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ABSTRACT 

Rice sheath blight (ShB) is one of the most serious fungal diseases caused by Rhizoctonia solani, 

instigating significant yield losses in many rice-growing regions of the world. Intensive studies indicated 

that resistance for sheath blight is controlled possibly by polygenes. Because of complex inheritance, it’s 

very difficult to exploit and tap all the genomic regions conferring resistance using classical approaches of 

QTL mapping, it’s very important to have a different strategy to harness such resistance mechanism. One 

promising approach that can potentially provide accurate predictions of the resistance phenotypes is 

genomic selection (GS). The research was undertaken with an objective to validate genomic selection 

approach for predicting sheath blight resistance involving 1545 Recombinant inbred lines (RILs) derived 

from eleven crosses between resistant and susceptible parents (Jasmine 85XTN1, Jasmine 

85XSwarnaSub1, Jasmine 85XII32B, Jasmine 85XIR54, TetepXTN1, TetepXSwarna Sub1, TetepXII32B, 

TetepXIR54, MTU 9992XTN1, MTU 9992XII32B and MTU 9992XIRBB4). Where, Jasmine 85, Tetep & 

MTU 9992 were resistant parents and TN1, Swarna Sub1, II32B, IR54 & IRBB4 were susceptible parents. 

During rainy season (2020) the F7 RILs were screened for their reaction to sheath blight in two hot spot 

locations. The genotyping was done with Illumina platform having 6564 SNP markers. Bayesian B 

approach was used to train the statistical model for calculation of marker effects and GEBVs. The 

prediction accuracy of training set (data fit analysis) obtained was 0.70 and random cross validation with 

different approaches, the prediction accuracy ranged from 0.67 to 0.74. The results are lucrative, all in all, 

high prediction accuracies observed in this study suggest genomic selection as a very promising breeding 

strategy for predicting sheath blight resistance in Rice. 
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INTRODUCTION 

Rice (Oryza sativa L.) feeds more than half of the world’s population and genetic improvement of this food 

crop can serve as a major component of sustainable food production.  

Rice sheath blight is considered as one of the devastating diseases of rice worldwide leading to 

significant yield losses in many rice growing counties, it is caused by a necrotrophic pathogen 

Rhizoctonia solani (Rao et al. 2020). Because of unique symptoms exhibited by this disease it is referred 

as “rotten foot stalk”, “mosaic foot stalk” and “snake skin disease” (Molla et al. 2020; Zhang et al. 2019b). 

This disease has become popular recently because of intensification of rice-cropping systems with the 

development of new short stature, high tillering, high yielding cultivars, high plant densities, and an 

increase in nitrogen fertilization, these morphological and microenvironment situations are very much 

congenial for the growth and multiplication of the sheath blight fungus. In India its prevalence is mainly 

confined to coastal places of India where farmers grow very high yielding varieties and hot humid climate 

adds to that. These factors promote disease spread by providing a favorable microclimate for the disease 

agent due to a dense leaf canopy with an increased leaf-to-leaf and leaf-to-sheath contact (Banniza et al. 

2007). 

The necrotrophic Sheath Blight pathogen possess a broad range of hosts, there are few germplasm lines 

which are known to show resistant reaction against this pathogen, most of the breeders are focused on 

harnessing these resistant sources to breed cultivars which are resistant to tolerant for this disease. 

Because of lack of availability of more number of authentic and reliable sources of resistance, breeding 

for sheath blight has been challenging in Rice (Jia et al. 2009; Zuo et al. 2010; Srinivasachary, Willocquet 

and Savary 2011). Upon intensive study, it’s believed to be controlled by many genomic regions 

dispersed across the genome (Zuo et al. 2013). It is widely thought that quantitative nature of resistance 

could be the expedient for evolving varieties with durable/horizontal resistance (Poland et al. 2013) 

against sheath blight in Rice. 



