Characterization of orthogonal projectors

’ Original Article ‘

Abstract

Let H be a Hilbert space and M be a closed linear subspace of H. Then by
projection theorem H = M @ M™. This theorem suggests that the result has
something to do about a notion in Hilbert spaces which is analogous to and a
generalization of the familiar idea of Orthogonal or perpendicular projection of a
vector in R? or R3 upon a linear subspace of R? or R? respectively. In this paper
we give a complete operator characterization of orthogonal projections.Specifically
we show that P is an orthogonal projector onto Rp = M if and only if P is self-
adjoint and idempotent. We also consider the algebraic formulation of invariance,
reduction, orthocomplementation and orthogonality.
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1 Introduction

Let H be a Hilbert space and M be a closed Linear Subspace of H. Then (by projection theorem

Q) X
H=Mo&M

Then for any = € H, there are unique =’ € M and z" € M~ such that
x = x! + xl!
Similarly if y € H, we can write y = 3 4+ 3" for unique 3’ € M and 3y’ € M~.

Definition 1. Let H be a Hilbert space and M be a closed linear subspace of H. For each x € H;
consider the unique decomposition x = ' + ', where 2’ € M and y' € M*. This decomposition is
guaranteed by the Projection theorem [6]. The component z’ is called the orthogonal projection
of the vector x € M. (Likewise, ¢’ is the orthogonal projection of the vector = on Ml). Note that
if x is in M, then 2’ = z and 3’ = 0. The mapping Prs : H — M defined by

!
Pyx =x




(with x, 2’ as just described) is called the orthogonal projection operator onto M or the
orthoprojector onto M or the orthogonal projector onto M. (Note that the range of Py is

A mapping P : H — H is called an orthogonal projector or orthoprojector on H if there
is a closed linear subspace M of H such that P = Py, that is, P equals the orthoprojector onto M.

Remark 1. Ifz € M, then © = = + 0 is the unique decomposition of © in M & M*. Thus x € M
implies

Pix =x,Px =0,
where Py, Py denote the orthoprojectors onto the closed linear subspaces M, M+, respectively. Thus
Py is the identity map on M and Ps|y, 1 is the zero map.

Remark 2. [t is obvious that for each x € H, Pix is the unique element of the closed linear subspace
M whose distance from x equals dist (x, M), that is

|z — Piz|| = dist(z, M) [§]

Remark 3. For each closed linear subspace M of H, we have Py + P» = I, where Pi, P> are the
orthoprojectors onto M, M+ respectively, I being an identity map on H. Thus P, = I — Pi. Thus
if P is the orthoprojector onto the closed linear subspace M of H, then I — P is the orthoprojector
onto the orthogonal complement M=+ of M with respect to H.

We are naturally curious with many questions about an orthoprojector P : Is P linear?
bounded? What properties characterize an orthoprojector? Proposition 1 is decisive in even
answering more. In this paper most definitions can be found in [1], [2],[3],[4],[5], [9], [10]

2 Properties of Orthoprojectors

Proposition 1. Let H be a Hilbert space, M be a closed linear subspace of H and let P and QQ be
the orthoprojectors onto M and M* respectively. Then

(i) P: H— H is linear.

(i) Both P and Q are bounded and ||P| < 1,]|Q] < 1.

(iii) Rp = M

(i) np = M+

(v) np L Rp and ng L Ro

(vi) I=P+Q

(vii) P,Q are self-adjoint.

(viii) P,Q are idempotent i.e P* = P,Q* = Q

Proof. (i) Let a, 8 € K and consider the element az + Sy € H.

ax+ Py =a(@ +2")+ By +y")
= (az’ + By') + (az” + By")

Since M, M™ are linear subspaces so az’ + By € M for z',y' € M and az”" + By"” € M~ for
2" y" € M*.Thus azx + By has a decomposition (az’ + By’) + (az” + By") in M & M+ and
since this decomposition is unique P(az + By) = az’ + By’. But Px = x1, Py = y/. Hence
P(ax + By) = az’ + By = aPzx + BPy which implies P is linear . Similarly, if we define
Q:H — Hby Qz = 2" Vz € H (where z = 2’ + 2" is the decomposition of z with respect
to the direct sum M @ M~ where 2z’ € M, z"” € M*) then Q is also linear.

