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Abstract 

Numerical simulation of the wound healing behaviour by considering the coupled reaction-diffusion, 

transport and viscoelastic system is vital in investigating the mechanical stress field induced by cell 

migration. In this work, numerical simulation is viewed in three-dimensional space during a time course of 

wound healing. Over the years, many authors have developed two-dimensional mathematical models of 

wound healing, as supported by the background in the introduction below. But we know that a three-

dimensional case realistically captures the tissue deformations. The two-dimensional simulation is restricted 

to observing the motion in two directions only. Hence, the interest is in the three-dimensional case. 

Therefore, to our knowledge, this is the first article to consider the numerical simulation of the coupled 

reaction-diffusion, transport and viscoelastic system during wound healing in a three-dimensional 

environment. Firstly,thetwo-dimensional evolution of wound healing is developed to compare our results 

with published data. Thenthe work is extended to three-dimensional wound healing, which is the main focus. 
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1 Introduction 

Wound healing is a complex phenomenon. Different authors model this healing process differently by 

considering specific parameters while ignoring other parameters from the mathematical point of view. 

Parameters mainly utilized involve extracellular matrix, wound contraction, cell traction, and angiogenesis 

[[1],[2],[3],[4],[5],[6]]. McDougall, Dallon [7] developed a mathematical model of fibroblast cell migration and 

collagen deposition following a dermal wound. Due to the chemoattractant gradient, it was found that fibroblasts 

move rapidly into the damaged tissue to replace the dead cells. Furthermore, this study revealed how the 

complex wound structure is affected during wound healing. 

 

 

Murray and Oster [8] developed a one-dimensional case of coupled reaction-diffusion, transport and viscoelastic 

systems and studied cell traction to create patterns and form in morphogenesis. This was the first study to derive 

this system from studying morphogenesis during wound healing. These equations were also put in the proper 

form by performing non-dimensionalization.Murray and Oster also developed other models to study cell traction 

to establish patterns and structure in morphogenesis in the evolution of wound healing. Later, Sherratt, Martin 

[9] developed mathematical models to account for wound healing in embryonic and adult epidermis. They 

studied the mechanisms of epidermal repair in embryos and adults.Furthermore, they accounted for actin 

alignment during embryonic wound healing using the mechanical model. In contrast, reaction-diffusion was 

used to find the impact of growth factors during wound healing in adults.In 1994, Dale, Maini [2] proposed a 

reaction-diffusion model to study the mechanisms involved in healing corneal surface wounds.This study found 

that some of their solutions for cell density and epidermal growth factors evolved into travelling waves, while 

others failed to develop into travelling waves. 

 

Cumming, McElwain [10] investigated the role of the cytokine transforming growth factor-beta during the 

healing and scar development using the mathematical model. This model reveals the history of using the 

reaction-diffusion equation to model processes involved during wound healing.  It was also found in the same 

paper that fibroblasts quickly populate the wound within four days following the injury to the tissue in response 

to the chemotactic gradient. Several models on wound healing using the reaction-diffusion equation have been 

well documented[11]. These include epidermis and dermis damage models, chronic disorders and solid tumour 

growth. Jorgensen and Sanders [12] gave a comprehensive review of the advances in mathematical modelling of 

wound healing and wound closure. These models include only investigate the biomechanics of the tissue during 

the wound healing process [[13],[14],[15],[16]]. Another great review of computational wound healing models 

was previously carried out[17]. 



 

Recently, agent-based modelling has been adopted to model the dynamics involved during wound healing. One 

such model was developed to investigate how fibroblasts integrate local chemical, structural, and mechanical 

cues as they deposit and remodel collagen[18]. This model represented a section of the heart myocardium 

perpendicular to the epicardial surface on the heart's left ventricle.  Later, this model was coupled with the finite 

element model to get realistic deformations from the finite element model to drive the agent-based model [19]. 

The current study focuses on skin wound healing, modelled by a coupled system of reaction-diffusion, transport 

and viscoelastic equations. This system is solved numerically using finite difference schemes. We began by 

solving the two-dimensional case compared with previously published data. Then this model is extended to a 

three-dimensional case.   

  

2 The Governing Model 
2.1 Two-dimensional case 

The wound healing model consists of the following system of equations. 

