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Abstract:  

In the present research era, high accuracy methods as a statistical analysis tool are increasing. 

Therefore, researchers are more focused to produce reliable and accurate results. Hence, the 

use of data modeling techniques is more focused to meet the needs of the current research 

trend. On the other hand, Design of Experiment (DOE) is extensively used among various 

scientific fields; however, its limitations do not allow these study designs for modeling 

purposes. Therefore, this study was designed to develop a methodology combining statistical 

methods that can provide to use one-factor DOE study designs for modeling and predictions. 

The addition of Fuzzy regression and multilayer feedforward (MLFF) neural network along 

with multiple linear regression would provide more accurate results with high accuracy. 

Furthermore, the developed methodology was tested on a dataset to test the methodology's 

performance and results provided that methodology provided regression models through 

MLR and fuzzy with high accuracy with the testing of the model's predictability through 

MLFF.   
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Introduction: 

Design of experiment (DOE) study designs are widely used among various scientific and 

non-scientific experiments and can be used to explore or study the relationship or association 

among the variables [1-3]. However, the DOE study designs are made up of factors, and each 

factor is based on different categories [4]. Hence, due to the nature of the variables in DOE 

study designs, the data cannot be used directly for prediction purposes and some prior work is 

needed to be done before using the DOE study designs for regression modeling [5,6]. On the 

other hand, forecasting is becoming popular in the studies as it helps to improve the 

significance of the study findings and impact of the research; hence the use of regression 

modeling has become increasing among the scientific community.  



 

 

Due to the nature of the variables in the DOE study designs, these study designs cannot be 

used directly for regression modeling. Hence, some prior work, which is called data 

transformation, is required to use DOE study designs for regression modeling [6]. 

Furthermore, due to the nature of the independent variables in the DOE study designs, called 

factors, it is likely to have fuzziness in the transformed data. On the other hand, linear 

regression models are designed to model crisp datasets, and their aptness becomes poor in 

case of vague data [7]. Therefore, to address the issue of data fuzziness and incorporate fuzzy 

data into the regression model, a new approach in regression modeling was introduced, which 

is called Fuzzy linear regression modeling [8]. Like linear regression, which is based on 

probability theory, fuzzy regression is based on the theory of possibility [9,10]. L.A. Zadeh 

did the initial work on fuzzy regression, which later proceeded by Tanaka, Diamond, 

Ishibuchi and others [9,11,12].    

Therefore, this study was designed to provide a methodology that can enable researchers to 

use their DOE study designs for prediction purposes. The study aim was to provide a 

comprehensive and robust methodology that included the transformation of one-factor DOE 

study design to linear form, use of bootstrapping to enhance the accuracy of estimated 

regression parameters, use of linear and fuzzy regression models and utilization of multilayer 

feedforwarding (MLFF) neural networking for model validation. In addition, demonstration 

of the methodology provided by fitting it on a secondary dataset.    

Methodology: 

One factor DOE study design was used for transformation into linear form, followed by 

regression modeling and validation. Figure 1 illustrated the entire process involved in the 

methodology from the data transformation till the validation of the derived regression model. 

 

 



 

 

 

Figure 1: Conceptual framework of methodology building  

 

Therefore, the data transformation process on generalized one-factor DOE study design was 

initially elaborated. Hence, Table 1 introduced the distribution of one-factor DOE with i 

treatments and j observations within each treatment.  

Table 1: General data distribution for one-factor study design  

Treatment 

1 2 … i 

y11 y21 … yi1 

y12 y22 … yi2 

y13 y23 … yi3 

. 

. 

. 

. 

. 

. 

… . 

. 

. 

y1j y2j … yij 

 

Data presented in table 1 has one dependent variable (y) and "i" treatments (factors). 