(ii) Let « € H and = 2’ + 2" be the decomposition of x with ' € M and z” € M*. Then



Pz =a'. So |Pz|| = |2’ i.e |Pz||* = ||2’||> Therefore;

IPall” < [la[* + [|="]|

Since 2/ € M and z” € M™*, we have 2’ L z” and thus (from z = 2’ + z” ) we have by
Pythagorean theorem [7]

ol = fl2'[1" + [l

Hence ||Pz|* < ||z||* i.e ||Pz|| < ||z ¥ 2 € H ie ||Pz| < 1|jz| ¥ © € H which implies
P e B(H) and |P|| < 1.
If M # {0}, then there exists € M such that  # 0. The decomposition for this = € H is M & M~
(which is unique) is obviously; = z + 0 therefore Pz = z. Thus Pz = z for all z € M. Now
1P| = sup{|[Pz]|: = € H and |2 =1}
In particular put z = %= (x € M and = # 0) . Then

[zl

HE HP (i)H = L pa) = L) =1
ENINE B

Therefore ||P|| = 1 if M # {0}.Similarly ||Q| < 1 and ||Q| = 1 if M+ # {0}.
(iii) For if 2 € H then Pz = 2" € M, so Pz € M Vz € H, therefore P(H) C M i.e

Np C M. (1)
If z € M, then we saw that Pz = z. So; P(M) = M. Therefore
P(H) D P(M) =M i.e P(H) D M i.e %p D M. (2)
From (1) and (2)
Rp = (P(H)) = M.

Thus P: H — H is onto M. Similarly ||Q|| < 1 and ||Q|| = 1 if M+ # {0} and Rg = M.
(iv) For if z € M™* then z has the unique decomposition z = 0 + z where 0 € M and z € M*. So
Pz =0, i.e z € np therefore M+ C np. On the other hand, let € np then Pz =0 € M, s
np C ML Thus np = M~. Similarly ng = M.
(v) for M+ L M and M L M*, so np L %p and o L Ro.

H =np ®Rpr =nq +Rq

(vi) For any z € H
In=z2=2+72"=Pz+Qz=(P+Q)z

Therefore
I=(P+Q).
So
Q=I1-PP=1-Q

(vii) For let z,y € H and x = 2’ + 2",y = v’ + 3" be the decompositions of x,y respectively
along M @ M*. Thus Pz = ', Py = y'. Now Since P € B(H) (So P* exists [4])

(Pz,y) = (z, P"y). (3)

But



(Pzy) = («',y) = (¥ +y") = (&', 9 ) + («',y").
But

z' € M and 3" € M™* so <x'7y"> =0.
Thus
(Pz,y) = («',y") = (¢, Py)

= (a', Py) + (2", Py) ( for (a”, Py) = O since 2"’ € M™* and Py € M)

= (¢' + 2", Py) = (z, Py) (4)
from (3) and (4) we obtain
(z, P*y) = (z, Py) Vxz,y € H.

ie P* = PVy € H. (Indeed (z, P*y) — (z,Py) =0 Vz,y € H ie (z,P'y— Py) =0Vz,y € H .
Put x = P*y — Py in particular, therefore |P*y — Py|| =0 Vye€ HieP'y—Py=0 Vyec H ie
P* = P). Thus P is self-adjoint. Likewise Q is self-adjoint.Indeed;

Q=I-P

therefore
Q=(I-P)=I"-P"=I-P=Q.
(viii) Let z € H. Then Pz € M. We saw that if y € M then Py = y. Since Px € M so P(Pz) = Px
i.e P2z = Pz Vx € H therefore P> = P.Likewise Q% = Q
O

In general P € B(H) is an orthogonal projector if there is a closed linear subspace of H such
that Px = 2’ Vo € H where z’ is the component of x in the decomposition z = 2’ + 2" along the
direct sum M @ M*.More generally, we define a linear operator P € B(H) to be an orthogonal
projection if P = P* that is P is self-adjoint and P is idempotent i.e P? = P.

