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ABSTRACT 

Colorectal cancer (CRC) is the second deadliest diseases next to lung cancer. Cisplatin is the first 

generation platinum based alkylating agent using for treatment of advance CRC patients. But the 

development of cisplatin-resistance due to the continuous usage limits its therapeutic efficacy. Recent 

research is focused on studying the chemotherapeutic efficacy of the phytochemicals as they are less 

toxic compared to the conventional chemotherapeutic drugs. Neferine is a bisbenzylisoquinoline 

alkaloid extracted from the embryo of Nelumbo nucifera. The anticancer and chemosensitizing effect 

of neferine has been well reported in several cancer cells. However, there are no reports on the 

chemosensitizing effect of neferine on cisplatin-resistant colorectal cancer cells (CRCs). Hence, the 

present study aims at identification of target proteins responsible for cisplatin-resistance in colorectal 

cancer cells. The present investigation elucidates the specific interaction of neferine with various cell 

surface receptor proteins related to cisplatin-resistance, multi-drug resistance (MDR) proteins, signal 

transduction protein and transcription factors via molecular docking approach. The interaction 

between neferine and the target proteins of cisplatin-resistant colorectal cancer was analyzed through 

Schrodinger Maestro 11.9 module. From our docking studies we could suggest that neferine is most 

active for insulin-like growth factor-1 receptor (IGF1R), fibroblast growth factor receptor-2 (FGFR2), 

zinc finger protein SNAI1 (SNAIL1), signal transducer and activator of transcription-3 (STAT3) and 

transforming growth factor beta receptor-1 (TGFβR1) when sorted according to their docking score. 
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1. INTRODUCTION 

Globally, cancer is the leading cause of death and severely affects the quality of life. As per 

the estimate of World Health Organization (WHO) in the year 2025 there will be 21.9 million new 

cancer incidences and 11.4 million cancer deaths in the world [1]. Colorectal cancer (CRC) is the third 

most common and second lethal disease around the world. The current treatment for CRC mainly 

includes radiotherapy, surgical resection and chemotherapy [2]. Even though better treatment options 



 

 

have improved overall survival rates in the early stages, 40-50% of all CRC patients have metastasis 

at the time of diagnosis or as a recurrent disease after receiving chemotherapy [3]. 

Chemotherapy is the one of the main components in the treatment of cancer. However, the 

curative responses of chemotherapeutic agents are limited due to drug resistance and therapeutic 

side effects like non-targeted organ toxicities [4,5]. Most of the cancer cells which initially respond to 

the traditional chemotherapeutic drugs, eventually develop resistance over a period of treatment. 

Cancer cells can develop resistance to the treatment through various molecular mechanisms such as- 

decreased drug uptake, elevated drug efflux, alteration of drug target, detoxification, increased DNA 

repair, apoptosis inhibition and epithelial to mesenchymal transition [6]. Cisplatin remains the most 

traditional chemotherapeutic drug for solid tumour treatments, including CRC [7]. It is a platinum-

based drug which binds with DNA, forming a DNA-Platinum adduct, leading to inhibition of 

transcription and translation, inducing mitochondrial-mediated cell death [8]. Unfortunately, continuous 

treatment of cisplatin leads to cell resistance which is a frequent occurrence in CRC clinical 

chemotherapy. 

Recent studies show that the combination of phytochemicals with traditional chemotherapy 

improves the curative response in cancer patients [9]. Nelumbo nucifera is commonly called as lotus 

used in traditional Indian and Chinese medicine to treat cardiovascular disease, neuronal disorder 

and insomnia [10]. Neferine, a bisbenzylisoquinoline alkaloid derivative from Nelumbo nucifera seed 

embryo (Figure - 1), exhibits various pharmacological effects including, anti-oxidant, anti-inflammatory 

[11], cardioprotection [12], anti-cancer [10], and chemosensitizing ability in cancer cells [11]. A 

previous study from our lab showed that neferine sensitizes the doxorubicin-resistant A549 lung 

cancer cells by increasing accumulation of inter/intracellular doxorubicin through downregulation of 

lung resistance protein (LRP) mediated by nuclear factor erythroid 2–related factor 2 (NRF2) inhibition 

[13]. Another study demonstrated that neferine downregulates the multi-drug resistance (P-

glycoprotein) gene expression in the hyperthermal state that synergistically reverses the multi-drug 

resistance in human gastric cancer cells [14]. Combinatorial treatment of neferine with oxaliplatin has 

been shown to increase the chemotherapeutic sensitivity and suppress the epithelial to mesenchymal 

transition by inhibiting Snail protein expression in hepatocellular carcinoma cells [15]. Our preliminary 

study found that neferine reverses the cisplatin-resistant CRCs by inducing apoptosis, but the 

molecular mechanism of reversal of cisplatin-resistance is still unclear. In this present in-silico study, 

we aim to investigate the effect of neferine against cell surface receptor proteins, MDR proteins, 

signal transduction protein and transcription factors which are related to cisplatin-resistance via 

molecular docking approach.  