However, to transform the data into the linear form, "i
th

" treatment or factor was not required, 

as expressed in terms of i-1 treatments or factors [13]. Therefore, a generalized matrix for the 

transformed dataset contained r=i-1 and n=j. Now the utmost part of the transformation 

process was to code the factor. The variables generated after the coding are called indicator 

variables that take on values 0, 1 or -1 [6]. This coding process must be done carefully 

because it led to the regression coefficients in the     vector. Hence, the matrix obtained after 



 

 

the transformation of the dataset had dependent and independent variables matrix, matrix for 

slopes and matrix for random error.  

  

  

 
 
 
 
 
 
 
 
   
   
 

   
   
   
 

    
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
   
   
   
   
   
   
   
      

 

 
 
 
 
 
 
 
 

  
  
  
  
  
  
 

     
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 

     

     

     

     

 
          

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
   
   
 

   
   
   
 

    
 
 
 
 
 
 
 

 

 

Let xij1 denoted the value of indicator variable x1, xij2 indicated the value of indicator variable 

x2, and so on. Using i-1 indicators in the model and multiple linear regression (MLR) model 

could be stated as  

                                        ----- (1) 

where, 

      
                                        
                                       
                                                         

    

     
                                       
                                       
                                                           

 

         
                                            

                                                
                                                                  

     

 

A Case Study from Health Sciences   

To apply the above process of data transformation to get the linear form, a one-factor DOE 

data was extracted from a book "Probability & Statistics for Engineers & Scientists" by 

Walpole R.E et al [14]. The dataset belonged to the pharmacological study in which different 

drugs were tested. The dataset consisted of 25 patients with a fever of 38 degrees Celsius or 

higher and used five different brands of headache relief medications. The number of hours of 

headache relief was recorded in table 2. 

 



 

 

      Table 2: Hours of relief from five different brands of headache tablets 

Drug 1 Drug 2 Drug 3 Drug 4 Drug 5 

5.2 9.1 3.2 2.4 7.1 

4.7 7.1 5.8 3.4 6.6 

8.1 8.2 2.2 4.1 9.3 

6.2 6.0 3.1 1.0 4.2 

3.0 9.1 7.2 4.0 7.6 

 

After that, the transformation process was initiated; data in table 2 had five groups (r = 5) and 

five observations in each group (n = 5). Hence, each column of the transformed matrix had 

25 observations (r × n). The independent variables' matrix required indicator variables with 

values 0, 1 and -1. Therefore, the matrix after transformation looked like this: 

  

 
 
 
 
 
 
 
 
   
   
   
   
   
   
 

    
 
 
 
 
 
 
 

   

 
 
 
 
 
 
 
 
   
   
   
   
   
   
   
     

 
 
 
 
 
 
 

  

 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

   

 
 
 
 
 
     

     

     

     

      
 
 
 
 

 

 
 
 
 
 
 
 
 
   
   
   
   
   
   
 

    
 
 
 
 
 
 
 

 

Let xi1 denoted the value of indicator variable x1, xi2 indicated the value of indicator variable 

x2, etc. Using t-1 indicators in the model and multiple linear regression model for the study 

would be stated as  

                                 ----- (2) 

where 

      
                                        
                                     
                                                       

      

    
                                         
                                      
                                                        

 

        
                                        
                                      
                                                          

       
                                         
                                     
                                                         

 

Table 3 represented the data after transformation. The data had one dependent variable yij, 

and four xi1, xi2, xi3, and Xi4. Data now transformed to linear form and could be used for 

regression modeling.  

 

 



 

 

               Table 3: Regression approach to one-factor DOE 

yij xi1   xi2    xi3   xi4 

5.2 1 0 0 0 

4.7 1 0 0 0 

8.1 1 0 0 0 

6.2 1 0 0 0 

3.0 1 0 0 0 

     
4.2 -1 -1 -1 -1 

7.6 -1 -1 -1 -1 

 

Hence, data tabulated in table 3 showed a transformed form of one-factor DOE into linear. 