Remark 4. We usually use the symbol Py in place of P if we want to exhibit the linear subspace
onto which P maps.

Remark 5. We have seen that ||P|| <1 and |P|| =1 if M # {0}.
IfM={0} thenz e H=>z=0+2(0€M0eM"). SoPxr=0 VecH

|Pz||=10|=0 VzeH

therefore
1P| = 0.

Thus if P is an orthogonal projector on H either |P|| =1 or ||P|| = 0.

Remark 6. Let M be a closed linear subspace of a Hilbert space H and Py represent the orthogonal
projection of H onto M. If x € H, there exist a unique xo € M such that dist(x, M) = ||z — zo]|
and x —x0 L M i.ex —x0 € M+ [1].
Now zg = Py (for x = zo + (x — o) 1s the decomposition of x in M @ M+ therefore Pyx = xo )
Thus,

dist(z, M) = ||z — Puz||Vz € H.

The question which arises is; if P € B(H), and P is idempotent and self-adjoint, what can we
say about P? Proposition 2 answers this question.



Proposition 2. Let H be a Hilbert space and P € B(H). The following statements are equivalent.
(i) P is an orthogonal projector.
(ii) P is idempotent and self-adjoint i.e P> = P and P* = P

Proof. (i) = (it) proved in proposition 1 (vii) and (viii)
Conversely (i1) = (4)
P being a linear transformation it follows that SRp and np are both linear subspaces of H [2]. Since
P € B(H),np is a closed linear subspace of H. We see that Rp is closed. This follows essentially
from the idempotency of P. Indeed let y € 9p, hence there exists a sequence (y,) of elements of
PRp such that y, = y. If £ € Rp then Pr = x. Indeed since x € Rp so x = Py for some y € H.
Consequently

Pz = P(Py) = P’y = Py

(The last equality in the chain follows from idempotency of P). But Py = = so we get Px = x i.e
r € Rp implies Pr = x.
Since y, —» y and P € B(H) we get

Py, =5 Py.

But Py, = y. (since y, € Rp). Thus y, > Py. Also y, — .

By uniqueness of the strong limit, we get Py = y. In other words y € %p.Thus Rp C Rp, i.e Rp
is closed.

Conclusion: Rp is a closed linear subspace of H.

Hence by the projection theorem [6] in Hilbert spaces H = Rp @ R5. Hence if z € H, then © =
z' + 2", where ' € Rp and " € Rp.Therefore  Px = Pz’ + P2”. Since o’ € Rp,s0 Pa' =z’
We shall show that Pz” = 0. Since z” € Rp,z” L Rp ie (¢, Py) =0 Vy € H. Since P is self
adjoint,

<x”,Py> — <P*x”,y> _ <P1:”,y> )

Therefore
<Pm”,y> =0 VYyeH.
Thus
Pz 1L H i-e P2’ =0.
Therefore

Px =Pz =2’ € Rp.

Hence P maps H onto the closed linear subspace M = %p and the component of z in !5 belongs
to the null space of P. Hence P is the orthogonal projector on H onto the closed linear subspace
Rp. O

Thus the two properties in proposition 2 (ii) are together equivalent to (i) and we obtain a
complete operator characterization of an orthogonal projector:
P € B(H), P2 = P and P is self-adjoint <= P is an orthogonal projector onto Rp.

We establish next another equivalence.

Example 1. Let P be in B(H). Then P is an orthoprojector if and only if P is idempotent and
Rp L Rr_p.

SOLUTION. If P is an orthoprojector, then we have already seen in Proposition 1 that P is
idempotent and the property Rp L JR;_p was also seen. Hence we show that the converse holds.
Let 8p = M. Since P in B(H) is idempotent, M is a closed linear subspace of H, as already seen
above. Let R7_p = N. Now P? = P implies (I — P)> =T —2P+4 P? =1 — P. Since I — P € B(H)



and it is idempotent, it follows that N is a closed linear subspace of H. By hypothesis, M L N.
Moreover, each © € H can be written as x = Pz + (I — P)z. Note that Pz is in Rp = M, (I — P)x
isin R_p = N. So H= M + N, with M L. N. Now M L N implies M N N = {0}. Thus
H=M&N, with M L N. It is thus evident that N = M*. P is thus an orthoprojector.

