Original Research Article

Equal and odd of Generalized Euler Function for successive integers

Abstract: Euler function $\varphi(n)$ and generalized Euler function $\varphi(n)$ are two important functions in number theory. Using the idea of classified discussion and determination of prime types, we study the solutions of odd number of generalized Euler function equations $\varphi(n) = \varphi(n+1)$ and obtain all the values satisfying the corresponding conditions, where e=2,3,4,6.

Key Words: Euler function; Generalized Euler function; Odd

1 Introduction

Euler function $\varphi(n)$ is a relatively important in number theory, and it is also studied by the majority of researchers. Euler function $\varphi(n)$ is defined as the number of positive integers not greater than n and relatively prime to n. If n>1, let standard factorization of n be $n=p_1^np_2^n...p_k^n$, where $p_1,p_2,...,p_k$ are different primes, $r_i \ge 1$ $(1 \le i \le k)$, then

$$\varphi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\cdots(1 - \frac{1}{p_k}).$$

Generalized Euler function $\mathscr{Q}_{e}(n)$ is defined as

$$Q_{e}(n) = \sum_{\substack{i=1\\(i,n)=1}}^{\left[n\atop i\right]} 1.$$

where [x] is the greatest integer not greater than x, and (i,n) denotes the greatest common divisor of i and n. If e=1, the generalized Euler function is just Euler function.

Cai^[1,7] studied the parity of $\varphi_e(n)$ when e=2,3,4,6, and gives the conditions that both $\varphi_e(n)$ and $\varphi_e(n+1)$ are odd numbers, Liang^[5], Cao^[2] studied the solutions to the equations involving Euler function, Zhang^[10,11,12] investigated the solutions to two equations involving Euler function $\varphi(n)$ and generalized Euler function $\varphi_e(n)$, Jiang^[4] investigated the solutions of generalized Euler function $\varphi(n)$.

On page 138 of [6] , proposing whether there are infinitely many pairs of consecutive integer pairs n and $n\!+\!1$ such that $\varphi(n)\!=\!\varphi(n\!+\!1)$. Jud McGranie found 1267 values of $\varphi(n)\!=\!\varphi(n\!+\!1)$ with $n\!\leq\!10^0$, and the largest of which is $n\!=\!9985705$ $\varphi(n)\!=\!\varphi(n\!+\!1)\!=\!2^137\!\cdot\!11$ We find the following theorems on the basics of the fact that the articles [1] and [7] and obtain the solutions of the equation $\varphi(n)\!=\!\varphi(n\!+\!1)$ under the condition that both $\varphi(n)$ and $\varphi(n\!+\!1)$ are odd numbers.

Theorem 1.1 Both $\varphi_2(n)$ and $\varphi_2(n+1)$ are odd and equal if and only if n=2 or 3.

Theorem 1.2 Both $\mathcal{Q}(n)$ and $\mathcal{Q}(n+1)$ are odd and equal if and only if n=3 or 4 or 5 or 15.

Theorem 1.3 Both Q(n) and Q(n+1) are odd and equal if and only if n=4 or 5 or 6 or 7.

2 **Preliminaries**

Lemma $21^{[1]}$ Except for n=2,3,242, both $\varphi(n)$ and $\varphi(n+1)$ are odd if and only if $n=2p^{\beta}$, where $\beta\geq 1, p\equiv 3 \pmod 4$, both $2p^{\beta}+1$ and p are primes.

Lemma
$$22^{[1]}$$
 $\varphi_2(1) = 1$; when $n \ge 3$, $\varphi_2(n) = \frac{1}{2}\varphi(n)$.

Lemma 23^{11} Except for n=3,15,24 ,both $\varphi_3(n)$ and $\varphi_3(n+1)$ are odd if and only if

(1)
$$n+1=2^{n}+1(m\geq 1)$$
 is prime; or

- (2) $n=2^q,q\equiv 5 \pmod{6}$, both q and $\frac{2^q+1}{3}$ are primes, where $n=2^q,q\equiv 5 \pmod{6}$, or
 - (3) $n=3\cdot 2^{\beta}-1(\beta \ge 1)$ is prime.