 

 

 

Fig.1. The structure of neferine 

2. METHODOLOGY 

2.1 Chemicals and Reagents 

Cisplatin were purchased from Sigma Aldrich, USA. RPMI 1640 media was purchased from 

Gibco, USA. Fetal Bovine Serum (FBS), antibiotics and other fine chemicals were purchased from 

HiMedia Laboratories (Mumbai, India). 

2.2 Animal cell culture maintenance 

Human colorectal cancer cells (HCT-15) cell line was purchased from National Centre for Cell 

Science (NCCS), Pune, India. HCT-15 cells and cisplatin-resistant HCT-15 were cultured in RPMI-

1640 media supplemented with 10% FBS and Penicillin (100 Units/ml), Streptomycin (30 μg/ml) and 

Gentamycin (20 μg/ml). 

2.3 Cytotoxicity assay 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed for 

assessing the effect of cisplatin on HCT-15 cells. The 1 x 10
5
 cells/well were seeded in 96 well plates 

and allowed to attach by incubating overnight at 37°C in CO2 incubator. After 24 h of treatment time, 

media (cisplatin) was replaced with 20 μl of (MTT 5 mg/ml) dissolved in of phosphate buffer saline 

(PBS) and incubated for 4 h in CO2 incubator. Then, 200 μl of Dimethylsulfoxide (DMSO) was added 

to dissolve purple formazan crystals formation, and the optical density (OD) was observed at 570 nm 

wavelength in a microplate reader (BioTek, USA). And the results were expressed in terms of 

percentage viability. 



 

 

2.4 Preparation of Protein and Receptor Gird 

The proteins considered for the study are IGF-1R (PDB id: 2OJ9), FGFR2 (PDB id: 3B2T), 

SNAIL1 (PDB id: 3W5K), STAT3 (PDB id: 6QHD), TGFBR1 (PDB id: 3KCF), α5β6 (PDB id: 4UM9), 

TGFB1 (PDB id: 3KFD), SMAD (PDB id: 1U7F), α5β3 (PDB id: 1L5G), TGFBR2 (PDB id: 5E8V), 

Glycogen synthase kinase 3 beta (GSK3β; PDB id: 1I09), Forkhead Box-O3 (FOXO3; PDB id: 2K86), 

Gamma-Secretase (PDB id: 4R12), MDR1/ABCB1 (PDB id: 4Q9L) and ATP Binding Cassette 

Subfamily G Member 2 (ABCG2; PDB id: 5NJG). The protein coordinates were collected from PDB 

(Protein Data Bank, www. (http://www.rcsb.org/pdb/-home/home.do). Preparation of the proteins prior 

to docking was done using the protein preparation tab of Maestro 11.9 module of the Schrodinger 

suite. Corrections such as addition of hydrogen, assignment of bond orders, searching overlaps and 

water molecules within a range of 5 Å were deleted. Root Mean Square Deviation (RMSD) 

minimization up to 0.03 Å and OLPS-2005 (optimized potential for liquid simulation) was used to 

perform the minimization [16].   

The receptor grid was prepared using the grid generation tool of Maestro 11.9 of the 

Schrödinger suite. The ligand is able to bind forming the achievable conformation using this receptor 

grid which also highlights the active site of the protein as with the co-crystallized ligand molecule. This 

co-crystallized ligand will then be expelled from the active site to be occupied by our ligand of interest 

[16]. Scaling factor of 1.0 Å and van der waals radius of 0.25 Å were used to prepare the grid while 

other parameters were set to default. 

2.5 Ligand Preparation 

The structural definition file (sdf) of Neferine was retrieved from PubChem followed by the 

ligand preparation by the LigPrep wizard Maestro 11.9 (Glide). Corrections such as 2D to 3D 

conversion, addition of hydrogen, stereochemistry, low energy state, corrections of bond lengths and 

bond angles, ring conformations along with minimization and optimizations were done using OPLS3 

force field [17].    

2.6 Molecular Docking 

Maestro-GLIDE module of the Schrödinger suite was used to carry out the molecular docking 

using the optimized ligand, which was docked flexibly within the grid box of each protein considered. 