 

𝛛𝐧

𝛛𝐭
+

𝛛

𝛛𝐱
 𝐧

𝛛𝐮

𝛛𝐭
+ 𝛘 𝛒 𝐧

𝛛𝛒

𝛛𝐱
− 𝐃 𝛒 

𝛛𝐧

𝛛𝐱
 = 𝐏 𝐧, 𝛒 ,

𝛛𝛒

𝛛𝐭
+

𝛛

𝛛𝐱
 𝛒

𝛛𝐮

𝛛𝐭
 = 𝐁 𝐧, 𝛒 ,

𝛛

𝛛𝐱
 𝐧

𝛛𝟐𝐮

𝛛𝐱𝛛𝐭
+ 𝐄

𝛛𝐮

𝛛𝐱
+ 𝛕 𝐧, 𝛒  = 𝐅 𝐮, 𝛒 ,

 (1) 

 

where, 

 𝜌 𝑥, 𝑡  is the extracellular matrix (ECM) density 

 𝑛 is the cell density 

 𝑢 is the displacement 

 D ρ  with constant diffusion coefficient 

 χ ρ  is the chemotaxis with chemotactic sensitivity 

 𝐁 𝐧, 𝛒 represents ECM biosynthesisand degradation 

 Body forces, 𝐹(𝑢, 𝜌)  =  𝑠𝑢𝜌, measure the ECM matrix's strength to the underlying tissues. 

Generally, the ECM matrix is attached elastically to the epithelial layer. The body force, 𝐹(𝑢, 𝜌), is 

assumed to be due to external tethering to the basement membrane and modelled by a linear spring, 

where 𝑠 is a constant of proportionality. 

 Traction forces depend on the adhesion between the cell surface and collagen fibres. 

 𝛕(𝐧, 𝛒) =
𝐓𝟎𝐧𝛒

𝐑𝟐+𝛒𝟐, (2) 

where  𝑇0 and 𝑅 are constant parameters as previously found by numerical simulation [20, 21] 

The following assumptions we used in this model: 

 We set the cell and the ECM density to one for normal tissue. 

 Fibroelastic cells proliferate according to a logistic growth law, 

𝑃 = 𝑟𝑛(1 − 𝑛), 

where 𝑟 is the linear growth rate and 𝑟 > 0. 

 Set D>0 as a constant. 

 The collagen biosynthesis and degradation rate are assumed to be proportional to n and −np. 

𝐵 = 𝜖𝑛(1 − 𝑝), 

 and where 𝜀 is very small to introduce the fact that the ECM remodelling takes more time than the 

proliferation of cells. 



 

 The positive parameters 𝜇 and 𝐸 quantify the viscous and elastic contributions. 

 We neglect haptotactic contributions. 

 

The following boundary conditions we utilized around the wound domain: 

𝛛𝐧

𝛛𝐱
 𝟎, 𝐭 =

𝛛𝛒

𝛛𝐱
 𝟎, 𝐭 = 𝐮 𝟎, 𝐭 = 𝟎, 

𝐧 ∞, 𝐭 = 𝛒 ∞, 𝐭 = 𝟏,

𝐮 ∞, 𝐭 = 𝟎,
 (3) 

with the initial conditions given by 

 
𝐧(𝐱, 𝟎) = 𝐇(𝐱 − 𝟏),

𝛒(𝐱,𝟎) = 𝛒𝐢 +  𝟏 − 𝛒𝐢 𝐇(𝐱 − 𝟏)

𝐮(𝐱, 𝟎) = 𝟎,
 (4) 

where H is the Heaviside functions. 

 

2.2 Three-dimensional case 

The same system was upgraded to a two-dimensional case as given below 

 
∂𝑛

∂𝑡
+ div⁡ 𝑛

∂u

∂𝑡
+ 𝜒(𝜌)𝑛∇𝜌 − 𝐷(𝜌)∇𝑛 = 𝑃(𝑛, 𝜌)  (5) 

∂𝜌

∂𝑡
+ div⁡ 𝜌

∂𝐮

∂𝑡
 = 𝐵(𝑛, 𝜌) 

−div⁡ 𝜇
∂(∇u)

∂𝑡
+ 𝐸∇𝐮 + 𝜏(𝑛, 𝜌)𝐼 + 𝐹(𝑛, 𝜌) = 0 

 

We now divide the displacement in 𝑢1 and 𝑢2 for the movement in 𝑥 and 𝑦 direction, respectively: 