 

 

 

Breeding for disease resistance involving many genes is a challenge. One of popular approach which is 

very popular now a days which can help in breeding for complex traits is genomic selection, because of 

reduction in cost involved in genotyping and development of robust statistical models this approach is 

becoming very popular while breeding for quantitative resistance now a days. Genomic selection uses 

large number of markers scattered across the genome to obtain the genomic estimated breeding values 

of individuals (Meuwissen et al., 2001). It was shown to be especially effective for improving quantitative 

traits, both in simulations (Bernardo and Yu 2007) and in empirical studies (Heslot et al., 2013; Lorenz et 

al. 2012; Rutkoski et al. 2011, 2012 and 2014).  

In general, prediction accuracies are reported to be higher in bi-parental populations than in populations 

of complex crosses with good genetic relationship between training and test population (Bernardo & Yu, 

2007). The current investigation was done with eleven bi-parental populations created by design to 

validate the efficiency and feasibility of genomic selection approach to predict sheath blight resistance 

with different random cross validation methods. 

 

MATERIAL AND METHODS 

Parent material and phenotyping of F7 RILs for ShB 

A total of 250 germplasm lines were screened for identification of lines which were resistant and 

susceptible for Sheath blight. Crosses were made involving Jasmine 85, Tetep & MTU 9992 as resistant 

to moderately resistant parents and TN1, Swarna Sub1, II32B, IR54 & IRBB4 as susceptible parents. The 

total of 1545 RILs across eleven populations were used for the study to tap all the genomic regions 

governing sheath blight resistance dispersed across the genome. The RILs were generated by following 

single seed descent method (SSD) at Rapid Generation Advancement/ Speed breeding facility of Pioneer 

Hi-Bred Pvt. Ltd. Research Centre at Tunkikalsa village, Medak district, Telangana. The eleven crosses 

used for the study were, Jasmine 85XTN1, Jasmine 85XSwarna Sub1, Jasmine 85XII32B, Jasmine 

85XIR54, TetepXTN1, TetepXSwarna Sub1, TetepXII32B, TetepXIR54, MTU 9992XTN1, MTU 

9992XII32B and MTU 9992XIRBB4. The RILs were phenotyped for sheath bight reaction in two hot spot 

locations (Seethanagaram and Draksharam) of East Godavari District of Andhra Pradesh state, India 

(Latitude 16008’ N and Longitude 81008’ E, Latitude 17°10’N and Longitude 81°41’ E).  



 

 

 

The experiments consisting of F7 RILs along with parental lines were planted in Randomized complete 

design with two replications. Row length of 1.2 meter with row-to-row distance 15 cm and plant to plant 

distance 10 cm was considered to ensure dense population which is congenial for the development of 

disease. TN1 was used as susceptible check and was sown after every two rows as well as all along the 

border to increase the disease pressure so as to serve as spreader rows. In the present study, the 

virulent local East Godavari isolate of rice sheath blight pathogen was utilized for disease screening. 

Before the inoculation, the fungus was cultivated in potato dextrose agar medium at optimal temperature 

for 3–4 days, followed by transferring of disc of medium with mycelia for multiplication. To ensure 

stringent screening for better disease development, artificial inoculation was done by spraying the mycelia 

uniformly at the base of plant at maximum tillering stage. The data was recorded at peak milking stage to 

dough stage by visualizing the relative lesion length to height (%) using 1-9 scale based on development 

of lesion from the lower to upper part of plant on a scale from 1 (Resistant) to 9 (Susceptible) thereby 

getting total of five phenotypic categories, where score 1: 0-20%, score 3: 21-30%, score 5: 31-45%, 

score 7: 46-65% and score 9: 66-100%. 

 

SNP genotyping 

All the RILs used for the study were genotyped using Infinium marker platform which is a fixed plex 

comprising of 6564 markers, the genotyping was done at marker technology lab of Pioneer Hi-Bred 

International Limited at Johnston, Iowa State, United States of America. 

