
Some Formulae For Integer Sums Of Two Squares

Abstract

The study of integer sums of two squares is still an open area of research. Much
of the recent work done has put more attention on Fermat Sums of two square
theorem with little attention given to new formulas of sums of two Squares. This
work is set to partially overcome this knowledge gap by introducing new formulas
for generating integer sums of two squares.
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1 Introduction
Finding the relationship between integers and sums of two squares has become an interesting topic
in the recent years. The Theory of sums of two squares was first pioneered by Fermat in 1640, where
an odd prime p is expressible as a sum of two squares if and only if p ≡ 1mod4. Euler succeeded
in providing proof for Fermat’s theorem on sums of two squares in 1749, The proof majorly relies
on infinite descent, and was briefly sketched in a letter. The complete proof consists in five steps
and was published in two papers. For reference see [3,4]. Since, Euler gave proof to this somewhat
marvelous theorem, a number of researchers have provided alternative proof. For survey of this
results reference can be made to [1,2,3,4]. Though a giant method the Fermat formula does not
generate all integer sums of two squares since it is purely defined for an odd prime numbers which

www.sciencedomain.org


Journal of Advances in Mathematics and Computer Science X(X), XX–XX, 20XX

is congruent to 1 modulo p. Another limitation of Fermat Sums of two square theorem is that one
has to determine p before spliting the number into a sum of two square number. This study is set to
overcome this challenges by introducing new formulas for integer sums of two squares which has the
ability to generate a wide range of integer sums of two squares if not all.

2 Preliminary Results
In this section we present some interesting results related to integer sums of two squares

Theorem 2.1 (Fermat). An odd prime p is expressible as p = a2 + b2 if and only if p ≡ 1 mod n with
a and b as integers.

The Brahmagupta Fibonacci identity known also as Diophantus identity expresses the product of two
sums of two squares as a sum of two squares in two different ways. i.e
(u2 + v2)(w2 + z2) = (uw − vz)2 + (uz + vw)2 = (uw + vz)2 + (uz − vw)2

3 Some Identities Of Sums Of Two Squares
In the sequel some identities of sums of two squares are presented. In this study all the numbers are
assumed to be integers with property that c > b > a and n is any non-negative exponent

Proposition 3.1. b(a + c) + 22n+1 = (a − 2n + 2)2 + (a + 2n + 2)2 has solution in integers if a, b, c
are consecutive integers of the same parity.

Proof. To prove that b(a+ c)+22n+1 = (a−2n+2)2+(a+2n+2)2 we need to establish the equality
of the identity. Proceeding from L.H.S we have b(a + c) + 22n+1 = (a + 2)(a + a + 4) + 22n+1 =
(a+ 2)(2a+ 4) + 22n+1 = a(2a+ 4) + 2(2a+ 4) + 22n+1 = 2a2 + 4a+ 4a+ 8 + 22n+1. · · · ·(∗).
On the other hand, (a− 2n + 2)2 + (a+ 2n + 2)2 = a(a− 2n + 2)− 2n(a− 2n + 2)+ 2(a− 2n + 2)+
a(a+ 2n + 2) + 2n(a+ 2n + 2) + a(a+ 2n + 2) = a2 − a.2n + 2a− a.2n + 22n − 2n+1 + 2a− 2n+1 +
4 + a2 + a.2n + 2a+ a.2n + 22n + 2n+1 + 2a+ 2n+1 + 4 = 2a2 + 4a+ 4a+ 8 + 22n+1. · · · ·(∗∗).
Clearly, (∗) and (∗∗) are equal. Hence b(a+ c) + 22n+1 = (a− 2n + 2)2 + (a+ 2n + 2)2.

Proposition 3.2. b(a + c) + 22n+1 = (b − 2n)2 + (b + 2n)2 has solution in integers if a, b, c are
consecutive integers of the same parity.

Proof. See proposition 3.1.

Proposition 3.3. b(a+ c)+ 22n+1 = (c− 2n− 2)2 +(c+2n− 2)2 has solution in integers if a, b, c are
consecutive integers of the same parity.