The best scoring pose of the ligand were ranked using the G-Score (Glide Score) and H-bond 

formation along with their corresponding binding affinities. Visualizations were done using the XP 

(extra precision) module of GLIDE for analyzing each protein-ligand interaction. 

3. RESULTS AND DISCUSSION 

3.1 Establishment of cisplatin – resistant CRCs  

To establish the cisplatin-resistant CRCs, 50% cell proliferation half maximal inhibitory 

concentration (IC50) of cisplatin was determined by cytotoxic (MTT) assay.  HCT – 15 cells were 



 

 

treated with cisplatin (0 – 60 μM concentration) for 24 h and the results showed that it induces 

cytotoxicity in a dose-dependent manner. The IC50 value of cisplatin for HCT-15 was found to be 32 ± 

3.4 μM conc. (Figure – 2A).  

The HCT-15 cells were treated with IC50 dose (32 μM) of cisplatin continuously for six 

months to attain the cisplatin-resistant CRC cells and were termed as HCT – 15/R cells. Later, to 

confirm the resistance of cisplatin and resistance index, the HCT – 15/R cells were subjected to 

cytotoxic (MTT) assay. The HCT – 15/R cells were treated with different concentration of cisplatin 

from 0 – 200 μM for 24 h. The IC50 value of cisplatin-resistant HCT-15/R cells was found to be 120 ± 

5.1 μM. The resistance index was 3.75 fold increase compared to cisplatin-sensitive HCT-15 cells 

(Figure – 2B). 

Figure – 2: 

Fig.2. Establishment of cisplatin-resistant colorectal cancer cells: (A & B) the cell viability was 

determined by MTT assay and the results reveal the IC50 value of cisplatin-sensitive HCT-15 cells 

and cisplatin-resistant HCT-15/R cells to be 32 μM and 120 μM respectively. Results shown are mean 

± SEM, which are three separate experiments performed in triplicate. *p<0.05, **p< 0.01 and ***p< 

0.001 verse control (One-way ANOVA followed by Tukey’s multiple comparison test). 

Molecular docking is an in-depth investigation using bioinformatics tools and is based on the 

theoretical simulation approach [18]. Molecular docking studies reveal the specific interaction of 

molecules such as proteins with ligands and proteins with proteins, as well as the details of affinity, 

binding orientation, and biological activity of a drug and its target proteins [19]. 

Insulin-like Growth Factor type-1 Receptor (IGF1R) is a transmembrane receptor, belong to 

the receptor tyrosine kinase class, which is a crucial factor in the IGF signalling pathway. 

Overexpression of IGF1R was frequently observed in various cancer cells, including CRCs [20]. The 

key roles of IGF1R are cell proliferation, differentiation, survival, apoptosis, anchorage-independent 



 

 

growth, angiogenesis and metastasis. The cell survival pathways like phosphatidylinositol 3-

kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways were 

mediated by activating IGF1R by ligands like IGF1, IGF2 and insulin [21]. A previous study reported 

that overexpression and nuclear translocation of IGF1R was associated with resistance to 

conventional chemotherapy in metastatic CRC patients [22]. Targeting IGF1R by small molecules has 

been considered as a novel therapeutic option to overcome chemoresistance in cancer by inhibiting 

tyrosine kinase activity [23]. 

Fibroblast Growth Factor Receptor 2, a class of tyrosine kinase receptor family (FGFR2), is 

one of the vital receptors in the fibroblast growth factor (FGF) signalling pathway [24]. It controls 

multiple physiological processes, including cell proliferation, endocrine homeostasis, cell survival, and 

wound healing via activation of mitogen-activated protein kinase/extracellular regulated kinase 

(MAPK/ERK1/2), PI3K/AKT pathways, and signal transduction protein (STAT3) [25]. Mutation in 

FGFR2, abnormality in FGFR binding ligands, overexpression, and nuclear translocation leads to 

cancer progression [26]. In CRC patients, a high level of expression of FGFR2 is positively correlated 

with the advanced stage of cancer progression and cancer cell metastasis [27]. Recent studies 

reported that activation of pro-survival transcription factor (STAT3) was associated with the abnormal 

expression of FGFR2 and FGFR4 in 5-fluorouracil and oxaliplatin-resistant CRCs [28,26].  