Therefore, this can be used for regression modeling. Thus, the R-software was used for 

writing syntax for regression modeling. In this developed methodology, to enhance the 

accuracy of estimated regression parameters, the syntax for bootstrapping was utilized first 

after the data entry into the R. The reason of using bootstrapping in the syntax was this 

technique was developed to increase the size of the sampled data by random replication 

process. Therefore, this technique could help to improve the accuracy of the outcome 

obtained from the methodology. The syntax for data splitting was followed by bootstrapping, 

which provided an opportunity to have another (independent) dataset that could be used to 

test the developed regression model. Hence, the syntax for data splitting was used to get 

“train” and “test” datasets in 70:30 ratio. After that, the syntax for multiple linear regression 

and fuzzy regression was used by using “train” data, and the mean square error (MSE) for the 

model was calculated by using “test” data. To further validate the model and to check how 

far the model's prediction was from reality, the syntax for multilayer feedforward neural 

network (MLFF) was used. Since normalization was necessary before performing neural 

networks, the syntax for data normalization utilized prior neural networks [15]. Furthermore, 

normalized data were split into “train” and “test”, in which “train” data was used for building 

the architecture of the neural network and “test” data used to test the predictability of the 

developed network.   Therefore, comprehensive, combined and robust methodology with R-

syntax by using the data in table 3 was as follows: 

 

R Syntax for Modeling DOE Study Designs:   

 

y = c(5.2, 4.7, 8.1, 6.2, 3.0, 9.1, 7.1, 8.2, 6.0, 9.1, 3.2, 5.8, 2.2, 3.1,  

      7.2, 2.4, 3.4, 4.1, 1.0, 4.0, 7.1, 6.6, 9.3, 4.2, 7.6) 

x1 = c(1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1,  



 

 

       -1, -1, -1, -1) 

x2 = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1,  

       -1, -1, -1, -1) 

x3 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1,  

       -1, -1, -1, -1) 

x4 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, -1,  

       -1, -1, -1, -1) 

 

X = cbind(x1,x2,x3,x4) 

data = data.frame(y,x1,x2,x3,x4) 

 

R Syntax for data entry and Bootstrapping  

 

#/Performing Bootstrap for 1000 

 

mydata <- rbind.data.frame(data, stringsAsFactors = FALSE) 

iboot <- sample(1:nrow(mydata),size=1000, replace = TRUE) 

bootdata <- mydata[iboot,] 

 

R Syntax for splitting booted data into test and train data  

 

#/Randomly split the data into 70:30 

#70 percent of the data at our disposal to train the network 

#30 percent to test the network/ 

 

smp_size <- floor(0.70*nrow(bootdata)) 

set.seed(123) 

train_ind<- sample(seq_len(nrow(bootdata)), size=smp_size) 

 

train <- data.frame(bootdata[train_ind,]) 

test <- data.frame(bootdata[-train_ind,]) 

 

# Print Data 

print(train) 

print(test) 

 

R Syntax for MLR Regression Modeling  

 

# /Fit a Linear Regression Model 



 

 

# Use Mean Squared Error (MSE) as a Measure of Prediction Performance/ 

#/Predict the Values for the Test Set and Calculate the MSE/ 

Model <- lm(y~x1+x2+x3+x4, data=train) 

summary(Model) 

predict_lm <- predict(Model,test) 

MSE.lm <- sum((predict_lm - test$y)^2)/nrow(test) 

MSE.lm 

 

Syntax for Fuzzy regression Modeling 

 

if(!require(fuzzyreg)) install.packages("fuzzyreg", dependencies = TRUE) 

library(fuzzyreg) 

 

##Fuzzy linear model using the PLRLS method## 

f <-fuzzylm(y ~ x1+x2+x3+x4, data=train$lee, method = "plrls", fuzzy.left.x = 

NULL, fuzzy.right.x = NULL, fuzzy.left.y = NULL, fuzzy.right.y = NULL) 

coef(f) 

