
 
 
 

 A Relation Between Different Physical Parameters of 

a Planet and Its Consequences 

 
Abstract 

The main aim of this work is to establish a relation between various physical 

characteristics of a planet, which were previously considered independent. The 

proposed ‘relation between planetary parameters’ (RPP) elegantly shows that the 

ratio of axial tilt to the product of rotation period and square of the orbit radius is 

always constant for a planet. We also show that the relation can be obtained from a 

more fundamental law of physics, the principle of conservation of angular 

momentum. In other words, we can realize this relation by conserving the total 

angular momentum of a planet. At last, we provide some applications of this 

relation. 
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1 Introduction 

In the early seventeenth century, Mathematician Johannes Kepler developed his laws of 
planetary motion by a rigorous analysis of the data compiled by his mentor Tycho 
Brahe. The proposed relation (RPP) was developed similarly and was obtained from a 
parent equation in its initial publication [1]. This parent equation was stated without 
any derivation because it was created by the trial-and-error method (shown in 
Appendix A). However, in this paper, a few changes have been made to the parent 

equation, and a way to obtain it theoretically from the principle of conservation of 
angular momentum is also discussed. All the analyses will be based on some simple 
assumptions to avoid various mathematical complexities. In the end, a few of its 
applications will be demonstrated. 

2 The Parent Equation 

On analysing the data of Planetary parameters, it was observed that the ratio of specific 
quantities was a constant for nearly all planets. This unique ratio is called the parent 

equation. Which is given as follows: 

    

   
   

(1) 

In the above equation, n represents the number of 'significant moons' of a planet (will 
be discussed ahead), θ represents the axial tilt of a planet, v represents the magnitude of 
the equatorial linear velocity of a planet, r represents the orbit radius of a planet, d 
represents the diameter of a planet and ψ is a constant for all planets, and we call it, as 
the ‘planetary parameters constant’ (PPC). 

The axial tilt or obliquity is the angle between a planet’s rotational axis and its orbital 
axis. Equatorial linear velocity is the velocity a particle experiences on a planet's 
equator due to its spinning; its direction is tangential to its surface. The orbit radius is 



 
 

the average distance between a planet and the Sun. Most planets are not uniform in 
shape; hence the average diameter of a planet is considered. 

In the above equation, most of the quantities are related to either the orbital or 
rotational characteristics of a planet. Hence, ‘n’ seems out of place in the parent 
equation. However, as we verify it via substitution, the value of ‘n’ exactly balances off 
both sides of the equation, giving a constant. Hence, it is an integral part of the parent 

equation. 

Figure 1: The side view of a planet representing the quantities of the parent equation (not to 
scale). 

Note: Some might argue that many such equations can be formed by randomly 
arranging these planetary parameters; however, the chances of these randomly created 
equations giving a constant for all planets are less. This point makes RPP stand out 
because it gives a constant for nearly all planets. Hence, even though many equations 
can be formed, they won’t be of significant meaning.  

 

2.1  Exploring the value of n 

Concerning equation 1, the term ‘significant’ in the context of n means any satellite 

orbiting a planet with enough mass (compared to the planet's mass) and proximity to 
the planet such that its presence or absence affects the planet. To understand this 

quantitatively, imagine a body of mass w, orbiting a planet of mass m with an average 

orbit radius a. Then the possibility of such a body, becoming a ‘significant moon’ is given 

by a quantity  , which is defined as, 
   

 

  
  

We propose that the above relation can be used to determine whether an orbiting 

satellite is a significant moon or not. To find an approximate range of χ, its values for 
various moons of our solar system and their planets are given in Table 1. For this 
calculation, only the major moons of a planet are considered because their data is 
readily available, and they will be a significant moon to their planets. 



 
 

Table 1: Calculation for Significant Moons 

Name of 
Moon 

Name of 
Planet 

Mass of the 

moon 
(w in kg) 

 

Mass of the 
planet 

            

Orbital radius 

of moons 
(a in km) 

  
      

Moon [2] Earth                                  

Phobos [3] 
Mars 

           
      

               

Deimos [3]                             

Europa [4] 

Jupiter 

         

     

                 

Ganymede [4]                             

Io [4]                            

Titan [5] 
Saturn 

          
    

                  

Enceladus [5]                            

Umbriel [6] 
Uranus 

          
     

                 

Titania [6]                           

Triton [7] Neptune                                  

 

According to the data in the above table, a body orbiting a planet will be a significant 
moon (at least in our solar system) to that planet if the value of   is approximately 

between          and        . But the range may vary from one planet to another, 
and the above-given range may not be accurate. Hence, to find the range of    for a 
particular planet, a detailed study of its moons has to be done. So, now let’s find out the 
number of significant moons for all the planets of our solar system by doing simple 
analyses. 

2.1.1 Mercury and Venus 
Mercury and Venus have zero moons; hence, the value of n will be zero for them and the 
value of ψ for these planets will be zero. Due to the absence of moons for Mercury and 

Venus, RPP and the parent equation do not apply to them. 

2.1.2 Earth and Mars 
For Mars and Earth, which have relatively lesser moons, the value of n is equal to the 
total 

number of natural moons they currently possess. So, for Earth, the number of significant 
moons is 1, and for Mars, it is 2. 

