Study of the stages of cardiorehabilitation in patients with acute coronary syndrome #### **Abstract** According to Russian clinical guidelines, there are three main stages of cardiorehabilitation associated with the periodization of the disease. Acute coronary syndrome is one of the most dangerous conditions in the world of modern cardiology, after which patients are at high risk of the appearance and development of chronic pathologies, in particular the development of type 2 diabetes mellitus. According to the latest data, there was a statistically significant increase in the number of new cases of diabetes mellitus after an episode of acute coronary syndrome. Doctors should provide high-quality assistance in the rehabilitation of patients after acute coronary syndrome, especially at the last stage of cardiorehabilitation, which is carried out in outpatient settings. **Keywords:** acute coronary syndrome, cardiorehabilitation, diabetes mellitus ## Introduction Worldwide, one of the main causes of emergency hospitalizations is acute coronary syndrome (ACS), 60-70% of which accounts for unstable angina and myocardial infarction (MI) without ST segment elevation. Currently, the system of providing cardiological care to the population is being improved, there is an increase in the flow of patients undergoing invasive treatment. ACS can occur due to insulin-dependent diabetes mellitus (IDD), or type 2 diabetes mellitus. It can be considered as a kind of challenge to Russian healthcare. A genetically determined predisposition to IDD is realized in the presence of diverse and widespread risk factors among the population: physical inactivity, irrational nutrition, constant stress and a polluted environment. In the Russian Federation over the past two decades, against the background of an increase in the number of patients with IDD, the problem of late detection of this disease remains: the proportion of cases of undiagnosed diabetes reaches 29-32% of its total prevalence, and 40-55% of patients with diabetes mellitus do not detect diabetic retinopathy in a timely manner. According to Russian clinical guidelines, there are three main stages of cardiac rehabilitation associated with the periodization of the disease. the first is the stationary stage, which takes place in an ordinary ward of the cardiology department of a hospital or vascular center. The second early inpatient rehabilitation stage, conducted in the inpatient cardiorehabilitation department of cardiological or multidisciplinary hospitals, or rehabilitation centers (the first two stages correspond to the periods of developing and scarring acute heart muscle infarction). And the third is the outpatient rehabilitation stage. At this stage, the patient is defined as a subject with post-infarction cardiosclerosis who needs to perform a complex of rehabilitation measures and prolonged secondary prevention. In the first months after discharge from the hospital, these activities are carried out under medical supervision, and then under self-control at home [1]. Cardiological rehabilitation can be carried out at any time of the disease, with a stable clinical condition of the patient, the presence of rehabilitation potential, the absence of contraindications to certain rehabilitation methods and on the basis of a clearly defined rehabilitation goal. An important task for therapists and cardiologists at the third stage is to provide maximum support in correcting the factors of the development of chronic pathologies. Especially, as mentioned above, this applies to diabetes mellitus. Insulin-dependent diabetes, or type 2 diabetes mellitus, is an extremely common pathology all over the planet, which is an unpleasant burden for the global health system. Although the mechanisms of the onset and development of the disease are well studied, diabetes is difficult to manage and correct. According to the statistics of the International Diabetes Federation, the number of people with diabetes is projected to increase to almost 630 million by the middle of the XXI century [2]. Even despite the active struggle with it. Unsatisfactory management of chronic hyperglycemia, insufficient effectiveness of population and individual prevention are the result of a large number of factors, including social reasons that go beyond medical science. However, it is impossible to say about new facts in the pathophysiology of diabetes [3]. Modern studies of genomic associations confirm that its development as any "complex disease" is influenced by a wide range of biochemical, genetic, behavioral and environmental determinants, each of which individually determines only part of the risk of developing the disease [4]. Numerous observational studies have revealed