ASSESSING THE EFFICACY OF SONIC TOOTHBRUSH IN REDUCING THE PLAQUE PATHOGENS IN COMPARISON WITH MANUAL BRUSHING **ABSTRACT:** **Introduction:** The bacteria present in dental plaque are the main cause of caries, gum disease, and periodontal disease. Regular brushing will remove plaque build up and maintain the oral health. An ultrasonic toothbrush is an electric toothbrush which is designed for daily home use which operates by generating ultrasound waves to help in removing plaque and rendering plaque bacteria harmless. **Aim:** The aim of the present study is to assess the effect of sonic toothbrush in reducing the plaque pathogens in comparison with the normal brushing. **Materials and Methods:** Volunteers who use sonic toothbrushes were selected as a study population. The swab samples were collected before and after brushing. The collected swabs were inoculated on BHI agar and the total CFU count was checked. **Results and Discussion:** The percentage reduction in case of ultrasonic toothbrush was more (86.82%) when compared to the manual brushing making it efficient in reducing plaque pathogens. **Conclusion:** The present study concludes that the ultrasonic or the sonic toothbrush is efficient on plaque pathogens on the tooth surface. Key words: plaque pathogens; sonic toothbrush; effect; bacterial, eco friendly ### **INTRODUCTION:** Caries, gum disease, and periodontal disease are all caused by bacteria found in dental plaque. As a result, plaque removal is required for the prevention and treatment of these diseases (1) Despite the fact that there are many methods for removing plaque, including mechanical and chemical methods, the toothbrush is the most effective and commonly used. However, its effectiveness is based on a variety of factors, including the type of toothbrush used, brushing technique, optimum brushing time, and whether or not adjuvants like dental floss or mouthwash are used (2). One of the most significant advances in oral hygiene was the invention and widespread use of the plastic-handled, nylon-bristled toothbrush in the 1930s. Since then, in developing countries, the manual toothbrush has been the mainstay of oral hygiene practices (3). The invention of the nylon-bristled toothbrush with a rubber handle in the 1930s was without a doubt one of the most significant developments in oral hygiene (4). Since then, the manual toothbrush has become the most popular method of oral hygiene in developed countries. Dental plaque is made up of complex microbial species that are bound to the surface of hard tooth tissues in a highly structured manner (5). The clinical and biological importance of oral biofilms in the production of various diseases of the oral cavity and throat, such as caries, periodontal diseases, endodontic infections, tonsillitis, and alveolitis, among others, is determined by studying this system (5,6). Brushing your teeth with a manual toothbrush can be very effective. The type of toothbrush, personal encouragement, brushing movements, and manual agility all play a role in this ancient method of brushing. It is right to say that manual toothbrushing is reliable, but ultrasonic cleaning can outperform it if the acoustic action is combined with mechanical movements (7). Driven toothbrushes are suitable for patients with reduced physical dexterity or for making self-care oral hygiene easier. The difficulty of brushing mainly comes to the orthodontic patients, due to which manual brushing becomes difficult. Their methods of action are extremely varied. The brush head travels laterally in a side-to-side action mode, in a counter-oscillation mode where each group of bristles rotates in opposite directions, and in a rotational oscillation mode where the entire brush rotates in the same direction (8). Powered toothbrushes are very useful for the patients who lack manual dexterity or for simplifying self-performed oral hygiene. Our team has extensive knowledge and research experience that has translated into high quality publications (9–20). The aim of the present study is to assess the effect of sonic toothbrush in reducing the plaque pathogens. ### **MATERIALS