 

GS modeling 

Genomic selection follows a three-step process (Figure 1). First, all the individuals which are part of 

training set are genotyped and phenotyped and effects are estimated for all molecular markers, GEBVs 

(predicted values) were calculated for all the individuals which are part of same training set using the 

marker effects generated and were correlated with phenotypic values to get prediction accuracy, this 

provides information about data fit of training set. Second, the training set is validated by considering 

independent data set, different approaches of cross validation are used to understand predictive ability of 



 

 

 

training set. Third, members of untested populations are solely genotyped and then selected based on 

their predicted phenotypes according to the marker effects estimated in the training set.  

For the current investigation, Bayesian B model was used for training the model and to generate marker 

effects to get GEBV’s of the breeding lines. 

The Bayesian models assume a prior marker effects distribution and are of the form: 

 y =1nµ+ Xβ + ε  

Where X is the incidence matrix for the markers and β is the vector of k marker effects. The Bayesian B 

model was implemented in GATK (Genome Analysis Tool Kit) tool with background of ‘R’ package with 

50,000 iterations. 

Bayes B, proposed by Meuwissen et al. (2001) uses a mixture distribution prior where marker effects are 

assumed to be zero with probability, π and marker effects are assumed to be drawn from a scaled-t 

distribution with probability, 1-π. In BA, π = 0, but BB assumes that many markers have no effect at all 

and hence π > 0 (Habier et al., 2011). Heffner et al. (2011) referred to this as a more realistic prior 

because certain regions of the genome are expected to have no quantitative trait loci (QTL) and thereby 

zero effect. The tool treats the parameter p (proportion of non-null effects) as unknown and assigns a 

Beta (B) prior parametrized such that the expected value by E(π) = πo and po is the number of prior 

counts. The prior densities for BB is represented as 

p(βj,σ
2
β,π) = {Πk[πN(βjk|0, σ

2
β) + (1-π)1(βjk = 0)]χ

-2
(σ

2
βjk|dfβ,Sβ)} B(π|р0,π0) x G(Sβ|r,s) 

 

Cross validation analysis 

The cross-validation study was done with two approaches. In first approach, all the lines were randomly 

divided into training set and validation set with different percentage of individuals in each set, using 

phenotypic and genotypic data of all the individuals which were part of training set, the marker effects 

were created, the validation set individuals GEBVs were calculated by summing all marker effects taken 

from training set using only genotypic data, later predicted values (GEBVs) were correlated with 



 

 

 

phenotypic values to know prediction accuracy of training set, the analysis was run ten times. Finally, 

prediction accuracies across ten replications were averaged. 

Whereas, in second approach (family drop method), out of eleven populations used in the current study, 

ten populations individuals were made part of training set and individuals of one population were made 

part of validation set, ensured that every population will be part of validation set at least once. Using 

phenotypic and genotypic data of all the individuals which are part of training set, the marker effects were 

generated, the validation set individuals GEBVs were calculated by summing all marker effects taken 

from training set using only genotypic data, later predicted values (GEBVs) were correlated with 

phenotypic values to get the prediction accuracy, the analysis was run ten times, finally the prediction 

accuracy values across ten runs were averaged. 

 

RESULTS AND DISCUSSION 

The frequency distribution of 1545 F7 RILs evaluated showed continuous variation across all population 

studied (Figure 2). The genotypic analysis was done with large number of markers which were uniformly 

distributed throughout the genome (Table 1), polymorphic markers between parents across populations 

studied ranged from 1407 to 2849, MTU 9992XTN1 and MTU 9992XIRBB4 possessed lowest and 

highest number of informative markers (Table 2). Marker effects generated after statistical analysis 

(Figure 3) clearly explained that several loci scattered across the genome were contributing to sheath 

blight resistance, which demonstrated that the resistance to sheath blight was governed by many genes 

with additive effect, this was reported by earlier researcher (Zuo et al. 2013).  