Transforming growth factor (TGF-β) is a multifactorial cytokine with three isoforms TGF-β1, 2 

and 3 encoded by TGFB1, TGFB2 and TGFB3 genes, which play essential roles in cell proliferation, 

differentiation, migration, stem cell maintenance, epithelial to mesenchymal transition and apoptosis 

[29]. These mechanisms are the result of the sequential activation of numerous components of the 

TGF-β pathway, which leads to gene expression regulation [30].The TGF-β signaling is activated by 

TGF-β cytokines binding to type 1 and type 2 TGF-βreceptors (TGFβR1 and TGFβR2), respectively 

[31]. The normal growth of colonic crypt and villi was regulated by TGF-β signalling, frequent 

dysregulation of TGF-β leads to the loss of mothers against decapentaplegic (SMAD) proteins and 

TGF- β receptor-2 mediated cell cycle dysregulation in CRC [32]. 

The overexpression of TGF-β1, TGFβR1 and TGFβR3 induce the stem cell phenotype 

through the increased expression of stem cell markers such as Snai1, CD44, CD133, Sox-2, N-

cadherin and Twist1 [33]. The overexpression of proteins TGFβR1 and TGFβR2 correlates with the 

upregulation of various stem cells markers such as Snai1, CD44, Sox-2, N-cadherin, CD133 and 

Twist1, causing stem cell phenotype [31]. 

In order to understand the possible inhibition pattern of neferine, molecular docking studies 

were used to predict a ligand-receptor interaction. In this present study, docking was performed for 

various cell surface receptor proteins and downstream proteins responsible for cancer progression, 

drug resistance, migration and invasion. Abnormal expression of IGF1R [34], FGFR2 [35], TGFβR1, 

TGFβR2, TGFβ1 [36,37], α5β6, α5β3 [38] and MDR1/ABCB1 [39] were the pivotal surface proteins 

found to be responsible for cisplatin-resistance in various cancers. Likewise, SNAIL1 [40], STAT3 



 

 

[39], SMAD [36], GSK3β [41] and FOXO3 [42] are the crucial proteins involved in signal 

transductionwhich were found to be expressed abnormally in various cisplatin-resistant cancer cells. 

3.2 Molecular docking results 

The compound neferine was docked individually to the active site of each protein using 

Maestro-GLIDE module of the Schrödinger suite (Table 1). Post docking analyses were based on 

docking score, Glide evdw (Van Der Waals energy), Glide energy, ecoul (Coulomb energy) and the 

interacting residues forming hydrogen bond. The highest docking score was observed for the cell 

surface protein IGF1R (PDB ID = 2OJ9) showing hydrogen bonds with Leu975, Asp1056 (Figure - 3). 

It has been observed that overexpression of many components of the IGF family seem to be involved 

in tumourigenic mechanisms. IGF1R, IGF1 and IGF2 are frequently overexpressed in a large number 

of tumor types including CRCs [43]. IGF1R is also associated with resistance to both radiation and 

chemical based therapies [44]. Thus, compound neferine could be a potential candidate for targeting 

IGF1R in CRCs which however requires further studies. 

Table 1. Molecular docking results of neferine along with the hydrogen bonding residues 

Ligand Nature of 
Protein 

Protein name PDB ID Docking 
score 

No of 
hydrogen 

bonds 

Interacting residues 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Neferine 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Cell surface 
receptor 

Insulin-like growth factor 1-
receptor (IGF1R) 

2OJ9 
 

-7.376 2 LEU975, ASP1056 

Fibroblast growth receptor 2 
(FGFR2) 

3B2T -6.813 3 LEU 481,LYS517,  
ASP644 

 
 

Transcription 
factor 

Zinc finger protein 
(SNAIL1) 

3W5K -6.221 2 GLY623,SER621 

Signal Transducer And 
Activator of Transcription 3 

(STAT3) 

6QHD -6.216 4 GLN247,ILE258,  
GLU324,ARG325 

 
 

Cell surface 
receptor 

Transforming growth factor 
beta receptor 1 

(TGFβR1) 

3KCF -6.068 1 PHE216 

Integrin (α5β6) 4UM9 -5.955 1 VAL 226 

Cytokine Transforming growth factor 
beta 1 (TGFβ1) 

3KFD -4.581 1 MET104 

Signal 
transducers 

SMAD Family Member 
(SMAD3/4) 

1U7F -4.319 2 THR 371, GLU397 

Cell surface 
receptor 

Integrin 
(α5β3) 

1L5G -4.281 4 GLN 327, LYS330,  
ASN 332 

 
 

Signal 
transducers 

Transforming growth factor 
beta receptor 2 (TGF B R2) 

5E8V -3.862 3 LYS 252, GLN334,  
ARG423 

Glycogen synthase kinase-3 
beta 

(GSK3β) 

1I09 -3.354 3 Asp106, TYR171 

Transcription 
factor 

Forkhead box O-3 
(FOXO3) 