 
𝜕𝑛

𝜕𝑡
+

𝜕

𝜕𝑥
 𝑛

𝜕𝑢1

𝜕𝑡
+ 𝜒 𝜌 𝑛

𝜕𝜌

𝜕𝑥
− 𝐷 𝜌 

𝜕𝑛

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝑛

𝜕𝑢2

𝜕𝑡
+ 𝜒 𝜌 𝑛

𝜕𝜌

𝜕𝑦
− 𝐷 𝜌 

𝜕𝑛

𝜕𝑦
 = 𝑃 𝑛, 𝜌 , 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
 𝜌

𝜕𝑢1

𝜕𝑡
 +

𝜕

𝜕𝑦
 𝜌

𝜕𝑢2

𝜕𝑡
 = 𝐵 𝑛, 𝜌 , 

− 𝜇  

𝜕 𝛥𝑢1 

𝜕𝑡
𝜕 𝛥𝑢2 

𝜕𝑡

 + 𝐸  
𝛥𝑢1

𝛥𝑢2
 +  

𝜕𝜏

𝜕𝑥
𝜕𝜏

𝜕𝑦

  + 𝐹(𝑛, 𝜌) = 0, (6) 

 

with the following boundary conditionsand the same assumptions used in the two-dimensional case were also 

applied in the three-dimensional environment: 

𝑛 𝑥, 0, 𝑡 = 𝑛 𝑥, ∞, 𝑡 = 𝜌 𝑥, 0, 𝑡 = 𝜌 𝑥, ∞, 𝑡 = 1, 

𝜕𝑛

𝜕𝑥
 0, 𝑦, 𝑡 =

𝜕𝑛

𝜕𝑥
 ∞, 𝑦, 𝑡 =

𝜕𝜌

𝜕𝑥
 0, 𝑦, 𝑡 =

𝜕𝜌

𝜕𝑥
 ∞, 𝑦, 𝑡 = 0, 

𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, ∞, 𝑡) = 𝑢(0, 𝑦, 𝑡) = 𝑢(∞, 𝑦, 𝑡) = 0. (7) 

 



 

3 Finite difference scheme 

We apply the implicit finite difference on the spatial variable and the Euler scheme for the time variable in the 

following sections. It has already been proved that an implicit scheme converges, and it is stable unconditionally 

[[22],[23]]. 

 

3.1 Three-dimensional case 

We use forward or backward Euler depending on the direction of the flow. 

 If 
∂𝑢

∂𝑡
< 0 we have; 

𝐶 =
𝑛𝑖+1

𝑁  𝑢𝑖+1
𝑁+1 − 𝑢𝑖+1

𝑁  − 𝑛𝑖
𝑁 𝑢𝑖

𝑁+1 − 𝑢𝑖
𝑁 

𝑑𝑥
,

𝐴 =
𝜌𝑖+1

𝑁  𝑢𝑖+1
𝑁+1 − 𝑢𝑖+1

𝑁  − 𝜌𝑖
𝑁 𝑢𝑖

𝑁+1 − 𝑢𝑖
𝑁 

𝑑𝑥
.

 

 

   
If 

∂𝑢

∂𝑡
> 0 we have 

𝐶 =
𝑛𝑖

𝑁 𝑢𝑖
𝑁+1 − 𝑢𝑖

𝑁 − 𝑛𝑖−1
𝑁  𝑢𝑖−1

𝑁+1 − 𝑢𝑖−1
𝑁  

𝑑𝑥
,

𝐴 =
𝜌𝑖

𝑁 𝑢𝑖
𝑁+1 − 𝑢𝑖

𝑁 − 𝜌𝑖−1
𝑁  𝑢𝑖−1

𝑁+1 − 𝑢𝑖−1
𝑁  

𝑑𝑥
.