AND METHODS:** ### **STUDY SETTING** An in vitro original study on the effect of ultrasonic toothbrush in reducing the plaque pathogen is done. The study was done in the department of microbiology, Saveetha dental college and hospitals. The study was non-invasive and easy to perform without much inconvenience to the volunteers. The Type of population in the present study are the volunteers using ultrasonic toothbrushes and volunteers using manual toothbrushes (control samples). However the sample size was limited. Prior to the initiation of the study, clearance was obtained by the Scientific Review Board. The number of samples or swabs collected were 20 (n=20). The swabs were collected in an unbiased manner using randomized sampling. Then the swabs which are collected are inoculated on BHI agar and then incubated for 24 hours and checked for the total CFU (Table 1, Table 2). # **SAMPLING** Sample size: Group 1 (ultrasonic brushing - 10) and Group 2 (manual brushing -10) Sampling method: finding volunteers using ultrasonic toothbrush and collection of the samples and samples collected from the volunteers using manual toothbrush (control samples). | | ULTRASONIC BRUSHING | | |--------|---------------------|-------------------------| | BEFORE | AFTER | PERCENTAGE
REDUCTION | | 3040 | 2080 | 68.42% | | 784 | 779 | 99.36% | | 584 | 580 | 99.31% | | 760 | 732 | 96.31% | | 675 | 666 | 98.66% | | 783 | 640 | 81.73% | | 765 | 583 | 76.20% | | 674 | 585 | 86.79% | | 785 | 731 | 93.12% | | 3050 | 2084 | 68.32% | | MEAN = 1190 | Mean = 946 | Mean = 86.82% | |-------------|------------|---------------| |-------------|------------|---------------| Table 1: depicts the total CFU count of the bacterial plaque pathogens before and after ultrasonic brushing and the percentage reduction values. | | MANUAL BRUSHING | | |--------------|-----------------|-------------------------| | BEFORE | AFTER | PERCENTAGE
REDUCTION | | 240 | 56 | 23.33% | | 288 | 144 | 50% | | 205 | 173 | 84.39% | | 255 | 212 | 83.13% | | 310 | 225 | 72.58% | | 245 | 57 | 23.26% | | 290 | 143 | 49.31% | | 207 | 176 | 85.02% | | 260 | 210 | 80.76% | | 296 | 224 | 75.67% | | Mean = 259.6 | Mean = 162 | Mean =62.75% | Table 2: depicts the total CFU count of the bacterial plaque pathogens before and after manual brushing and the percentage reduction values. # **RESULTS:** Graph 1: The graph denotes the total CFU count of bacterial plaque before and after using an ultrasonic toothbrush. Blue denotes before brushing and red denotes after brushing. X axis represents the before and after ultrasonic brushing and the Y axis represents the CFU count. The mean total CFU count before brushing was 1190 and the mean total CFU count after brushing was 946. Graph 2: The graph denotes the total CFU count of bacterial plaque before and after using a manual toothbrush. Purple denotes before brushing and green denotes after brushing. X axis represents the before and after manual brushing and the Y axis represents the CFU count. The mean total CFU count before brushing was 259.6 and the mean total CFU count after brushing was 162. Graph 3: Graph depicts the comparison of mean percentage reduction between ultrasonic brushing and manual brushing. X axis represents the type of brushing and the Y axis represents the mean percentage. The chi square test was done, with a P value 0.002, which is statistically significant (P<0.05). # **DISCUSSION:** In the present study, the efficacy of the ultrasonic toothbrush and the manual toothbrush in reducing the plaque pathogens was assessed. From the present study, graph 1 explains the total CFU count before and after brushing with the ultrasonic toothbrush where the mean value before brushing was 1190 and the mean value after brushing was 946. The percentage reduction was also calculated and the mean reduction percentage was estimated to be 86.82% (Graph 1). From the present study, graph 2 explains the total CFU count before and after brushing with the manual brush, where the mean value before brushing was 259.6 and the mean value after brushing was 162. The percentage reduction was estimated to