Lemma 24^{1]} If
$$n>3$$
, $n=3^n$ $p_i^a, (p_i,3)=1,1\le i\le k$, then

$$\varphi_{3}(n) = \begin{cases} \frac{1}{3}\varphi(n) + \frac{(-1)^{\Omega(n)}2^{\alpha(n)-\alpha-1}}{3}, \alpha = 0 \text{ or } 1, p_{i} \equiv 2 \pmod{3}, 1 \le i \le k, \\ \frac{1}{3}\varphi(n), \text{ otherwise,} \end{cases}$$

where $\Omega(n)$ is the number of prime factors of n (counting repetitions) and $\alpha(n)$ is the number of distinct prime factors of n.

Lemma $25^{[3]}$ For any positive integer mn , we have

$$\varphi(mn) = \frac{(mn)\varphi(m)\varphi(n)}{\varphi((mn))},$$

where (mn) represents the greatest common divisor of m and n. In particular, when (mn)=1, we have $\varphi(mn)=\varphi(m)\varphi(n)$.

Lemma 26^{7} The value of n such that both $\alpha(n)$ and $\alpha(n+1)$ are odd are listed in Table 1.

Table 1 The value of n such that both Q(n) and Q(n+1) are odd

n	<i>n</i> +1	conditions
4	5	
7	8	
57121	57122	
p^2	$2q^2$	$p \equiv 7 \pmod{8}, q \equiv 5 \pmod{8}$ are primes
$2q^{\beta}-1$	$2q^{\beta}$	$2q^{\beta}$ –1=5(mod8), q =3(mod8) are primes , and β is
$2q^{\beta}$	$2q^{\beta}+1$	prime
$2q^{\beta}$ p^2	$2q^{\beta}+1$ $p^{2}+1$	$2q^{\beta}+1\equiv 7 \pmod{8}, q\equiv 3 \pmod{8}$ are primes , and β is prime
5 ^α −1	5^{lpha}	$p=5 \text{(mod 8)}, \frac{p^2+1}{2} = 5 \text{(mod 8)}$ are primes
$4q^{\beta}$	5^{α} $4q^{\beta}+1$	$\frac{5^{\alpha}-1}{4} \equiv 3 \pmod{4}$ is a prime

$$4q^{\beta}+1, q\equiv 3 \pmod{4}$$
 are primes , $\beta \geq 1$

Lemma 27⁷ If
$$n>4$$
, $n=2^a \prod_{i=1}^a p_i^a$, $(p_i,2)=1, a \ge 0, 1 \le i \le k$, then
$$\varphi_i(n) = \begin{cases} \frac{1}{4} \varphi(n) + \frac{(-1)^{\Omega(n)} 2^{\alpha(n)-a}}{4}, a = 0 \text{ or } 1, p_i \equiv 3 \pmod{4}, 1 \le i \le k, \\ \frac{1}{4} \varphi(n), \text{ otherwise.} \end{cases}$$

3 Proof of the Theorems

3.1 Proof of Theorem 1.1

We have $\varphi(2)=\varphi(3)=\varphi(4)=1$ by definition of the generalized Euler function $\varphi(n)$, and $\varphi(242)=55, \varphi(243)=81$ by Lemma 2.2.

By lemma 2.1 , except for n=2,3,242 , both $\varphi_2(n)$ and $\varphi_2(n+1)$ are odd if and only if $n=2p^\beta$, where $\beta\geq 1, p\equiv 3 \pmod 4$, both $2p^\beta+1$ and p are primes. By lemma 2.2, When $n\geq 3, \varphi_2(n)=\frac{1}{2}\varphi(n)$, and $\varphi_2(n+1)=\frac{1}{2}\varphi(n+1)$. Then for the equation $\varphi_2(n)=\varphi_2(n+1)$, we just need to solve the equation

$$\varphi(n) = \varphi(n+1). \tag{1}$$

Put $n=2p^\beta$, $n+1=2p^\beta+1$ in (1) , since $n+1=2p^\beta+1$ is prime , then $\phi(n+1)=n$. We just need to solve the equation

$$\varphi(n)=n$$
,

and it has only a solution n=1, but the solution is not satisfied with the form $n=2p^{\beta}$, so there is no solution.

Hence both $\varphi(n)$ and $\varphi(n+1)$ are odd and equal if and only if n=2 or 3.

3.2 Proof of Theorem 1.2

By the definition of $\mathcal{Q}(n)$, We have

$$\varphi(3)=1, \varphi(4)=1, \varphi(15)=3, \varphi(16)=3, \varphi(24)=3, \varphi(25)=7,$$

hence Q(3)=Q(4),Q(15)=Q(16). Except n=3,15,24 ,we discuss the solutions in 3 cases by lemma 2.3.