The prediction accuracy of training set (data fit analysis) across all populations studied was 0.70 (Figure 

4). The data fit analysis was done by population as well, among the different populations studied the 

prediction accuracy ranged from 0.18 to 0.67,  MTU 9992XIRBB4 and TetepXSwarna Sub1 exhibited 

lowest and highest prediction accuracy respectively (Figure 5). When large number of markers data is 

available Bayes B model appears to be robust in comparison with ridge regression, Bayes A, Bayes C, 

stepwise regression etc., but one of the challenges could be computational power that can be improved 

by using advanced statistical models (Heffner et al. 2011). The prediction accuracy of training set also 

depends on many factors, like phenotypic precision, size of the training set, number of markers used, LD 



 

 

 

between markers and traits of interest, statistical model used, marker type, heritability of the trait, genetic 

relationship between training and test set etc. 

Results of first cross validation approach, in which different percentages of individuals were made part of 

training and validation set, the average prediction accuracy (across ten replications) with three different 

population sizes ranged from 0.67 to 0.74, lowest was observed when only 25 percentage of the 

individuals were part of training set and highest when 75 percentage of individuals were part of training 

set (Table 3, 4 and 5), this clearly showed that the number of individuals in training set (size of training 

set) had great impact on prediction accuracy. The prediction accuracy ranged from 0.64 to 0.72 (Table 6) 

across ten replications analyzed for the second method of cross validation (population drop approach), 

average prediction accuracy realized was 0.69 (Table 6). The data fit and random cross validation results 

of training set were appealing from both the approaches, which exemplified that training set developed 

with Bayes B model possess good predictability.  

 

CONCLUSION 

From the data fit and cross validation results it is evident that genomic selection method can be 

successfully used for predicting sheath blight resistance in Rice. The training set developed with eleven 

populations can be used in future to predict new untested populations. As cost involved in genotyping has 

drastically reduced due to path breaking technologies in biotech industry, genomic selection can be 

successfully and efficiently implemented to tackle the complex traits like sheath blight to increase the rate 

of genetic gain in Rice breeding. 
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Figure 1: Showing the different steps of genomic selection (GS) used for crop improvement program 

 

 

 

Figure 2: Distribution of sheath blight phenotypic scores into five classes or categories 

 

 

 

 

 



 

 

 

Figure 3: Marker effects of loci spread across the genome associated with sheath blight generated by 
marker trait association using Bayesian B model 

 

 

Figure 4: Scatter plot showing data fit analysis of training set across eleven populations studied 
(correlations between phenotypic values and genomic estimated breeding values of same data set for 
sheath blight scores). 

 



 

 

 

Figure 5: Histogram showing data fit analysis by population (correlations between phenotypic values and 
genomic estimated breeding values of same data set for sheath blight scores). 

 

 

 

Table 1: Summary of marker data used for analysis and SNPs distribution on each chromosome 

Chromosome SNPs Length (cM) 

Ch1 639 181.8 

Ch2 846 162.84 

Ch3 598 164.04 

Ch4 594 129.6 

Ch5 583 128.58 

Ch6 577 124.4 

Ch7 457 118.6 

Ch8 495 121.2 

Ch9 427 93 

Ch10 324 84.01 

Ch11 541 117.9 

Ch12 483 109.5 

Total 6564 1535.47 

 

 



 

 

 

Table 2: The informative markers available across the genome for each population used for analysis 

Populations Total Markers Polymorphic Markers 

Jasmine 85XTN1 6564 2522 

Jasmine 85XSwarna Sub1 6564 2627 

Jasmine 85XII32B 6564 2586 

Jasmine 85XIR54 6564 2663 

TetepXTN1 6564 2806 

TetepXSwarna Sub1 6564 2278 

TetepXII32B 6564 2702 

TetepXIR54 6564 2796 

MTU 9992XTN1 6564 1407 

MTU 9992XII32B 6564 2314 

MTU 9992XIRBB4 6564 2849 

 

 

 

Table 3: Cross validation analysis results with the training set possessing 75% of the individuals and 
validation set with 25% of the individuals 

Random Cross Validation of Training Set : Validation Set (75:25 Percentage) 

            