Remark 7. We observe that there is a natural one-to-one correspondence between the set of all
closed linear subspaces of a Hilbert space H and the set of all orthoprojectors on H. In view of
this, it is possible to express all geometric notions connected with closed linear subspaces in terms of
algebraic properties of the orthoprojectors onto these linear spaces. We consider below the algebraic
formulation of invariance, reduction, orthocomplementation and orthogonality.

We now introduce the notion of invariant and reducing linear subspaces for a T' € B(H).

Definition 2. Let H be a Hilbert space, T' € B(H) and M be a closed linear subspace of H. We
say that M is invariant with respect to T or T - invariant if z € M implies Tz € M. If T is
defined on D7 (subspace of H) then T is said to be T- invariant if Tx € M for allz € M N Dr

Trivial cases:
If M = {0} or M = H, then M is always T-invariant. For x € H implies Tz € H and x = 0 =
T0O = 0 € {0}. These are called the improper T-invariant subspaces. 7nr is T-invariant for if
x€nr,Tx =0 € nr.
A question which arises is: If T € B(H) has an invariant subspace M, what can we say about the
adjoint of T i.e T™ ?

Proposition 3. Let H be a Hilbert space, T € B(H). Then a closed linear subspace M of H is
T-invariant if and only if M+ is T*-invariant.

Proof. Let M be T-invariant. To show that M* is T*-invariant. Let z € M™* ie (z,Ty) =0V y
€ M.(M is T- invariant <= Ty € M for ally € M ) But

(x,Ty) = (T"z,y) so (T"z,y) =0Vy e M

ie Tz L M ie T*z € M+ .Conclusion; z € M+ implies T*z € M+ .Thus M* is T*-invariant.
Thus M is T -invariant implies M+ is T*-invariant.By the same result it follows that: ML is T*-
invariant, implies (M*+)* is (T™*)*-invariant (since T* € B(H) and M~ is a closed linear subspace).
But (ML)L = M since H is a Hilbert space and (T*)* =T for T € B(H). So M~ is T*-invariant
implies M is T-invariant.Thus for T' € B(H), if M is a closed linear subspace of H:

M is T-invariant <= M~ is T*-invariant. O

Remark 8. T-invariance of M is essentially a geometric concept involving a linear subspace M
and its itmage. This geometric concept of invariance can be translated into a purely algebraic concept
involving operators with perfect equivalence as seen in proposition 4;

Proposition 4. Let H be a Hilbert space and M be a closed linear subspace of H. Let T € B(H)-M
is then T -invariant if and only if PT P = TP where P is orthogonal projector on H onto M.

Proof. Let M be T-invariant, so x € M implies Tx € M. Let y € H. Since P is the orthogonal
projector on H onto M, so Py € M. Since M is T-invariant and Py € M, so TPy = T(Py) € M.
But TPy € M implies P(TPy) = TPy. Thus PT Py = TPy VYV y € H,therefore PTP = TP.
Conversely let PT'P = T P.To show that M is T-invariant. Let x € M we must show that Tx € M.
Since x € M. Pz =x. So TPx = Tx. But TP = PTP therefore TPx = PT Pz. Therefore

PTPx =Tz
i.e P(TPx) =Tz. But P(TPx) € Rp = M therefore Tx € M i.e z € M implies Tx € M, i.e M is

T-invariant.

O



Definition 3. Let H be a Hilbert space and T' € B(H). A closed linear subspace M of H is said
to reduce T, if both M and M+ areT-invariant. In case domain of T is 7 then we say that M
reduces T if

D = (Dr N M) + (@T N MJ‘)

and M, M~ are both T-invariant i.e, T (M®7) C M and T (M- NDr) C M~.

Clearly both {0} and H reduce T and are called improper reducing subspaces of T'. All other
closed linear subspaces M of H which reduce T (i.e M # {0} ,H) are called proper reducing
subspaces of H. The operator T is said to be irreducible if T" has no proper reducing subspaces.