Case 1 When $n=2^n$, $n+1=2^n+1 (m\ge 1)$, and $n+1=2^n+1 (m\ge 1)$ is prime. For n, in lemma 2.4, we have a=0, $p\equiv 2 \pmod 3$, $\Omega(n)=2^n$, $\alpha(n)=1$, then by lemma 2.4, we have

$$\varphi_3(n) = \frac{1}{3}\varphi(n) + \frac{1}{3}$$

Since $n+1=2^n+1$ is prime and $n+1=2 \pmod{3}$, we have

$$\varphi_3(n+1) = \frac{1}{3}\varphi(n+1) - \frac{1}{3}$$
.

If $\varphi(n) = \varphi(n+1)$, then

$$\frac{1}{3}q(n) + \frac{1}{3} = \frac{1}{3}q(n+1) - \frac{1}{3}$$

Simplify it , we obtain $2^{n-1}+1=2^n-1$, thus we have m=1, n=4.

Case 2 When $n=2^{q}, n=2^{q}+1$, and both $q\equiv 5 \pmod{n}$, $\frac{2^{q}+1}{3}$ are primes, by lemma 2.4, we have

$$\varphi(n) = \frac{1}{3}\varphi(n) - \frac{1}{3}$$

Since $\frac{2^q+1}{3}$ is prime, $q=5 \pmod{9}=6$, we have

$$2^{q}+1=2^{5}+1=33 \text{ mod}$$

thus $\frac{2^{q}+1}{3} = 1 = 2 \pmod{n}$. $n+1=3 \times \frac{2^{q}+1}{3}$, then by lemma 2.4, we obtain

$$\varphi(n+1) = \frac{\varphi(n+1)}{3} + \frac{1}{3}$$

If $\varphi(n) = \varphi(n+1)$, then $\varphi(n) = \varphi(n+1) + 2$, namely

$$2^{q} \cdot (1 - \frac{1}{2}) = 2 \times (\frac{2^{q} + 1}{3} - 1) + 2$$

simplified to $2^q = -4$, we have no solutions in this case.

Case 3 When $n=3\cdot 2^{\beta}-1$, $n+1=3\cdot 2^{\beta}$, and $n=3\cdot 2^{\beta}-1(\beta \ge 1)$ is prime, by lemma 2.4, we have

$$\varphi(n) = \frac{1}{3}\varphi(n) - \frac{1}{3}$$

meanwhile,

$$\varphi_3(n+1) = \frac{1}{3}\varphi(n+1) + \frac{(-1)^{1+\beta}2^{\alpha(n)-\alpha-1}}{3} = \frac{1}{3}\varphi(n+1) + \frac{(-1)^{1+\beta}}{3}.$$

If $\beta=2k,k>0$

$$\frac{1}{3}\varphi(n)-\frac{1}{3}=\frac{1}{3}\varphi(n+1)-\frac{1}{3}$$
,

simplified to q(n)=q(n+1). Since $n=3\cdot 2^{\beta}-1(\beta\geq 1)$ is prime , then

$$3 \cdot 2^{\beta} - 2 = 3 \cdot 2^{\beta} \cdot (1 - \frac{1}{2}) \cdot (1 - \frac{1}{3})$$

We get $\beta=0$, this is contradicted with the condition $\beta\geq 1$. If $\beta=2k+1,k\geq 0$,

$$\frac{1}{3}\phi(n) - \frac{1}{3} = \frac{1}{3}\phi(n+1) + \frac{1}{3}$$

simplified to $\varphi(n) = \varphi(n+1) + 2$, then

$$3 \cdot 2^{\beta} - 2 = 3 \cdot 2^{\beta} \cdot (1 - \frac{1}{2}) \cdot (1 - \frac{1}{3}) + 2$$

We have $\beta=1$, then $n=3\times 2-1=5$.

Hence, both $\varphi(n)$ and $\varphi(n+1)$ are odd and equal if and only if n=3 or 4 or 5 or 15.

3.3 Proof of Theorem 1.3

By lemma 2.7, we have Q(4)=1, Q(5)=1 , Q(7)=1, Q(8)=1 and Q(57121)=14221, Q(57122)=6591,

hence Q(4)=Q(5), Q(7)=Q(8). Then we discuss the solutions in 6 cases by lemma 2.6.