 

 

Substituting all the above discrete forms into equation Error! Reference source not found. and 

discretizing the remaining terms, we get: 

 𝑛𝑖
𝑁+1 = 𝑛𝑖

𝑁 − 𝐶 −
𝜒 𝑖𝑛𝑖𝑑𝑡  𝜌𝑖+1

𝑁 −𝜌𝑖
𝑁  −𝜒 𝑖−1𝑛𝑖−1𝑑𝑡 𝜌𝑖

𝑁−𝜌𝑖−1
𝑁  

𝑑𝑥2 +
𝐷𝑖𝑑𝑡  𝑛𝑖+1

𝑁 −𝑛𝑖
𝑁 −𝐷𝑖−1𝑑𝑡 𝑛𝑖

𝑁−𝑛𝑖−1
𝑁  

𝑑𝑥2 + 𝑑𝑡𝑃(𝑛, 𝜌)𝑖 , 

𝜌𝑖
𝑁+1 = 𝜌𝑖

𝑁 − 𝐴 + 𝐵(𝑛, 𝜌)𝑖 , 

 
𝜇

𝑑𝑡
+ 𝐸  

−𝑢𝑖+1
𝑁+1 + 2𝑢𝑖

𝑁+1 − 𝑢𝑖−1
𝑁+1

𝑑𝑥2
 + 𝐹𝑖 =

𝜇

𝑑𝑡
 
 −𝑢𝑖+1

𝑁 + 2𝑢𝑖
𝑁 − 𝑢𝑖−1

𝑁  

𝑑𝑥2
+

𝜏𝑖+1
𝑁 − 𝜏𝑖

𝑁

𝑑𝑥
,  

where 𝐹𝑖 = 𝑠𝜌𝑖
𝑁𝑢𝑖

𝑁+1 . (8) 

 

The above discrete equations result in algebraic equations, which can be turned into a matrix 

form. Considering only the last equation in Error! Reference source not found., we get the 

following matrix form of the equations: 

  
𝛍

𝐝𝐭
+ 𝐄 𝐁𝐮𝐍+𝟏 =

𝛍

𝐝𝐭
𝐁𝟏𝐮

𝐍 + 𝛕𝐍. (9) 

 

Below is an example of the form of the tridiagonal matrix from 𝐵: 



 

 𝟏

𝐝𝐱𝟐

 

 
 

𝟐 −𝟏 𝟎 ⋯ 𝟎
−𝟏 𝟐 −𝟏 ⋱ ⋮
𝟎 ⋱ ⋱ ⋱ 𝟎
⋮ ⋱ −𝟏 𝟐 −𝟏
𝟎 ⋯ 𝟎 −𝟏 𝟐  

 
 

. 

3. 2 Two-dimensional case 

In the following, we derive the discrete form of the time derivate, which is dependent on the flow direction or 

direction of the migration of the cells within the wound. 

Flow: 𝑥 direction 

 

If 
∂𝑢1

∂𝑡
< 0 we have: 

𝐶1 =
𝑛𝑖+1,𝑗

𝑁  𝑢1(𝑖+1,𝑗 )
𝑁+1 − 𝑢1(𝑖+1,𝑗 )

𝑁  − 𝑛𝑖 ,𝑗
𝑁  𝑢1(𝑖 ,𝑗 )

𝑁+1 − 𝑢1(𝑖 ,𝑗 )
𝑁  

𝑑𝑥
,

𝐺1 =
𝜌𝑖+1,𝑗

𝑁  𝑢1(𝑖+1,𝑗 )
𝑁+1 − 𝑢1(𝑖+1,𝑗 )

𝑁  − 𝜌𝑖 ,𝑗
𝑁  𝑢1(𝑖 ,𝑗 )

𝑁+1 − 𝑢1(𝑖 ,𝑗 )
𝑁  

𝑑𝑥
.

 

If 
∂𝑢1

∂𝑡
> 0 we have: 

𝐶1 =
𝑛𝑖 ,𝑗

𝑁  𝑢1(𝑖 ,𝑗 )
𝑁+1 − 𝑢1(𝑖 ,𝑗 )

𝑁  − 𝑛𝑖−1,𝑗
𝑁  𝑢1(𝑖−1,𝑗 )

𝑁+1 − 𝑢1(𝑖−1,𝑗 )
𝑁  

𝑑𝑥
,

𝐺1 =
𝜌𝑖 ,𝑗

𝑁  𝑢1(𝑖 ,𝑗 )
𝑁+1 − 𝑢1(𝑖 ,𝑗 )

𝑁  − 𝜌𝑖−1,𝑗
𝑁  𝑢1(𝑖−1,𝑗 )

𝑁+1 − 𝑢1(𝑖−1,𝑗 )
𝑁  

𝑑𝑥
.