Trait Replication Total #obs Training Set #obs Validation Set #obs Accuracy 

SHBSC Rep01 1545 1157 388 0.6945 

SHBSC Rep02 1545 1157 388 0.7403 

SHBSC Rep03 1545 1157 388 0.6925 

SHBSC Rep04 1545 1157 388 0.7621 

SHBSC Rep05 1545 1157 388 0.7475 

SHBSC Rep06 1545 1157 388 0.801 

SHBSC Rep07 1545 1157 388 0.7294 

SHBSC Rep08 1545 1157 388 0.7538 

SHBSC Rep09 1545 1157 388 0.7604 

SHBSC Rep10 1545 1157 388 0.7483 

        Average 0.74298 

 

 

 

 

 



 

 

 

Table 4: Cross validation analysis results with the training set possessing 50% of the individuals and 
validation set with 50% of the individuals 

Random Cross Validation of Training Set : Validation Set (50:50 Percentage) 

      Trait Replication Total #obs Training Set #Obs Validation Set #Obs Accuracy 

SHBSC Rep01 1545 773 772 0.7269 

SHBSC Rep02 1545 773 772 0.7143 

SHBSC Rep03 1545 773 772 0.725 

SHBSC Rep04 1545 773 772 0.6978 

SHBSC Rep05 1545 773 772 0.7503 

SHBSC Rep06 1545 773 772 0.7456 

SHBSC Rep07 1545 773 772 0.6952 

SHBSC Rep08 1545 773 772 0.7059 

SHBSC Rep09 1545 773 772 0.7005 

SHBSC Rep10 1545 773 772 0.7081 

        Average 0.71696 

 

 

 

Table 5: Cross validation analysis results with the training set possessing 25% of the individuals and 
validation set with 75% of the individuals 

 

Random Cross Validation of Training Set : Validation Set (25:75 Percentage) 

      Trait Replication Total #obs Training Set #obs Validation Set #obs Accuracy 

SHBSC Rep01 1545 386 1159 0.6714 

SHBSC Rep02 1545 386 1159 0.7042 

SHBSC Rep03 1545 386 1159 0.6875 

SHBSC Rep04 1545 386 1159 0.6677 

SHBSC Rep05 1545 386 1159 0.6602 

SHBSC Rep06 1545 386 1159 0.6808 

SHBSC Rep07 1545 386 1159 0.6526 

SHBSC Rep08 1545 386 1159 0.6738 

SHBSC Rep09 1545 386 1159 0.6993 

SHBSC Rep10 1545 386 1159 0.6824 

        Average 0.67799 

 

 



 

 

 

Table 6: Cross validation analysis results with the training set possessing the individuals of ten families 

and validation set with the individuals of one family 

Random Cross Validation of Training Set_Family drop method 

       

Trait 
Total 
#Obs 

Training 
Set_Families ValidationSet_Family 

Training Set 
#Obs 

Validation 
Set #Obs Accuracy 

SHBSC 1545 Ten Families Jasmine 85XTN1 1424 121 0.7183 

SHBSC 1545 Ten Families Jasmine 85XSwarna Sub1 1406 139 0.7176 

SHBSC 1545 Ten Families Jasmine 85XII32B 1401 144 0.6647 

SHBSC 1545 Ten Families Jasmine 85XIR54 1384 161 0.7164 

SHBSC 1545 Ten Families TetepXTN1 1324 221 0.6459 

SHBSC 1545 Ten Families TetepXSwarna Sub1 1387 158 0.7054 

SHBSC 1545 Ten Families TetepXII32B 1304 241 0.7207 

SHBSC 1545 Ten Families TetepXIR54 1451 94 0.6679 

SHBSC 1545 Ten Families MTU 9992XTN1 1495 50 0.7057 

SHBSC 1545 Ten Families MTU 9992XII32B 1423 122 0.7181 

SHBSC 1545 Ten Families MTU 9992XIRBB4 1451 94 0.7036 

          Average 0.69857 
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