Proof. See proposition 3.1.

Proposition 3.4. a(b+c)+22(n−1)+1 = (a+1)2+( c+a
2

)2 has solution in integers if b = a+2, c = a+2n

and n ≥ 1.

Proof. To prove a(b+c)+22(n−1)+1 = (a+1)2+( c+a
2

)2. We show that the L.H.S of the identity is equal
to the R.H.S. Proceeding from the L.H.S a(b+c)+22(n−1)+1 = a(a+2+a+2n) since b = a+2, c =
a+2n. Now,a(b+c)+22(n−1)+1 = a(a+2+a+2n)+22(n−1)+1 = 2a2+2a+a.2n+22(n−1)+1 · · · (∗).
On the other hand, (a+1)2+( c+a

2
)2 = a2+2a+1+ 1

4
(2a+2n)2 = a2+2a+1+ 1

4
(2a(2a+2n)+2n(2a+

2n)) = a2+2a+1+ 1
4
(4a2+a.2n+1+a.2n+1+22n) = a2+2a+1+a2+a.2n−1+a.2n−1+22n−2+1 =

2a2 + 2a + a.2n + 22n−2 + 1 · · · (∗∗). From (∗) and (∗∗) it is clear that a(b + c) + 22(n−1) + 1 =
(a+ 1)2 + ( c+a

2
)2.
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Proposition 3.5. a(b+c)+22(n−1)+4 = (a+2)2+(a+c
2

)2 has solution in integers if b = a+4, c = a+2n

and n ≥ 1.

Proof. To prove that a(b+c)+22(n−1)+4 = (a+2)2+(a+c
2

)2. We need to show that the equality holds.
Proceeding from the L.H.S a(b+c)+22(n−1)+4 = a(a+4+a+2n)+22n−2+4 since b = a+4, c = a+2n.
Thus, a(b+ c) + 22(n−1) + 4 = a(2a+ 4 + 2n) + 22n−2 + 4 = 2a2 + 4a+ a.2n + 22n−2 + 4 · · · (∗).
On the other hand, (a + 2)2 + (a+c

2
)2 = (a + 2)2 + (a+2n+a

2
)2 = a2 + 4a + 4 + 1

4
(2a + 2n)2 =

a2 + 4a + 4 + 1
4
(2a(2a + 2n) + 2n(2a + 2n)) = a2 + 4a + 4 + 1

4
(4a2 + 2n+1.a + 2n+1.a + 22n) =

a2 + 4a+ 4+ a2 + 2n−1.a+ 2n−1.a+ 22n−2 = 2a2 + 4a+ a.2n + 22n−2 + 4 · · · (∗∗). Clearly, from (∗)
and (∗∗) the equality holds. Hence a(b+ c) + 22(n−1) + 4 = (a+ 2)2 + (a+c

2
)2.

Proposition 3.6. a(b+ c) + 22(n−1) + 16 = (a+b
2

)2 + (a+c
2

)2 has solution in integers if b = a+ 8, c =
a+ 2n and n ≥ 1.

Proof. To prove that a(b+ c)+22(n−1) +16 = (a+b
2

)2 +(a+c
2

)2. Need to show that the equality of this
identity holds. Expanding the L.H.S we have a(b+ c)+22(n−1) +16 = a(a+8+a+2n)+22n−2 +16,
since b = a + 8, c = a + 2n. Now,a(b + c) + 22(n−1) + 16 = a(a + 8 + a + 2n) + 22n−2 + 16 =
2a2 + 8a+ a.2n + 22n−2 + 16 · · · (∗). On the other hand, (a+b

2
)2 + (a+c

2
)2 = 1

4
(a+ c)2 + 1

4
(a+ b)2 =

1
4
(a+a+2n)2+ 1

4
(a+a+8)2 = 1

4
(2a+2n)2+ 1

4
(2a+8)2 = 1

4
(2a(2a+2n)+2n(2a+2n))+ 1

4
(2a(2a+

8) + 8(2a+ 8)) = 1
4
(4a2 + a.2n+1 + a.2n+1 + 22n)2 + 1

4
(4a2 + 16a+ 16a+ 64) = 1

4
(4a2 + a.2n+2 +

22n)+ 1
4
(4a2 +32a+64) = a2 + a.2n +22n−2 + a2 +8a+16 = 2a2 +8a+ a.2n +22n−2 +16 · · · (∗∗).