 

Flow: 𝑦 direction 

 

If 
∂𝑢2

∂𝑡
< 0 we have: 

𝐶2 =
𝑛𝑖 ,𝑗+1

𝑁  𝑢2(𝑖 ,𝑗 +1)
𝑁+1 − 𝑢2(𝑖 ,𝑗+1)

𝑁  − 𝑛𝑖 ,𝑗
𝑁  𝑢2(𝑖 ,𝑗 )

𝑁+1 − 𝑢2(𝑖 ,𝑗 )
𝑁  

𝑑𝑦
,

𝐺2 =
𝜌𝑖 ,𝑗 +1

𝑁  𝑢2(𝑖 ,𝑗+1)
𝑁+1 − 𝑢2(𝑖 ,𝑗+1)

𝑁  − 𝜌𝑖 ,𝑗
𝑁  𝑢2(𝑖 ,𝑗 )

𝑁+1 − 𝑢2(𝑖 ,𝑗 )
𝑁  

𝑑𝑦
.

 

If 
∂𝑢2

∂𝑡
> 0 we have: 

𝑛𝑖 ,𝑗
𝑁  𝑢2(𝑖 ,𝑗 )

𝑁+1 − 𝑢2(𝑖 ,𝑗 )
𝑁  − 𝑛𝑖 ,𝑗−1

𝑁  𝑢2(𝑖 ,𝑗−1)
𝑁+1 − 𝑢2(𝑖 ,𝑗−1)

𝑁  

𝑑𝑦
,

𝐺2 =
𝜌𝑖 ,𝑗

𝑁  𝑢2(𝑖 ,𝑗 )
𝑁+1 − 𝑢2(𝑖 ,𝑗 )

𝑁  − 𝜌𝑖 ,𝑗−1
𝑁  𝑢2(𝑖 ,𝑗−1)

𝑁+1 − 𝑢2(𝑖 ,𝑗−1)
𝑁  

𝑑𝑦
.

 

Again plugging in the above equations in Error! Reference source not found. and discretizing the remaining 

terms, we get: 

 𝑛𝑖 ,𝑗
𝑁+1 = 𝑛𝑖 ,𝑗

𝑁 − 𝐶1 −
𝑑𝑡 𝜒𝑖 ,𝑗

𝑁 𝑛𝑖 ,𝑗  𝜌𝑖+1,𝑗
𝑁 −𝜌𝑖 ,𝑗

𝑁  −𝜒𝑖−1,𝑗
𝑁 𝑛𝑖−1,𝑗  𝜌𝑖 ,𝑗

𝑁 −𝜌𝑖−1,𝑗
𝑁   

𝑑𝑥2 +
𝑑𝑡 𝐷𝑖 ,𝑗

𝑁  𝑛𝑖+1,𝑗
𝑁 −𝑛𝑖 ,𝑗

𝑁  −𝐷𝑖−1,𝑗
𝑁  𝑛𝑖 ,𝑗

𝑁 −𝑛𝑖−1,𝑗
𝑁   

𝑑𝑥2 −

𝐶2

𝑑𝑡 𝜒𝑖 ,𝑗
𝑁 𝑛𝑖 ,𝑗

𝑁  𝜌𝑖 ,𝑗+1
𝑁 −𝜌𝑖 ,𝑗

𝑁  −𝜒𝑖 ,𝑗−1
𝑁 𝑛𝑖 ,𝑗−1

𝑁  𝜌𝑖 ,𝑗
𝑁 −𝜌𝑖 ,𝑗−1

𝑁   

𝑑𝑦2 + 



 

𝑑𝑡 𝐷𝑖 ,𝑗
𝑁  𝑛𝑖 ,𝑗+1

𝑁 −𝑛𝑖 ,𝑗
𝑁  −𝐷𝑖 ,𝑗−1

𝑁  𝑛𝑖 ,𝑗
𝑁 −𝑛 𝑖 ,𝑗−1

𝑁   

𝑑𝑦2 + 𝑑𝑡𝑃𝑖 ,𝑗
𝑁 𝜌𝑖 ,𝑗

𝑁+1 = 𝜌𝑖 ,𝑗
𝑁 − 𝐺1 − 𝐺2 + 𝑑𝑡𝐵𝑖 ,𝑗

𝑁  (10) 

 