Case 1 When $n=p^2, n+1=2q^2$, and both $p\equiv 7 \pmod 3$, $q\equiv 5 \pmod 3$ are primes. By lemma 2.7, we have $q_1(n)=\frac{1}{4}\phi(n)+\frac{1}{2}$. Since $q\equiv 1 \pmod 4$, then $q_1(n+1)=\frac{1}{4}\phi(n+1)$, namely

$$\frac{1}{4}\varphi(n) + \frac{1}{2} = \frac{1}{4}\varphi(n+1).$$

Simplified to q(n)+2=q(n+1), namely

$$p^2 \cdot (1 - \frac{1}{p}) + 2 = 2q^2 \cdot (1 - \frac{1}{2}) \cdot (1 - \frac{1}{q}).$$

Then $q \cdot (q-1) - p \cdot (p-1) = 2$, by $p^2 + 1 = 2q^2$, we have $p = q^2 + q + 1$. Then

$$p^2 = (q^2 + q + 1)^2 \ge (q^2 + q)^2 \ge 36q^2 > 2q^2$$

which is contradicted with the condition $p^2+1\equiv 2q^2$, no solution.

Case 2 When $n=2q^{\beta}-1,n+1=2q^{\beta}$, and both $2q^{\beta}-1\equiv 5 \pmod{8}$, $q\equiv 3 \pmod{8}$ are primes, where β is an odd. By lemma 2.7, we have $\alpha(n+1)=\frac{1}{4}\alpha(n+1)+\frac{1}{2}$.

Since $2q^{\beta}-1\equiv 1 \pmod{4}$, we have $q_1(n)=\frac{1}{4}q(n)$, namely

$$\frac{1}{4}\varphi(n) = \frac{1}{4}\varphi(n+1) + \frac{1}{2}$$
.

Simplified to q(n)=q(n+1)+2, namely

$$(2q^{\beta}-1)-1=2q^{\beta}\cdot(1-\frac{1}{2})\cdot(1-\frac{1}{q})+2$$

Then $(q+1)\cdot q^{\beta-1}=4$, since both q and q+1 are positive integers, and $q\equiv 3\pmod{8}$, so $q+1\geq 4$, then q=3, $\beta=1$, we have $n=2\times 3-1=5$ such that q(n)=q(n+1) only in this case.

Case 3 When $n=2q^{\beta}, n+1=2q^{\beta}+1$, and both $2q^{\beta}+1\equiv 7 \pmod{8}$, $q\equiv 3 \pmod{8}$ are primes, where β is an odd. By lemma 2.7, we have $q_1(n)=\frac{1}{4}q(n)+\frac{1}{2}$ and

$$Q(n+1) = \frac{1}{4}Q(n+1) - \frac{1}{2}$$

then

$$\frac{1}{4}\varphi(n) + \frac{1}{2} = \frac{1}{4}\varphi(n+1) - \frac{1}{2}$$
.

Simplified to q(n)+4=q(n+1), namely

$$2q^{\beta} \cdot (1-\frac{1}{2}) \cdot (1-\frac{1}{q}) + 4 = 2q^{\beta}.$$

Then $(q+1)\cdot q^{\beta-1}=4$, since q and q+1 both are positive integers, and $q\equiv 3\pmod{8}$, so $q+1\geq 4$, then q=3, $\beta=1$, we have $n=2\times 3=6$ such that q(n)=q(n+1) only in this case.

Case 4 When $n=p^2, n+1=p^2+1$, and both $p \equiv 5 \pmod{8}$, $\frac{p^2+1}{2} \equiv 5 \pmod{8}$ are primes. By lemma 2.7, we have $\varphi_4(n) = \frac{1}{4} \varphi(n)$ and

$$Q(n+1) = \frac{1}{4}Q(n+1).$$

When Q(n) = Q(n+1), we have

$$\frac{1}{4}\varphi(n) = \frac{1}{4}\varphi(n+1).$$

Simplified to

$$p^2 \cdot (1 - \frac{1}{p}) = \frac{p^2 + 1}{2} - 1$$

then p=1. Which contradicts $p=5 \pmod{8}$.