From (∗) and (∗∗) the equality is established.

Proposition 3.7. a(b+ c)+ 22(n−1) +64 = (a+b
2

)2 +(a+c
2

)2 has solution in integers if b = a+16, c =
a+ 2n and n ≥ 1.

Proof. To prove that a(b+c)+22(n−1)+64 = (a+b
2

)2+(a+c
2

)2. We show that the L.H.S of this identity
is equal to the R.H.S. Expanding the L.H.S, a(b+ c)+22(n−1) +64 = a(a+16+ a+2n)+22n−2 +64
since b = a + 16, c = a + 2n. Now, a(b + c) + 22(n−1) + 64 = a(a + 16 + a + 2n) + 22n−2 + 64 =
a(2a+ 16 + 2n) + 22n−2 + 64 = 2a2 + 16a+ a.2n + 22n−2 + 64 · · · (∗).
On the other hand (a+b

2
)2 + (a+c

2
)2 = 1

4
(a + b)2 + 1

4
(a + c)2 = 1

4
(a + a + 16)2 + 1

4
(a + a + 2n)2 =

1
4
(2a + 16)2 + 1

4
(2a + 2n)2 = 1

4
(2a(2a + 16) + 16(2a + 16)) + 1

4
(2a(2a + 2n) + 2n(2a + 2n)) =

1
4
(4a2 + 32a + 32a + 256) + 1

4
(4a2 + a.2n+1 + 22n) = a2 + 8a + 8a + 64 + a2 + a.2n + 22n−2 =

2a2 + 16a+ a.2n + 22n−2 + 64 · · · (∗∗). From (∗) and (∗∗) the result follows

Proposition 3.8. a(b+c)+22(n−1)+256 = (a+b
2

)2+(a+c
2

)2 has solution in integers if b = a+32, c =
a+ 2n and n ≥ 1.

Proof. To prove that a(b + c) + 22(n−1) + 256 = (a+b
2

)2 + (a+c
2

)2. We show that the L.H.S of this
identity is equal to the R.H.S. Now, a(b + c) + 22(n−1) + 256 = a(a + 32 + a + 2n) + 22n−2 + 256 =
a(2a+ 32 + 2n) + 22n−2 + 256 = 2a2 + 32a+ a.2n + 22n−2 + 256 · · · (∗).
On the other hand,(a+b

2
)2 + (a+c

2
)2 = 1

4
(a + b)2 + 1

4
(a + c)2 = 1

4
(a + a + 32)2 + 1

4
(a + a + 2n)2 =

1
4
(2a + 32)2 + 1

4
(2a + 2n)2 = 1

4
(2a(2a + 32) + 32(2a + 32)) + 1

4
(2a(2a + 2n) + 2n(2a + 2n)) =

1
4
(4a2+64a+64a+322)+ 1

4
(4a2+a.2n+1+a.2n+1+22n) = 1

4
(4a2+128a+322)+ 1

4
(4a2+a.2n+2+22n) =

a2 + 32a+ 256+ a2 + a.2n + 22n−2 = 2a2 + 32a+ a.2n + 22n−2 · · · (∗∗). From (∗) and (∗∗) the result
easily follows.

Proposition 3.9. a(b + c) + 22n−1 = (a+b
2

)2 + (a+c
2

)2 = (a+b
2

)2 + (a+b
2

)2 = (a+c
2

)2 + (a+c
2

)2 has
solution in integers if b = a+ 2n, c = a+ 2n and n ≥ 1.