a large number of risk factors for the development of insulin-dependent diabetes, some of which are associated with pharmacological interventions [5,6]. In particular, the relationship between low and very low density lipoproteins and the risk of developing type 2 diabetes is of particular interest. Moreover, numerous studies have shown that statin therapy increases the risk of insulin-dependent diabetes in humans [7,8]. A special case of the use of high-intensity statin therapy is lipid-lowering therapy after acute coronary syndrome. The aim of the study was to identify the factors of the development of insulin-dependent diabetes, as well as to trace the relationship between low and very low density lipoproteins and the risk of developing type 2 diabetes mellitus. ## **Materials and Methods** According to a study conducted in Russia a few years ago, more than a thousand patients (1004 people) who underwent acute coronary syndrome and coronary artery stenting were admitted for dispensary observation in the first three days after discharge from vascular departments of hospitals. During 31.3±5.2 days, an individual cardiorehabilitation program was formed for 773 (77.0%) patients based on the results of a consultation with a cardiologist - specialist in medical rehabilitation and determination of the rehabilitation potential for these patients. This program was carried out on an outpatient basis for 1 year and included adequate drug therapy (including high-intensity therapy with atorvastatin in the form of monotherapy or, according to indications, in combination with ezetimibe, dual antiplatelet therapy, antagonists of the renin-angiotensin-aldosterone system, beta-blockers), physical rehabilitation, psychological rehabilitation, therapeutic nutrition, preventive group counseling. In accordance with the inclusion/exclusion criteria for such programs, 200 patients were included in the current analysis, 151 of them (75.5%) men [9]. The average age of patients was 61.74±9.57 years. The studied parameters were quantitative (fasting blood glucose, body weight, body mass index (BMI), waist circumference, hip circumference, body shape index) and qualitative (overweight, obesity, diabetes mellitus, prediabetes. Scientists found that of the 200 people included in the study, 190 (95%) were over 45 years old. A third of the patients had signs of multifocal atherosclerosis, 46 (23%) had a history of acute coronary syndrome, myocardial infarction or cerebral stroke (2 of them had myocardial infarction and cerebral stroke), and the majority had hypertension. Chronic heart failure dominated, with a preserved left ventricular ejection fraction. In 133 (67%) patients, chronic heart failure corresponded to functional class II, in 52 (26%) — functional class I and in 5 (2.5%) - functional class III. 40 (20%) patients had a history of type 2 diabetes mellitus (Table 1). Table 1. Clinical characteristics of patients | Ŋo | Characteristic | Meaning | |----|---|-------------| | 1 | Age at the time of inclusion in the program | 61,74±9,57 | | 2 | Repeated myocardial infarction | 39 (19,5%) | | 3 | Medical history of cerebral stroke | 11 (5,5%) | | 4 | The presence of coronary atherosclerosis | 199 (99,5%) | | 5 | The presence of peripheral atherosclerosis | 9 (4,5%) | | 6 | The presence of cerebral atherosclerosis | 48 (24%) | | 7 | Multifactorial atherosclerosis | 64 (32%) | | 8 | Revascularization procedures | 200 (100%) | | | - coronary artery bypass grafting | 8 (4%) | | | - stenting | 192 (96%) | | 9 | Arterial hypertension | 191 (95,5%) | |----|-----------------------|-------------| | 10 | Atrial fibrillation | 21 (10,5%) | | 11 | Chronic heart failure | 190 (95%) | In accordance with the individual treatment plan and clinical status, patients received complex drug therapy, which was adjusted depending on the clinical goals. In particular, more than 50% of patients needed combined lipid-lowering therapy (statin group drug + ezetimibe). It was also revealed that abdominal obesity is one of the main modifiable risk factors for diabetes. It was found out that 75 (37.5%) people had normal body weight only in 34 (17%) observations. The following dynamics of metabolic parameters was noted: in the absence of statistically significant dynamics of body weight and body mass index, waist circumference and body shape index significantly increased (Table 2). Table 2. Dynamics of some metabolic parameters over the period of therapy | $N_{\underline{o}}$ | Indicator | Initially | After 12 | |---------------------|------------------------------|----------------|-------------| | | | | months | | 1 | Body weight, kg | 84,90±15,49 | 84,00±15,66 | | 2 | Body Mass Index | 29,22±4,95 | 28,74±25,92 | | 3 | Waist