Case 5 When $n=5^{\alpha}-1, n+1=5^{\alpha}$, and $\frac{5^{\alpha}-1}{4}\equiv 3 \pmod{4}$ is a prime, then $n=4\cdot \frac{5^{\alpha}-1}{4}=2^2\cdot \frac{5^{\alpha}-1}{4}$. By lemma 2.7, we have $\sqrt{2}(n)=\frac{1}{4}\sqrt{2}(n)$ and

$$Q(n+1) = \frac{1}{4}Q(n+1),$$

namely $\frac{1}{4}\phi(n) = \frac{1}{4}\phi(n+1)$, simplified to $\phi(n) = \phi(n+1)$, i.e., $2 \cdot (\frac{5^{a}-1}{4}-1) = 5^{a} \cdot \frac{4}{5}$,

Then $5^{a} = -\frac{25}{3}$, which is impossible.

Case 6 When $n=4q^{\beta},n+1=4q^{\beta}+1$, and both $4q^{\beta}+1,q\equiv 3 \pmod 4$ are primes , where $\beta \ge 1$.

By lemma 2.7, we have
$$\varphi_1(n) = \frac{1}{4}\varphi(n)$$
 and $\varphi_2(n+1) = \frac{1}{4}\varphi(n+1)$, namely
$$\frac{1}{4}\varphi(n) = \frac{1}{4}\varphi(n+1).$$

Simplified to $\varphi(n) = \varphi(n+1)$, namely

$$4q^{\beta} \cdot (1 - \frac{1}{2}) \cdot (1 - \frac{1}{q}) = 4q^{\beta}.$$

Then q=-1. Which contradicts the condition that $q=3 \pmod{4}$ is prime.

Hence, both $Q_1(n)$ and $Q_2(n+1)$ are odd and equal if and only if n=4 or 5 or 6 or 7.

4 Conclusion

Euler function $\varphi(n)$ and generalized Euler function $\varphi(n)$ are two important functions in number theory. which this article has studied is the odd values of generalized Euler function equation $\varphi(n) = \varphi(n+1)$, where e=2,3,4. Similarly, for e=6, we obtain that both $\varphi(n)$ and $\varphi(n+1)$ are odd and equal if and only if n=6 or 7 or 8 or 9 or 10 or 11.

Acknowledgements

This work is supported by the National Natural Science Foundation of China, Project (No. 12071421).

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] CAI Tianxin, Shen Zhongyan, HU Mengjun, On the Parity of the Generalized Euler Function I [J]. Advances in Mathematics (China), 2013,42 (04): 505-510.
- [2]Cao Panpan, Zhao Xiqing. Positive integer solution of generalized Euler function equations
- $Q(n) = S(n^{28})$ [J]. Journal of Yan'an University (Natural Science Edition), 2020, 39(04):72-76.
- [3] HU Mengjun. Odd value of generalized Euler's function $\mathscr{P}_{e}(n)$ [D]. Zhejiang University, 2010.
- [4] JIANG Lianxia, ZHANG Sibao. Solution of an equation for generalized Euler's function $\varphi(n)$ [J].

Journal of Capital Normal University (Natural Science Edition), 2020, 41(06):1-5.

- [5] LIANG Xiaoyan. Research on Euler function equations and pseudo-Smarandache function equation solutions [D]. Yan'an University, 2021.
- [6] Richard K. Guy, Unsolved Problems in Number Theory (Third Edition) [M]. Spring Science Business Media, Inc.
- [7] Shen Zhongyan, CAI Tianxin, HU Mengjun, On the Parity of the Generalized Euler Function (II)[J]. Advances in Mathematics (China), 2016, 45(4):509-519.
- [8] WANG Rong. A class of generalized Euler functions and related equations [D]. Sichuan Normal University, 2018.
- [9] Xu Yifan and Shen Zhongyan, The Solutions of Generalized Euler Function Equation
- $\varphi(n-\varphi(n))=2^{\alpha(n)}$ [J]. Journal of Advances in Mathematics and Computer Science, 2021: 15-22.
- [10] ZHANG Sibao. Two equations of Euler function arphi(n) and generalized Euler function arphi(n) [J].

Journal of Beihua University (Natural Science Edition), 2019,20(01): 8-14.

[11] ZHANG Sibao, Akmu Yulidasi. Solutions to several equations of the Euler function mixed with the

generalized Euler function[J]. Journal of Northeast Normal University (Natural Science Edition), 2020,

52(01).

[12] ZHANG Sibao, GUAN Chunmei, YANG Yanni. An Equation for The Generalized Euler Function $\varphi(n)$ and Euler Function $\varphi(n)$ [J]. Practice and Understanding of Mathematics, 2018, 48(09): 265-268.