 

R Syntax for data normalization and Multilayer Feedforward Neural Network 

#/Performing neural network 

#/install the neuralnet package/ 

if(!require(neuralnet)){install.packages("neuralnet")} 

library("neuralnet") 

 

#/Scaling the data for normalization 

# Method (usually called feature scaling) to get all the scaled data 

# in the range [0,1]/ 

max_data <- apply(bootdata, 2, max) 

min_data <- apply(bootdata, 2, min) 

data_scaled <- scale(bootdata,center = min_data, scale = max_data - min_data) 

 

 

#/Randomly split the data into 70:30 

#70 percent of the data at our disposal to train the network 

#30 percent to test the network/ 

 

index = sample(1:nrow(bootdata),round(0.70*nrow(bootdata))) 

train_data <- as.data.frame(data_scaled[-index,]) 

test_data <- as.data.frame(data_scaled[-index,]) 

 

#/Build the network 

#Create 2 hidden layers have 3 and 2 neurons respectfully 

#Input layer = 4 



 

 

#Output layer = 1/ 

 

n = names(bootdata) 

f = as.formula(paste("y ~", paste(n[!n %in% "y"], collapse = " + "))) 

nn = neuralnet(f,data=train_data,hidden=c(3,2),linear.output=T) 

plot(nn) 

options(warn=-1) 

 

#/30 percent of the available data to do this: 

#using first 4 columns representing the input variables 

#of the network and 1 is the output for NN/ 

predicted <- compute(nn,test_data[,1:4]) 

 

#/Use the Mean Squared Error NN (MSE-forecasts the network) as a measure 

of how far away our predictions are from the real data/ 

MSE.net <- sum((test_data$y - predicted$net.result)^2)/nrow(test_data) 

MSE.net 

 

#/Printing the Value of MSE for Linear Model and Neural Network/ 

print(paste(MSE.lm,MSE.net)) 

 

Results: 

The outcome generated from data after running the R syntax was summarized in this section. 

Parameters for multiple linear regression were calculated first with the summary of the 

model. Table 4 summarizes the output for the MLR estimated parameters. Slopes for the 

parameters x2, x3 and x4 were statistically significant (p<0.001). However, because the data 

belonged to DOE study design hence all indicator variables must be included in the 

regression modeling to accurately reflect the data. Therefore, all indicator variables were 

included to model the data (Equation 3). Hence, a multiple linear regression model with 

estimated parameters could be written as  

Hours of relief = 5.56 - 0.1.04 x1 + 2.55 x2 - 2.43 x3 - 2.03 x4 ----- (3) 

 

 

 

 

 



 

 

                       Table 4: Parameter Estimates of Regression Modeling 

Parameter Estimates 

Variable 

Parameter 

Estimate 

Standard 

Error t-value P-value 

Intercept 5.56 0.15 35.87 <0.0001 

x1 -0.104 0.315 -0.329 0.235 

x2 2.55 0.306 8.304 <0.0001 

x3 -2.43 0.325 -7.473 <0.0001 

x4 -2.03 0.325 -6.244 <0.0001 

 

The model was statistically significant (p<0.0001), and the adjusted R-square was 0.71 

(Table 5). To determine the predictability of the MLR model, the MSE (mean square error) 

of the model was computed, and it was found to be 1.05 (Table 5). Similarly, table 6 

tabulated the parameters obtained for fuzzy regression, containing Central, lower and upper 

boundary values for intercept and variables.  