size | 93,11±13,01 | 94,55±13,49 | | 4 | Body Shape Index | 0,075±0,01 | 0,076±0,01 | | 5 | Waist size/height | $0,547\pm0,08$ | 0,556±0,08 | | 6 | Obesity/overweight | 165 (82,5%) | 161 (80,5%) | | 7 | Type 2 diabetes mellitus | 40 (20%) | 48 (24%) | | 8 | Prediabetes | 47 (23,5%) | 34 (17%) | | 9 | Type 2 diabetes mellitus and | 87 (43,5%) | 82 (41%) | | | prediabetes | | | | 10 | High-normal glucose levels | 37 (18,5%) | 46 (23%) | There was a significant decrease in the proportion of patients with grade II—III obesity with a statistically significant increase in the number of patients with grade I obesity. During the follow – up, a statistically significant increase in the number of cases of type 2 diabetes mellitus was registered - 8 cases de novo, as well as a significant increase in the frequency of detection of high-normal blood glucose levels (Table 2). Taking into account the fact that the fasting glycemia threshold ≥5.6 mmol/l is classified by some foreign expert groups as a pre-diabetic condition, as well as domestic data on the clinical significance of a high-normal glycemic level (5.6-6.0 mmol/L) [10-12], the change in the frequency of its registration was analyzed. A statistically significant increase in the frequency of this trait was revealed during follow-up: a high-normal glucose level at the time of completion of follow-up was recorded in approximately one in four patients of the general group (Table 2). ## **Results and discussion** Most often, disorders of carbohydrate metabolism were recorded among patients with initially high-normal blood glucose levels. There were no statistically significant differences in the incidence of diabetes among the groups of patients under consideration, which may be due to the small number of groups. For comparison: among 47 patients with prediabetes, the development of diabetes was detected in 3 (6.38%) observations. At the same time, among patients without previously established type 2 diabetes mellitus/prediabetes and with an initial blood glucose level <5.6 mmol/l (n=77), in a third of cases (n=24, 31.17%), fasting glycemia levels in the range of 5.6–6.0 mmol/l were registered [13-16]. Numerous observational studies and the experience of foreign colleagues have revealed a large number of factors for the development of insulin-dependent diabetes, but due to the fact that observational studies cannot offer reliable evidence of causal relationships between the observed risk factors and one or another outcome of the disease, the study of risk factors for type 2 diabetes continues at the present time. The Mendelian randomization method has opened up new possibilities for independent evaluation of cause-effect relationships in the "endogenous risk factor - disease" system. In relation to some of the traditional factors, causal relationships have indeed been confirmed in Mendelian randomized trials. First of all, this concerns such markers of increased risk of diabetes as body mass index, obesity, waist circumference [17]. ## **Conclusion** It is important to continue the search for risk factors, the above-mentioned adverse metabolic changes and ways to optimize the management of patients in this group, including in the aspect of drug interventions, based on an assessment of their metabolic advantages and disadvantages, so that in the future it will be possible to use the developed recommendations for effective correction and therapy for such patients. There was a significant decrease in the proportion of patients with grade II–III obesity with a statistically significant increase in the number of patients with grade I obesity. During the follow-up, a statistically significant increase in the number of cases of type 2 diabetes mellitus was registered -8 cases de novo, as well as a significant increase in the frequency of detection of high-normal blood glucose levels. Taking into account the fact that the fasting glycemia threshold ≥ 5.6 mmol/l is classified by some foreign expert groups as a pre-diabetic condition, as well as domestic data on the clinical significance of a high-normal level of glycemia (5.6-6.0 mmol/L), the change in the frequency of its registration was analyzed. The study revealed a statistically significant increase in the frequency of this trait during follow-up: high-normal glucose levels at the time of completion of follow-up were recorded in approximately one in four patients of the general group. ## **Ethical Approval:** As per international standard or university standard ethical approval has been collected and preserved by the authors. #### References - 1. Gubanova M.A., Pohilko A.D., Ponarina N.N., Nagapetova A.G., Baklanova O.A. Posthuman in Global Information Society. Revista Inclusiones, 2020, 7 (4), pp. 362-368. - 2. Valitsky M, Hoffman A, Unterman T, Bar-Tana J. Insulin sensitizer prevents and ameliorates experimental type 1 diabetes. Am J Physiol Endocrinol Metab. 