-dependent manner (da Silva Ferreira et al., 2017). 

      Ramakritinan et al. (2013) synthesized silver, gold, and bimetallic silver-goldNPs (in three 

different ratios: 1:1, 1:3, and 3:1) from marine red alga Gracilaria sp. and found silver NPs and 

bimetallic NPs with Ag: Au ratio of 1:3 to be most effective against S. aureus. Similarly, the 

aqueous extract of marine algae Gracilaria corticata was used as a reducing agent to prepare gold 

NPs that showed good antibacterial activity against S. aureus in well diffusion test (Naveena and 

Prakash, 2013). Abdel-Raouf et al. (2017) prepared gold NPs with the size distribution of 3.85–

77.13 nm and distinct shapes like a spherical rod, truncated, triangular, hexagonal from the ethanol 

extract of red algae Galaxaura elongate and reported the efficacy of fabricated NPs toward both 

MRSA and S. aureus. In another study, an aqueous extract of green microalga Chlorella 

Vulgaris was utilized to prepare spherical-shaped gold NPs, with sizes ranging between 2 and 10 

nm, that was found to be toxic to S. aureus in agar well diffusion assay (Annamalai and Nallamuthu, 

2015). Gold NPs of various shapes like grain, triangular, and spherical were fabricated from 



 

diatom Nitzschia found to inhibit the growth of S. aureus (Borase et al., 2017). Diatom-fabricated 

gold NPs further enhanced the antibacterial effects of commercial antibiotics penicillin and 

streptomycin synergistically against S. aureus (Borase et al., 2017). Polydispersed gold NPs 

fabricated from marine red algae Kappaphycus alvarezii inhibited the growth of S. aureus in the disc 

diffusion assay (Rajasulochana et al., 2012). Abboud et al. (2014) reported the synthesis of majorly 

spherical-shaped copper oxide NPs (mixture of cuprous and cupric oxide NPs) of 5–45 nm 

dimension using brown algae Bifurcaria bifurcata. They showed the toxicity of nanoparticles to S. 

aureus. On the other hand, Arya et al. (2018) utilized green algae Botryococcus braunii to 

synthesize a mixture of cuprous and cupric oxide NPs. The green copper oxide NPs had cubical and 

spherical with an elongated shape and were an effective nanotherapeutic agent against S. aureus 

(Arya et al., 2018). Ishwarya and group (2018) prepared spherical ZnO NPs of 40-50 nm size by 

utilizing hot water extracts of marine seaweed Sargassum wightii. They recorded the anti-biofilm 

activity of ZnO NPs against S. aureus. 

Lichen-fabricated nanoparticles against S. aureus 

Lichens are the symbiosis between a fungus and an alga living mutually beneficial relationships. 

Lichens possess several secondary metabolites, antioxidants, etc., that can be used as reducing agents 

for nanoparticle synthesis. There are very few studies using lichens to synthesize nanoparticles and 

their use as antibacterial nanotherapeutic against S. aureus. For example, Alavi et al. (2019) used an 

aqueous extract of lichen Protoparmeliopsis muralis to synthesize nanoparticles of various metals 

such as Ag, Cu, Fe3O4, TiO2, and ZnO. The synthesized metal NPs were all in a spherical shape, and 

the average size was 33.49±22.91, 253.97±57.2, 307±154, 133.32±35.33, and 178.06±49.97 nm for 

Ag, Cu, Fe3O4, TiO2, and ZnO NPs, respectively. Moreover, all metallic NPs were found to possess 

bacteriostatic and bactericidal properties against S. aureus, and the antibacterial activities of 

nanoparticles were in the following order: Ag > ZnO > Fe3O4 > Cu > TiO2 (Alavi et al., 2019). 

Similarly, another lichen Usnea longissima was used to form spherical shaped silver NPs of 9.40–



 

11.23 nm size, and the nanoparticles exhibited antibacterial activity toward S. aureus (Siddiqi et al., 

2018). Din and group (2015) prepared silver NPs of 13 nm size from an aqueous extract of the 

lichen Ramalina dumeticola and reported the nanoparticles to be effective against MRSA (Figure-2). 

 

Figure 2:  Mode of antibacterial action of microbial-synthesized metal nanoparticles against S. aureus 

 

 

 

 

 

 

 



 

Conclusion 

Nanomaterials have spawned a great deal of attention from the scientific community. Similarly, 

interest in S. aureus is also increasing because it is a common pathogen causing severe infections and 

the growing emergence of new drug-resistant strains. It is no surprise that metal nanoparticles have 

emerged as a great prospect to treat infectious diseases in these scenarios. Although a chemical 

process also produces metal nanoparticles, it is energy-intensive, cost-intensive, and environmentally 

harmful due to the generation of toxic materials. The synthesis of metal nanoparticles from the 

microorganism to treat S. aureus infection is an excellent alternative to the problem. The abundance 

and diversity of the microbial world present us with an excellent opportunity for nanoparticle 

synthesis that is environmentally benign and economically cost-effective. This review discussed the 

production of metal nanoparticles using various microbes, such as bacteria, fungi, yeast, and lichens, 

and their application to combat the growth of pathogenic bacteria S. aureus, including its resistant 

strains. Nanoparticles of silver metal have been most commonly synthesized from microorganisms to 

treat S. aureus. Further, nanoparticles of metals like gold, zinc, iron, titanium, copper, metal oxides, 

and multi-metals have also been synthesized from microbes by a substantial number of studies to 

combat the S. aureus. Though the use of microbial-fabricated metal nanoparticles as the bacteriostatic 

and bactericidal agent against S. aureus is shown to be effective by many studies, the research into 

their benefit and toxicity to humans must be appropriately investigated further so that they can be 

effectively used in practical clinical settings. 
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