Remark 9. If T € B(H) has a proper reducing subspace M. Now H = M @ M™ by projection
theorem [6]. Since T maps M into M and M* into M+ hence we can split T into two bounded
linear operators; Ty, T|po and study these instead of T. Also T =T|nr + T'|pre -

Note: Ty € B(IM,M) and T'|ps : M — M

T|yr€B(M* M*) and T [p0: M- — M+
It is possible that even T'|ar, T|5;. have themselves reducing subspaces and so on, so that these
operators can be further split.

Proposition 5. Let T' € B(H) be self-adjoint and M be a closed linear subspace of H. Then M
reduces T if and only if M is T-invariant.

Proof. M reduces T <= M, M~ are both T-invariant.

M* is T-invariant <= (M*)* is T* - invariant <= M is T-invariant (T* = T since T is self
adjoint). Thus

M reduces T' <= M is T-invariant. O

Proposition 6. Let H be a Hilbert space and T € B(H). Let M be a closed linear subspace of H
and P be the orthogonal projector on H onto M. Then the following statements are equivalent.

i) M reduces T

i11) M reduces T™*

(ii)) P+— T

w) P+—T"

v) M+ reduces T

vi) M+ reduces T

Proof. (i) <= (iii). Since M reduces T, both M and M~ are T -invariant. Since P is the orthogonal
projector on H onto M then I — P is the orthogonal projector on H onto M.
M is T-invariant <= PTP =TP.
M is T-invariant <= (I — P)T(I — P) = T(I — P)
<~—T-TP—-PT+PTP=T-TP
<= PT = PTP.
Thus PI'P =TP and PI'= PTP. Hence TP = PT ie P+—T.

(i) == (iv)

TP = PT < (TP)" = (PT)"
< P*T" =T"P" < PT" =T"P (Since P is self- adjoint).
= P+—T"



(i) <= (i)
M reduces T <= M, M+ are T - invariant.

1 1 + * . .
= M, (M are 1" — invariant.

<= M, M are T" invariant.
<= M reduces T"

(i) = (v)
M reduces T <= M, M* are invariant under T.

1 0\t . .
= M, (M are invariant under 7'

< M*reducesT
(v) = (vi)
This holds since (i) <= (ii)
Since M reduces T' <= M reduces T*. So M reduces T' <= M~ reduces T".
Finally we show that (iii) = (i) ;
Let P < T i.e PT = TP. To show that M reduces T, i.e M, M* are both T- invariant.
Let © € M therefore Px = x, since PT = TP we have, PTx = TPz, therefore, P(Tz) = Tz,
therefore Tx € M (Note: Rp = M).
Thus « € M implies Tz € M, i.e M is T-invariant. Let y € M*. Then Py = 0. Since PT = TP,
so PTy = TPy = T(Py) = T(0) = 0.Therefore P(Ty) = 0 which implies Ty € M*. Thus
y €M+ = Tyec M ie M* is T-invariant. Thus M reduces T'.
O

Remark 10. Thus the statement; “M reduces T can be given an equivalent version (algebraic or
operator theory) as, “I' «+— P”(where P is orthogonal projector on H onto M)

Definition 4. Let H be a Hilbert space and T' € B(H). We say that an orthogonal projector P
reduces T if P «+— T (This is equivalent to saying that M reduces T' where M = R,).

We now give another equivalent version of an orthogonal projector;

Proposition 7. Let H be a Hilbert space and P € B(H). Then P is an orthogonal projector if and
only if P> = P and ||P| < 1.