  
𝜇

𝑑𝑡
+ 𝐸  

𝑢1𝑖+1,𝑗
𝑁+1 −2𝑢1𝑖 ,𝑗

𝑁+1+𝑢1𝑖−1,𝑗
𝑁+1

𝑑𝑥2 +
𝑢1𝑖 ,𝑗+1
𝑁+1 −2𝑢1𝑖 ,𝑗

𝑁+1+𝑢1𝑖 ,𝑗−1
𝑁+1

𝑑𝑦2  + 𝐹1𝑖 ,𝑗
𝑁+1 =

−𝜇

𝑑𝑡
 
𝑢1𝑖+1,𝑗
𝑁 −2𝑢1𝑖 ,𝑗

𝑁 +𝑢1𝑖−1,𝑗
𝑁

𝑑𝑥2 +

𝑢1𝑖 ,𝑗+1
𝑁 −2𝑢1𝑖 ,𝑗

𝑁 +𝑢1𝑖 ,𝑗−1
𝑁

𝑑𝑦2
 +

𝜏𝑖+1,𝑗
𝑁 −𝜏𝑖 ,𝑗

𝑁

𝑑𝑥
 (11) 

 

 − 
𝜇

𝑑𝑡
+ 𝐸  

𝑢2𝑖+1,𝑗
𝑁+1 −2𝑢2𝑖 ,𝑗

𝑁+1+𝑢2𝑖−1,𝑗
𝑁+1

𝑑𝑥2 +
𝑢2𝑖 ,𝑗+1
𝑁+1 −2𝑢2𝑖 ,𝑗

𝑁+1+𝑢2𝑖 ,𝑗−1
𝑁+1

𝑑𝑦2  + 𝐹2𝑖 ,𝑗
𝑁+1 = −

𝜇

𝑑𝑡
 
𝑢2𝑖+1,𝑗
𝑁 −2𝑢2𝑖 ,𝑗

𝑁 +𝑢2𝑖−1,𝑗
𝑁

𝑑𝑥2 +

𝑢2𝑖 ,𝑗+1
𝑁 −2𝑢2𝑖 ,𝑗

𝑁 +𝑢2𝑖 ,𝑗−1
𝑁

𝑑𝑦2
 +

𝜏𝑖 ,𝑗+1
𝑁 −𝜏𝑖 ,𝑗

𝑁

𝑑𝑦
 (12) 

 

The above equations result in an algebraic system of equations, which can be written in a compact matrix form. 

In the following, we give an example of what equation Error! Reference source not found. will look like in 

the compact matrix form: 

 
𝜇

𝑑𝑡
+ 𝐸 𝐴1𝑢1

𝑁+1 =
𝜇

𝑑𝑡
𝐴2𝑢1

𝑁 + 𝜏1
𝑁 , 

 
𝜇

𝑑𝑡
+ 𝐸 𝐴1𝑢2

𝑁+1 =
𝜇

𝑑𝑡
𝐴2𝑢2

𝑁 + 𝜏2
𝑁 , (13) 

with the matrix 𝐴1 given by the following evolution matrix form: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

𝑑𝑥
+

2

𝑑𝑦

−1

𝑑𝑥
0

−1

𝑑𝑦
0 ⋯ ⋯ ⋯ ⋯ 0

−1

𝑑𝑥

2

𝑑𝑥
+

2

𝑑𝑦

−1

𝑑𝑥
0

−1

𝑑𝑦
⋱ ⋮ ⋮ ⋮ ⋮

0
−1

𝑑𝑥
⋱ 0 0 0 ⋱ ⋮ ⋮ ⋮

−1

𝑑𝑦
0 0 ⋱

−1

𝑑𝑥
⋱

−1

𝑑𝑦
⋱ ⋮ ⋮

0
−1

𝑑𝑦
⋱

−1

𝑑𝑥
⋱

−1

𝑑𝑥
⋱

−1

𝑑𝑦
⋱ ⋮

⋮ ⋱ 0 ⋱
−1

𝑑𝑥
⋱ 0 ⋱ ⋱ 0

⋮ ⋮ ⋱
−1

𝑑𝑦
⋱ 0 ⋱ ⋱ ⋱

−1

𝑑𝑦

⋮ ⋮ ⋮ ⋱
−1

𝑑𝑦
⋱ ⋱ ⋱ ⋱ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋱
−1

𝑑𝑥

0 ⋯ ⋯ ⋯ ⋯ ⋯ 0 0
−1

𝑑𝑥

2

𝑑𝑥
+

2

𝑑𝑦 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

We simulated wound healing using systems derived for both one-dimensional and two-dimensional cases using 

the scientific programming language Scilab with the following parameters from the literature. In the one-

dimensional case, we considered a line domainto represent damagedskin, whereas, in the two-dimensional, we 

considered a rectangular domain to represent damaged skin. 