2K86 -2.943 1 GLU171 

Cell surface 
receptor 

Gamma-Secretase 
(γ-Secretase) 

4R12 -2.909 0 NIL 

 
 
 

Multi-drug 

Multi-drug receptor or ATP 
Binding Cassette Subfamily B 

Member 1 
(MDR1/ABCB1) 

4Q9L -2.857 1 ASP173 



 

 

 resistance  ATP Binding Cassette 
Subfamily G Member 2 

(ABCG2) 

5NJG -2.216 0 NIL 

 

Figure – 3:  

 

Fig.3. Docking studies of Neferine with insulin-like growth factor 1-receptor (PDB id: 2OJ9). (A) 

Neferine within the active site (B) Hydrogen bonding residues Leu975, Asp1056 with the ligand. 

Then we studied the interaction of neferine with FGFR2 (PDB ID = 3B2T), a fibroblast growth 

factor receptor found to be deregulated in cancer. The docking score of this interaction was found to 

be -6.813, involves the formation of three hydrogen bonds with amino acid residues Leu481, Lys517 

and Asp644 respectively within the active site (Figure - 4). Lys517 has been reported to be a highly 

conserved residue of the αC [45] which shows that our compound has the potential to interact 

specifically with the conserved area of the protein which may possibly lead to its disorientation for its 

inhibition. Further, protein targeted according to docking score was the zinc finger (ZF) protein 

SNAIL1 (PDB ID = 3W5K) with a docking score of -6.221 forming two hydrogen bonds with Gly623, 

Ser62.  Ser621 (Figure - 5) is one of the prominent residue of the three zinc fingers namely zinc finger 

2, 3 and 4 which are interwoven to form a compact ball structure with a tight and compact base for 

importin-β interaction [46]. Thus, our compound has been shown to interact specifically with the very 

core interaction site in the Snail1 ZF–importin complex. 

 

 

 

 



 

 

Figure – 4: 

 

Fig.4: Docking studies of neferine with fibroblast growth factor receptor (PDB id: 3B2T). (A) 

Neferine within the active site (B) Hydrogen bonding residues Leu481, Lys517, Asp644 with the 

ligand. 

Figure – 5: 

 

Fig.5: Docking studies of Neferine with SNAIL1 (PDB id: 3W5K). (A) Neferine within the active site 

(B) Hydrogen bonding residues Gly623, Ser621 with the ligand. 

Protein STAT3 (PDB ID = 6QHD) and TGFβR1 (PDB ID = 3KCF) are the next two 

transcription factor proteins targeted by the compound when sorted according to the docking score, 

scoring -6.216 and -6.068 respectively (Figure - 6). The former protein formed four hydrogen bonds 

with residues Gln247, Ile258, Glu324, Arg325 while the later formed a single bond with Phe216. Thus, 



 

 

from our docking studies we could suggest that neferine is most active for cell surface proteins IGF1R 

receptor, FGFR2 and TGFβR1 including transcription factors such as SNAIL1 and STAT3 when 

sorted according to their docking score.  

Figure – 6: 

 

Fig.6: Docking studies of Neferine with STAT3 (PDB id: 6QHD) and TGFβR1 (PDB id: 3KCF). (A 

& C) Neferine within the active site (B) Hydrogen bonding residues Gln247, Ile258, Glu324, Arg325 

with the ligand (D) Hydrogen bonding residues Phe216 with the ligand. 

4. CONCLUSION 

The present study evaluated the cytotoxic effect of neferine on cisplatin-resistant CRCs. 

Further, molecular docking study was carried out to assess the ability of neferine to interact 

specifically with various target proteins such as IGF-1R, FGFR2, SNAIL1, STAT3, TGFβR1, α5β6, 

TGFB1, SMAD, α5β3, TGFβR2, GSK3B, FOXO3, Gamma-Secretase, MDR1/ABCB1 and ABCG2 

based on the protein – ligand (neferine) interaction. Neferine interacted with proteins related to 



 

 

cisplatin – resistance with low energy. The binding interaction with target proteins is in the following 

order, IGF1R > FGFR2 > SNAIL1 > STAT3 > TGFβR1 > α5β6 > TGFβ1 > SMAD3/4 > α5β3 > 

TGFβR2 > GSK3β > FOXO3 > gamma-secretase > MDR/ABCB1 > ABCG2. Further, from the 

docking studies it is evident that Neferine interaction with insulin-like growth factor 1-receptor is 

strongest compared to all the proteins considered for the study. This shows that neferine may have 

the ability to target these proteins which have abnormal expression in CRCs which requires validation 

through and in-vitro and in-vivo studies.  
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