 

 

Table 5: MLR Model Summary 

Residual SE 1.279 R-Square 0.727 

MSE 1.05 Adj R-Sq 0.71 

F-statistic 43.36 P-value <0.0001 

 

 

Table 6: Parameter Estimates of Fuzzy Modeling 

Parameter Estimates 

Variable Central Tendency Lower Boundary Upper Boundary 

Intercept 5.51 3.68 6.78 

x1 -0.007 -0.68 1.32 

x2 2.32 2.32 2.32 

x3 -1.15 -1.48 0.42 

x4 -2.68 -2.68 -2.68 

 

To draw the fuzzy regression equation, a central tendency column was used. However, lower 

and upper boundary columns were used from table 6 to construct the equation for lower and 

upper boundaries for boundaries of fuzzy regression. Therefore, the fuzzy regression 

equations were as follow  : 

 

Central tendency of the fuzzy regression model: 

Hours of relief = 5.51 - 0.007 x1 + 2.32 x2 - 1.15 x3 – 2.68 x4 ----- (4) 

Lower boundary of the model support interval: 

Hours of relief = 3.68 - 0.6845 x1 + 2.32 x2 - 1.48 x3 – 2.68 x4 ----- (5) 



 

 

 

Upper boundary of the model support interval: 

Hours of relief = 6.78 + 1.32 x1 + 2.32 x2 + 0.42 x3 – 2.68 x4 ----- (6) 

 

To quantify how close the predicted values of the dependent variable (y) through each model 

(MLR and Fuzzy), the equations derived above, from MLR (Equation 3) and fuzzy (Equation 

4), were used on test data to calculate values for predicted y (Table 7). Furthermore, the 

absolute difference between original and predicted y from each model was computed to 

calculate the numeric difference between original and predicted values of the dependent 

variable through each model.  

 

Table 7: Predicted values of Y form MLR and fuzzy models 

 Predicted y Abs difference  

y MLR Fuzzy MLR Fuzzy 

9.1 7.5791 7.027 1.5209 2.073 

4.2 3.128 4.36 1.072 0.16 

6.6 3.528 2.83 3.072 3.77 

7.1 7.5791 7.027 0.4791 0.073 

6.6 3.528 2.83 3.072 3.77 

. . . . . 

. . . . . 

5.8 8.1089 7.83 2.3089 2.03 

9.1 8.1089 7.83 0.9911 1.27 

8.1 7.5791 7.027 0.5209 1.073 

Average   2.16 2.01 

 

 

MLFF neural network was embedded in the syntax to test the strength of the parameters used 

in the regression model; therefore, it helped to determine how good the forecasting was 

through the derived regression model. Figure 2 presented the architecture of the neural 

network obtained from the data. The figure had hidden layers with 3 and 2 neurons, 

respectively, and as the networking was Feedforward, the information was only carried in the 

forward direction (Figure 2). Furthermore, the calculated MSE for the network was 0.09. As 

a result, all four independent variables were good predictors of hours of headache relief after 

taking medicine.  

  



 

 

 

Figure 2: The architecture of the MLFF neural network with four input variables, 

two hidden layers and one output node  

 

 

Discussion: 

In the present research era, research community is more intended to use data modeling 

techniques to improve the outcome of the research. Impact of the research could perhaps 

increase if study could predict future trends because it would increase the usability of the 

research work. However, due to the nature of some variables, they cannot be used for 

regression modeling unless transformed [6]. The independent variables in DOE study 

designs, which usually called factors, are collected in the form of categories [4]. Therefore,  

these study designs cannot be used for regression modeling without transformation. Hence, 

this study was aimed to develop a methodology (WAN-SOB’s method) which could enable 

research community to use DOE study designs for regression modeling.  

The key step towards the use of DOE study designs for regression modeling is the data 

transformation. Hence, the process of the transformation of one-factor DOE to linear form 

was provided in detail. This transformation process adopted from the previous study [13]. 

Therefore, linearity in the data generated as a result of data transformation. 



 

 

Linear regression approach for data modeling is very common. However linear regression 

perhaps performed better with crisp datasets [16] if the underlying relationship were not a 

crisp function of a given form, the model’s accuracy could be questioned [17]. Consequently, 

to counter the vagueness or fuzziness of the data in the regression modeling, fuzzy regression 

outperforms linear regression [18]. Therefore, fuzzy regression was used in the methodology 

along with linear regression and predicted values of dependent variable from each regression 

model (linear and fuzzy) was calculated. The difference between actual and predicted values 

from linear and fuzzy revealed that fuzzy regression provided that predictability of fuzzy 

regression was better than linear regression. 