 R = 0.2 

 𝑠 = 1, 



 

 𝜌i = 0.1, 

 𝜇 = 1, 

 𝜀 = 0.01, 

 𝐸 = 0.01, 

 𝜏 = 0.1. 

 

4 Results 
The following sections present and discuss the finding from solving the coupled system numerically. We will 

show the results in two parts: a two-dimensional case and a three-dimensional case. 

 

4.1 Two-dimensional case 

The results from the simulation reveal that cell density recovers quickly following an injury to the skin (Figure 

1a). It can also be seen that cell density recovers fully, while the extracellular matrix takes a long time to 

recover, and in most cases, it never recovers fully  (Figure 1b). These results are consistent with what Murray 

and Oster [8] found from their model. The cells move rapidly into the wound, and gradually the movement of 

cells slows down (Figure 2). The direction movement of cells is in response to a chemotactic stimulus. Each 

side of the cell forms adhesion to the substrate and engages in a tug-of-war. Net displacements happen in the 

direction of the side with the strongest pull and the firmest attachments to the substrate. Hence, the 

displacements in the middle of the wound are in the direction of the negative. 

 

 

Figure 1. Evolution of cell density (a) within the damaged wound and evolution of extracellular matrix (ECM) 

density (b) within during the wound healing. The arrow indicates how cell density or ECM density evolves with time 

during wound healing. 

 

 



 

 

Figure 2. displacements of cells to rapidly replace the dead cells during the wound healing. The arrow shows 

the direction of movement of cells with time during wound healing. 

 

4.2Three-dimensional case 

The same pattern observed in two dimensional is again observed in the three-dimensional: cell density recovers 

quickly (Figure 3), but the ECM density still takes a long time to heal completely (Figure 4). The red arrows 

show that the cell density and ECM density evolve with time during wound healing. The movement of cells is 

dependent on the direction of flow; some cells move in the 𝑥-direction (Figure 5a) and others in the 𝑦-direction 

(Figure 5b) to replace the in cells. Again we observed that after the recovery of the injured, the movement of 

cells slowed down in both directions. 



 

 

Figure 3. Cell density evolution within the wound. 

 

 



 

 

Figure 4. ECM recovery during wound healing following the injured tissue. The red arrow indicates how slow 

the ECM is recovering with time. 

 

 

Figure 5. The displacements of cells within the injured tissue during the healing process. 

 

5 Discussions 

In this paper, we used the coupled reaction-diffusion, transport and viscoelastic system of partial differential 

equations to model wound healing in both two-dimensional and three-dimensional cases. We applied the 

implicit finite difference scheme with the Euler forward scheme for the time variable to discretize this coupled 

system of equations. During the discretization, attention was given to the flow direction during the cell 

migration within and around the wound domain. We took advantage of the stability of the implicit scheme. 



 

However, we ran into computational costs due to evolving sparse matrices and their inverses which had to be 

computed at each iteration. 

The results from this simulation have shown that cell density returns to its normal functioning within a short 

time following the injury to the tissue. In contrast, the extracellular matrix takes a long time to return to its 

normal functioning state. The displacements of the cells have also shown that cells migrate fast from the normal 

tissue to the injured tissue. When the wound has returned to its close to a normal functioning state, the 

movement of cells hasbeen shown to slow down. 

6 Conclusions 

This study can be extended to be applied to epithelial tissue injuries because it has been suggested that more 

than 90% of malignant tumours in adult mammalians occur in epithelial tissues. It is then of the highest 

importance to understand the dynamic regulations of focal adhesions involved during the cell migration in 

epithelial lines. This mathematical model can also be utilized to describe the closure behaviour from a pure 

kinematic point of view of a particular cell sheet, the Madin-Darby canine kidney (MDCK) monolayer cell 

sheet. But to do this,a global optimization algorithm needs to be performed to make parameter identification 

based on biological experiments. This computational tool developed will assist in shedding some original light 

on the mechanics which occur inside the cells sheet. 
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