2017 Dec 1;313(6):E672-E680. doi: 10.1152/ajpendo.00329.2016. - 3. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet. 2008 May;9(5):356-69. doi: 10.1038/nrg2344. - 4. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, Seshasai SR, McMurray JJ, Freeman DJ, Jukema JW, Macfarlane PW, Packard CJ, Stott DJ, Westendorp RG, Shepherd J, Davis BR, Pressel SL, Marchioli R, Marfisi RM, Maggioni AP, Tavazzi L, Tognoni G, Kjekshus J, Pedersen TR, Cook TJ, Gotto AM, Clearfield MB, Downs JR, Nakamura H, Ohashi Y, Mizuno K, Ray KK, Ford I. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010 Feb 27;375(9716):735-42. doi: 10.1016/S0140-6736(09)61965-6. - 5. Maslova, A. Y., Tskaeva, A. A., Ashurova, Z. A., Abazova, A., Ismailov, M. M., Ismailova, M. M., Baklanov, I. S., Mishvelov, A. E., Povetkin, S. N. and Baklanova, O. A. (2021) "Study of the effect of Baricitinib on the Course of COVID-19", Journal of Pharmaceutical Research International, 33(35A), pp. 204-213. doi: 10.9734/jpri/2021/v33i35A31890. - 6. Rzhepakovsky I., Siddiqui S.A., Avanesyan S., Benlidayi M., Dhingra K., Dolgalev A., Enukashvily N., Fritsch T., Heinz V., Kochergin S., Nagdalian A., Sizonenko M., Timchenko L., Vukovic M., Piskov S., Grimm W-D. Antiarthritic effect of chicken embryo tissue hydrolyzate against adjuvant arthritis in rats (X- ray microtomographic and histopathological analysis). Food Science & Nutrition 2021, 00:1-22. https://doi.org/10.1002/fsn3.2529. - 7. Laakso M. Biomarkers for type 2 diabetes. Mol Metab. 2019 Sep;27S(Suppl):S139-S146. doi: 10.1016/j.molmet.2019.06.016. - 8. Zimmerman T, Siddiqui SA, Bischoff W, Ibrahim SA. Tackling Airborne Virus Threats in the Food Industry: A Proactive Approach. International Journal of Environmental Research and Public Health. 2021; 18(8):4335. https://doi.org/10.3390/ijerph18084335 - 9. Rehabilitation and secondary prevention in patients who have suffered a myocardial infarction with elevation of the ST-segment. Russian clinical recommendations. Moscow; 2014. (in Russian). - 10. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: *Standards of Medical Care in Diabetes-2020*. Diabetes Care. 2020 Jan;43(Suppl 1):S14-S31. doi: 10.2337/dc20-S002 - 11. Tatamov, A. A., Boraeva, T. T., Revazova, A. B., Alibegova, A. S., Dzhanaralieva, K. M., Tetueva, A. R., Yakubova, L. A., Tsoma, M. V., Mishvelov, A. E. and Povetkin, S. N. "Application of 3D Technologies in Surgery on the Example of Liver Echinococcosis", *Journal of Pharmaceutical Research International*, 2021; 33(40A), pp. 256-261. doi: 10.9734/jpri/2021/v33i40A32242. - 12. Gutnova, T. S., Kompantsev, D. V., Gvozdenko, A. A., Kramarenko, V. N., & Blinov, A. V. VITAMIN D NANOCAPSULATION. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya I Khimicheskaya Tekhnologiya, 2021; 64(5), 98-105. https://doi.org/10.6060/ivkkt.20216405.6399 - 13. Ayivi RD., Ibrahim SA., Colleran HL., Silva RC., Williams LL., Galanakis CM., Fidan H. Tomovska J., Siddiqui SA. COVID-19: human immune response and the influence of food ingredients and active compounds. Bioactive Compounds in Health and Disease. 2021; 4(6): 100-148. DOI: https://www.doi.org/10.31989/bchd.v4i6.802. - 14. Margaryan E.G., Mammadov A.A., Mazurina L.A., Volkov Yu.O., Stebelev A.V., Arakelyan M.G., Sazanskaya L.S., Gulua M.M., Polyakova M.A., Volkov A.G., Dikopova N.J., Lalaev K.V.3 Cluster approach in preoperative - orthodontic preparation for the treatment of patients with unilateral cleft lip and palate. New Armenian Medical Journal. 2020, 14(1): 59-66 - 15. Raevskaya A I, Belyalova A A, Shevchenko P P, Karpov S M, Mishvelov A E, Simonov A N, Povetkin S.N. et al. Cognitive Impairments in A Range of Somatic Diseases Diagnostics, Modern Approach to Therapy. Pharmacophore 2020;11(1):136-41 - 16. Kubanov S.I., Savina S.V., Nuzhnaya S.V., Mishvelov A.E., Tsoroeva M.B., Litvinov M.S., etc. Development of 3d bioprinting technology using modified natural and synthetic hydrogels for the engineering design of organs, Int.J.pharm. phytopharm. Res., 2019; 9(5), 37-42 - 17. Mezhidov BS, Belyaeva AA, Kh. S-M. Bimarzaev, Sh. Bektashev A, Shekhshebekova AM, Dzgoeva MG, et al. Prospects for creating 3D models of internal organs based on computer and magnetic resonance imaging images in emergency surgery and resuscitation. Pharmacophore. 2021;11(1):8-14 - 18. Smith GD, Lawlor DA, Harbord R, Timpson N, Day I, Ebrahim S. Clustered environments and randomized genes: a fundamental distinction between conventional and genetic epidemiology. PLoS Med. 2007 Dec;4(12):e352. doi: 10.1371/journal.pmed.0040352.