In addition, to further validate the derived regression model, MLFF neural network was used 

in the methodology. Studies had been used the neural network for validation of derived 

regression models and their predictability [19,20]. Ahmed et al. used neural networking for 

the validation of derived regression model and provided that small error from the neural 

network suggested the high accuracy and predictability of the model [21]. In the present 

study, the calculated MSE from neural network was very small which suggested the high 

accuracy of the derived regression model.    

 

Conclusion: 

This study provided a combined, comprehensive and robust methodology (Wan-SOB’s 

Method) for using one-factor DOE for prediction purposes by transforming DOE into a linear 

form. Therefore, this methodology can allow the research community and academicians to 

use their DOE study designs for prediction purposes to meet the growing needs of research 

trends and help them get more improved outcomes from their research.     
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Table 1: General data distribution for one-factor study design  



 

 

Treatment 

1 2 … i 

y11 y21 … yi1 

y12 y22 … yi2 

y13 y23 … yi3 
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… . 
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. 

y1j y2j … yij 

 

      Table 2: Hours of relief from five different brands of headache tablets 

Group 1 Group 2 Group 3 Group 4 Group 5 

5.2 9.1 3.2 2.4 7.1 

4.7 7.1 5.8 3.4 6.6 

8.1 8.2 2.2 4.1 9.3 

6.2 6.0 3.1 1.0 4.2 

3.0 9.1 7.2 4.0 7.6 

 

Table 3: Regression approach to one-factor DOE 

yij xi1   xi2    xi3   xi4 

5.2 1 0 0 0 

4.7 1 0 0 0 

8.1 1 0 0 0 

6.2 1 0 0 0 

3.0 1 0 0 0 

     
4.2 -1 -1 -1 -1 

7.6 -1 -1 -1 -1 

                        

Table 4: Parameter Estimates of Regression Modeling 

Parameter Estimates 

Variable 

Parameter 

Estimate 

Standard 

Error t-value P-value 

Intercept 5.56 0.15 35.87 <0.0001 

x1 -0.104 0.315 -0.329 0.235 

x2 2.55 0.306 8.304 <0.0001 

x3 -2.43 0.325 -7.473 <0.0001 

x4 -2.03 0.325 -6.244 <0.0001 

 

Table 5: MLR Model Summary 

Residual SE 1.279 R-Square 0.727 

MSE 1.05 Adj R-Sq 0.71 

F-statistic 43.36 P-value <0.0001 

 

 

Table 6: Parameter Estimates of Fuzzy Modeling 



 

 

Parameter Estimates 

Variable Central Tendency Lower Boundary Upper Boundary 

Intercept 5.51 3.68 6.78 

x1 -0.007 -0.68 1.32 

x2 2.32 2.32 2.32 

x3 -1.15 -1.48 0.42 

x4 -2.68 -2.68 -2.68 

 

Table 7: Predicted values of Y form MLR and fuzzy models 

 Predicted y Abs difference  

y MLR Fuzzy MLR Fuzzy 

9.1 7.5791 7.027 1.5209 2.073 

4.2 3.128 4.36 1.072 0.16 

6.6 3.528 2.83 3.072 3.77 

7.1 7.5791 7.027 0.4791 0.073 

6.6 3.528 2.83 3.072 3.77 

. . . . . 

. . . . . 

5.8 8.1089 7.83 2.3089 2.03 

9.1 8.1089 7.83 0.9911 1.27 

8.1 7.5791 7.027 0.5209 1.073 

Average   2.16 2.01 

 

Figure 2: The architecture of the MLFF neural network with four input variables, 

two hidden layers and one output node  

 

 

 