be 62.75% (Graph 2). The comparison of percentage reduction of plaque pathogens between ultrasonic and manual brushing, shows that ultrasonic reduction has a good efficiency of reducing the plaque pathogen with the percentage reduction of 86.82% (Graph 3). An ultrasonic toothbrush is an electric toothbrush which is designed for daily home use which operates by generating ultrasound waves to help in removing plaque and rendering plaque bacteria harmless (4). Powered or the electric toothbrushes are useful for patients who lack manual dexterity or for simplifying self-performed oral hygiene. Dental plaque is an essential factor which mainly causes periodontitis, caries and gingivitis (21). The prevention of these diseases essentially requires maintenance of the oral cavity hygiene and the proper manner of brushing. The main technology of the ultrasonic toothbrush is the ultrasound induced vibration of the bristles. The mechanical energy transferred from the piezoelectric element leads to the vibration of the bristles. Additionally, ultrasonic waves, high velocity flows of oral fluids and additional acoustic microstreaming indicates a better removal of dental biofilm than the manual brushing techniques. In general, the efficiency of brushing depends on the type of brushing and the type of brush used. While there are various ways of reducing dental plaque formation, the best and suitable way is by brushing (22). In the previous study done by bianco et al, (23)showed that the manual toothbrush removed the dental plaque better as compared to the sonic toothbrush, but there was no particular difference in the s.mutans count, which was similar to the present study. In a study done by Aggarwal et al (24)showed that the manual as well as the ultrasonic toothbrush were having an equal efficacy in the reduction of plaque pathogens. In the present study, according to the percentage reduction graph, the manual brushing technique showed a good reduction percentage and provides evidence for reduction in plaque pathogens. limitation of the present study includes limited sample size. With further research and greater sample size, the effect of ultrasonic toothbrush in reducing plaque pathogens. ## **CONCLUSION:** According to this study, it is found that ultrasonic brushing has an added advantage in reducing the plaque pathogens when compared with the regular manual brushing technique. As this study was done in volunteers who have the practise of using ultrasonic toothbrushes was selected, it is found that their oral or salivary bacterial count is found to be reduced compared with the control group. A proper guidance and validation is needed in case of ultrasonic toothbrush users. # • COMPETING INTERESTS DISCLAIMER: Authors have declared that no competing interests exist. The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors. ### **REFERENCES**: - Taylor HJZ, Williams KB. The Effect of a Sonic Toothbrush on the Epithelial-associated Bacteria of Previously Untreated Human Periodontal Pockets: An In-vivo Study. 1997. 100 p. - 2. Goyal N, Shamanna PU, Varughese ST, Abraham R, Antony B, Emmatty R, et al. Effects of amine fluoride and probiotic mouthwash on levels of in orthodontic patients: A randomized controlled trial. J Indian Soc Periodontol. 2019 Jul;23(4):339–44. - 3. Ohsumi T, Takenaka S, Sakaue Y, Suzuki Y, Nagata R, Hasegawa T, et al. Adjunct use of mouth rinses with a sonic toothbrush accelerates the detachment of a Streptococcus mutans biofilm: an in vitro study. BMC Oral Health. 2020 Jun 3;20(1):161. - 4. Grender J, Adam R, Zou Y. The effects of oscillating-rotating electric toothbrushes on plaque and gingival health: A meta-analysis. Am J Dent. 2020 Feb;33(1):3–11. - 5. Saleem M, Yoshinari N, Nakamura S, Sumi Y, Iwai Y, Ozaki Y, et al. Improvement of salivary flow and oral wetness by a lip trainer device and sonic toothbrush in older Japanese men and women with dry mouth. J Oral Sci. 2019 Jun 18;61(2):221–8. - 6. Erbe C, Jacobs C, Klukowska M, Timm H, Grender J, Wehrbein H. A randomized clinical trial to evaluate the plaque removal efficacy of an oscillating-rotating toothbrush versus a sonic toothbrush in orthodontic patients using digital imaging analysis of the anterior dentition. Angle Orthod. 