Proof. If P is an orthogonal projector, we have seen from proposition 1 that P> = P and ||P|| < 1.
Conversely let P2 = P and ||P|| < 1. Let ®p = M.From the idempotency of P we have already
seen that M is a closed linear subspace of H and x € M implies Pz = z.(see proposition 2). Let
x € H. We can write

z = Pr+ (z— Pz). (5)
Consider the element x — Pz. Now
P(x — Px) = Px — P(Pz) =Px — P?z =Px — Pz =0 (since P> = P)

Hence for any x € H,z— Pz € np = N (say). Since P € B(H), np i.e N is a closed linear subspace.
So in (5) Pz € M and (z — Pz) € N. In particular, if z € N+, then using (5) we can write



= Px+y wherey € N .
Therefore Pz = x — y where (z,y) =0 (note z € N*,y = (z — Pz) € N). Now

lz1* > [|Pz||* (since [P < 1) = [lz =y ||* =] = [|*+] »I

Therefore ||y||> =0i.ey =0
Thus z = Px i.e z € M = Rp.Thus
Nt CcM (6)
Conversely suppose € M. Then Since H = NN+ (Projection theorem), we can write x = z'+1z"
where ' € N and 2 € N*.So
Px = Pz’ + Pz".

But Pz’ =0 (for 2’ € N = n,. Therefore Px = Pz” = 2" (since ” € N* C M by (6) therefore
Pz" =2"). Thus Pr =2" € N*. iex=12" € N*. So

M C N* (7)

From (6) and (7) we get M = N*. Therefore M+ = (Nl)L = N since N is a closed linear
subspace. Therefore

Rp=Mandnp=N=M"

These two show that P is an Orthogonal projector.

3 Conclusion

Let M be a closed linear subspace of a Hilbert space H. By projection theorem H = M & M=*. For
a P € B(H) we have shown that the following statements are equivalent;

i) P is an orthogonal projector such that ip = M and np = M*.

ii) P is self-adjoint and idempotent.

iii) P is idempotent and ||P|| < 1.

This gives a complete operator characterization of orthorgonal projectors. If T € B(H) then T-
invariance of M is essentially a geometric concept involving a linear subspace M and its image.
We have shown that this geometric concept on invariance can be translated into a purely algebraic
concept involving operators with perfect equivalence. The statement “M reduces T” can be given
an equivalent version ( algebraic or operator theory) as “ T commutes with P.

An additional observation is that orthoprojectors are the simplest self-adjoint elements of B(H)
(their restrictions to their range being identity mappings, that is, if P is an orthoprojector on H
with range M, then P|y = identity on M) and their importance lies in the fact that every bounded
(and even unbounded) self-adjoint operator in H can be built up in some sense from orthoprojectors.
This is indeed the central theme and result of the spectral theory of self-adjoint operators and the
very idea, in an abstract sense, of expressing an operator H (bounded or not) in some sense in
terms of orthoprojectors, is the basic philosophy in the evolution of the spectral theory of linear
operators in a Hilbert space.

AUTHORS’ CONTRIBUTIONS

This work was carried out in collaboration between all authors. All authors read and approved the
final manuscript.



Competing Interests

Authors have declared that no competing interests exist.

References

[1] Bachman G, Narici L. Functional analysis. (3rd Edition) Courier Corporation; 2000.

[2] Baksalary J, Baksalary O, Szulc T. A property of orthogonal projectors.Linear algebra and its
applications. 2002;354(1-3):35-39.

[3] Berberian S. Introduction to Hilbert space. 1999;287(46).

[4] Davies EB. Linear operators and their spectra Cambridge University Press; 2007.

[5] Friedrichs KO. Spectral theory of operators in Hilbert space.Linear Algebra and its Applications;
2012;9(47):50-75.

[6] Gohberg I, Goldberg S. Basic operator theory , Birkhduser; 2013.

[7] Kubrusly, Carlos S . Spectral theory of operators on Hilbert spaces, Springer Science & Business
Media; 2012.

[8] Lebedev, et al. Advanced engineering analysis .the calculus of variations and functional analysis
with applications in mechanics. 2012;1(1):280.

[9] Sengupta A. Orthogonal Projections.Journal of Math on Functional Analysis. 2002;7330(2):25-
70.

[10] Yanai H, et al. Projection Matrices, Generalized Inverse Matrices, and Singular Value
Decomposition.Statistics for Social and Behavioral Sciences. 1999;1007(978):32.

©20YY Author name; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License hitp://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work ts properly cited.


http://creativecommons.org/licenses/by/2.0

	Introduction
	Properties of Orthoprojectors
	Conclusion
	REFERENCES