Proof. To prove that a(b+ c) + 22n−1 = (a+b
2

)2 + (a+c
2

)2 = (a+b
2

)2 + (a+b
2

)2 = (a+c
2

)2 + (a+c
2

)2. We
need to show that the equality of the identity holds. Expanding the L.H.S we have a(b+ c) + 22n−1 =
a(a + 2n + a + 2n) + 22n−1, since b = a + 2n, c = a + 2n. Now, a(b + c) + 22n−1 = a(a + 2n + a +
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2n) + 22n−1 = 2a2 + a.2n+1 + a.22n−1 · · · (∗).
On the other hand, (a+b

2
)2 + (a+c

2
)2 = 1

4
(a + b)2 + 1

4
(a + c)2 = 1

4
(a + a + 2n)2 + 1

4
(a + a + 2n)2 =

1
4
(2a + 2n)2 + 1

4
(2a + 2n)2 = 1

4
(2a(2a + 2n) + 2n(2a + 2n)) + 1

4
(2a(2a + 2n) + 2n(2a + 2n)) =

1
4
(4a2+a.2n+1+a.2n+1+22n)+ 1

4
(4a2+a.2n+1+a.2n+1+22n) = 1

2
(4a2+a.2n+1+a.2n+1+22n) =

2a2 +a.2n+1 +22n−1 · · · (∗∗). From (∗) and (∗∗) the first part identity holds. Next, the second and the
third part of equality holds from the fact that a = b. Hence concluding the proof.

Proposition 3.10. Let a be any positive even integers and the exponent n be any non negative
integer with zero included. Then 2n.aa + 2n = u2 + v2.

Proof. Case(i) when n = 0.
20.aa + 20 = aa + 1. Let a = 2m. Then aa + 1 = 2m2m + 1 = (4m2)

m
+ 1. Let m2 = k so that

(4m2)
m

+ 1 = (4k)m + 1. Setting k = 1 we have 4m + 1. Let R = {4m + 1 : k ∈ Z+} and
S = {p ≡ 1mod4 where p is an odd prime}. Clearly R ⊆ S and by fermat theorem of sums of two
squares, the result easily follows.

Proof. Case(ii) when n = 2k .
22k.a2m + 22k = (2k.am)

2
+ (2k)2. Let u = 2kam and v = 2m. So that 2n.aa + 2n = u2 + v2.

Proof. Case(iii) when n = 2k + 1.
22k+1.a2m + 22k+1 = 2.(2k.am)

2
+ 2.(2k)2 = 2.((2k.am)

2
+ (2k)2). Let u = 2kam and v = 2m.

So that 2n.aa + 2n = 2.(u2 + v2) = (12 + 12).(u2 + v2) and by the identity (x2 + y2)(u2 + v2) =
(xu+ yv)2 + (xv − yu)2 the proof follows.

Proposition 3.11. Let p and x be any positive integers and n be any non negative exponent. Suppose
that p ≡ 1 mod b2 where b is anon negative even integer. Then pxn−xn = z2. Moreover, z2 = u2+v2

is a sum of two squares where u and v are integers.

Proof. We want to show that pxn−xn = z2 = u2+v2. If p ≡ 1 mod b2 then p = b2+1. Put b = 2m so
that p = 2m2m+1. Proving from L.H.S we have pxn−xn = (2m2m+1).xn−xn = 2m2m.xn+xn−xn =
2m2m.xn. Set n = 2k to get pxn − xn = 2m2m.x2k = (2m.mm)2(xk)2 = (2m.mm.xk)2. Set
z = (2m.mm.xk) proving the first part of the equation. To show that (2m.mm.xk)2 is a sum of two
squares, Let z = (2m.mm.xk) and set m = 1. This means that z = (2.xk) = (1 + 1).xk = xk + xk.
Assume k = 2t, xk + xk = (xt)2 + (xt)2 = u2 + v2 as desired. Thus pxn − xn = z2 = u2 + v2.

Conjecture 3.1. a(b+ c)+L = u2 + v2 has no general solution in integers if a, b and c is not related.

Conclusion
This study has introduced some new formulas for integer sums of two squares. Up to now, much
of the research done in this area is very scanty and we encourage other researchers to give more
attention to this particular area of research. For instance there is very little information on the general
formula for generating integer sums of two squares since not every multiple of sums of two squares
with any number is a sum of two squares.
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