2019 May;89(3):385–90. - 7. van der Sluijs E, Slot DE, Hennequin-Hoenderdos NL, Valkenburg C, van der Weijden F. Dental plaque score reduction with an oscillating-rotating power toothbrush and a high-frequency sonic power toothbrush: a systematic review and meta-analysis of single-brushing exercises. Int J Dent Hyg. 2021 Feb;19(1):78–92. - 8. Preda C, Butera A, Pelle S, Pautasso E, Chiesa A, Esposito F, et al. The Efficacy of Powered Oscillating Heads vs. Powered Sonic Action Heads Toothbrushes to Maintain Periodontal and Peri-Implant Health: A Narrative Review. Int J Environ Res Public Health - [Internet]. 2021 Feb 4;18(4). Available from: http://dx.doi.org/10.3390/ijerph18041468 - 9. Priyadharsini JV, Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species [Internet]. Vol. 94, Archives of Oral Biology. 2018. p. 93–8. Available from: http://dx.doi.org/10.1016/j.archoralbio.2018.07.001 - 10. Vijayashree Priyadharsini J. In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens. J Periodontol. 2019 Dec;90(12):1441–8. - 11. Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2020 Feb;43(2):153–4. - 12. Vijayashree Priyadharsini J, Smiline Girija AS, Paramasivam A. An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile An in silico approach. Heliyon. 2018 Dec;4(12):e01051. - 13. Paramasivam A, Vijayashree Priyadharsini J. Novel insights into m6A modification in circular RNA and implications for immunity. Cell Mol Immunol. 2020 Jun;17(6):668–9. - 14. Paramasivam A, Priyadharsini JV, Raghunandhakumar S. Implications of m6A modification in autoimmune disorders. Cell Mol Immunol. 2020 May;17(5):550–1. - 15. Girija ASS, Shankar EM, Larsson M. Could SARS-CoV-2-Induced Hyperinflammation Magnify the Severity of Coronavirus Disease (CoViD-19) Leading to Acute Respiratory Distress Syndrome? Front Immunol. 2020 May 27;11:1206. - 16. Jayaseelan VP, Arumugam P. Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res. 2020 Jan;43(1):74–5. - 17. Ushanthika T, Smiline Girija AS, Paramasivam A, Priyadharsini JV. An in silico approach towards identification of virulence factors in red complex pathogens targeted by reserpine. Nat Prod Res. 2021 Jun;35(11):1893–8. - 18. Ramalingam AK, Selvi SGA, Jayaseelan VP. Targeting prolyl tripeptidyl peptidase from Porphyromonas gingivalis with the bioactive compounds from Rosmarinus officinalis. Asian Biomed . 2019 Oct 1;13(5):197–203. - 19. Kumar SP, Girija ASS, Priyadharsini JV. Targeting NM23-H1-mediated inhibition of tumour metastasis in viral hepatitis with bioactive compounds from Ganoderma lucidum: A computational study. pharmaceutical-sciences [Internet]. 2020;82(2). Available from: https://www.ijpsonline.com/articles/targeting-nm23h1mediated-inhibition-of-tumour-metastasis-in-viral-hepatitis-with-bioactive-compounds-from-ganoderma-lucidum-a-comp-3883.html - 20. Mathivadani V, Smiline AS, Priyadharsini JV. Targeting Epstein-Barr virus nuclear antigen - 1 (EBNA-1) with Murraya koengii bio-compounds: An in-silico approach. Acta Virol. 2020;64(1):93–9. - 21. Mirza F, Argosino K, Ward M, Ou S-S, Milleman KR, Milleman JL. A Comparison of the Effect of Two Power Toothbrushes on the Reduction of Gingival Inflammation and Supragingival Plaque. J Clin Dent. 2019 Mar;30(Spec No A):A9–15. - 22. Chicalé-Ferreira AB, Palma-Dibb RG, Faraoni JJ, Gatón-Hernández P, Silva LA da, Silva RA da, et al. Effect of manual and electrical brushing on the enamel of sound primary teeth and teeth with induced white spot lesions. Am J Dent. 2020 Feb;33(1):25–8. - 23. Bianco L, Romano F, Maggiora M, Bongiovanni L, Guzzi N, Curmei E, et al. Effect of sonic versus manual supervised toothbrushing on both clinical and biochemical profiles of patients with desquamative gingivitis associated with oral lichen planus: A randomized controlled trial. Int J Dent Hyg. 2019 May;17(2):161–9. - 24. Aggarwal N, Gupta S, Grover R, Sadana G, Bansal K. Plaque Removal Efficacy of Different Toothbrushes: A Comparative Study. Int J Clin Pediatr Dent. 2019 Sep;12(5):385–90.