2.1.3 Jupiter and Saturn  
For Jupiter and Saturn, which have many dispersed moons, the value of n is unequal to 
the total number of moons they currently possess. This is because some of their moons 
are small and distant, causing insignificant effects on the planet and hence can be 
ignored. Now let’s analyse the moons of Saturn [8], to find out the number of significant 
moons it has. 

Mass of Saturn (                  

 



 
 

Table 2: Analysis of Saturn's Moons 

Sr. 

No. 

Name of Moon Mass of the moon 

(w in      kg) 

Orbit radius 

(a in km) 

  

(   ) 

1 Aegaeon 0.000001 167493.665            

2 Aegir 0.001 20735000            

3 Albiorix 0.21 16182000            

4 Anthe 0.00005 197700            

5 Atlas 0.066 137670            

6 Bebhionn 0.001 17119000            

7 Bergelmir 0.001 19336000            

8 Bestla 0.002 20192000            

9 Calypso 0.04 294710            

10 Daphnis 0.002 136500            

11 Dione 10,970 377420            

12 Enceladus 1,076 238040            

13 Epimetheus 5.3 151410            

14 Erriapus 0.008 17343000            

15 Farbauti 0.0009 20377000            

16 Fenrir 0.0004 22454000            

17 Fornjot 0.001 25146000            

18 Greip 0.001 18206000            

19 Hati 0.001 19846000            

20 Helene 0.25 377420            

21 Hyperion 55 1500880            

22 Hyrrokkin 0.003 18437000            

23 Iapetus 17,900 3560840            

24 Ijiraq 0.012 11124000            

25 Janus 19 151460            

26 Jarnsaxa 0.001 18811000            

27 Kari 0.002 22089000            

28 Kiviuq 0.033 11110000            

29 Loge 0.001 23058000            

30 Methone 0.0002 194440            

31 Mimas 373 185540            

32 Mundilfari 0.002 18628000            

33 Narvi 0.003 19007000            

34 Paaliaq 0.082 15200000            

35 Pallene 0.0004 212280            

36 Pan 0.049 133580            

37 Pandora 1.37 141720            

38 Phoebe 83 12947780            

39 Polydeuces 0.015 377200            

40 Prometheus 1.59 139380            

41 Rhea 22,900 527070            

42 Siarnaq 0.39 17531000            

43 Skathi 0.003 15540000            

44 Skoll 0.001 17665000            



 
 

45 Surtur 0.001 22704000            

46 Suttungr 0.002 19459000            

47 Tarqeq 0.002 18009000            

48 Tarvos 0.027 17983000            

49 Telesto 0.07 294710            

50 Tethys 6,130 294670            

51 Thrymr 0.002 20314000            

52 Titan 1342000 1221870            

53 Ymir 0.049 23040000            

 

If we observe the above table, the moons which have very little mass and are distant 

from the planet are giving the value of   in the range            to           . 
Hence, we can assume that all the moons lying in this range are insignificant. Now, to 

bring the value of ψ for Saturn closer to the value of ψ obtained for Earth and Mars, we 
need the value of n to be at least 32. So, if we take the range of   for significant moons, 

from             to           , we get the value of n as 32. Hence, out of 53 
analysed moons, only 32 are significant for Saturn. One more thing should be 
considered: here, we have examined only 53 out of 83 confirmed moons of Saturn (due 
to the lack of their data). So, the above range is not very accurate. But, the number of 

significant moons should always be around 32, independent of the range of    Now, let’s 
have a look at Jupiter’s moons. 

Jupiter currently has 79 confirmed moons [9]. Out of them, we need at least 74 moons to 
be significant, because if we take n to be 74, then we get the value of ψ to be  

            which is close to all other planets’ ψ. We can also analyse the moons of 

Jupiter, as we have done for Saturn in the above table. But the analysis is not very 
important because the number of significant moons has to be very close to 74, 
independent of the range of    

2.1.4 Uranus and Neptune  
For Uranus and Neptune (according to the recently available data [10]), the number of 
significant moons required is more than the number of current known moons. For 
Uranus, we need at least 57 significant moons, but only 27 [10] moons have been 
discovered so far. Considering the trend of outer planets having many moons, Uranus 
might have many more moons, but we haven’t found them yet. 

For Neptune, the number of significant moons required is immense. It needs at least 452 

significant moons. To explain this colossal number of moons, we have two speculations. 

Firstly, the orbit of Neptune passes through the inner edge of the Kuiper belt [11]; hence 

some Kuiper belt objects (KBOs) might be acting as significant moons to the planet. The 
second speculation is that due to the considerable distance between Earth and Neptune, 

we might have some errors in our readings of the physical parameters of Neptune. The 
error in other readings is causing the equation to give the value of n to be very high.  

2.1.5 Limitations of RPP  
According to the International Astronomical Union, a planet is any celestial body that 
[12]  

(a) is in orbit around the Sun 



 
 

(b) has sufficient mass for its self-gravity to overcome rigid body forces so that it 

assumes a hydrostatic equilibrium shape 

(c) has cleared the neighbourhood around its orbit.  

Due to this definition of a planet, RPP does not apply to Moons because they do not 

directly orbit the Sun. Also, RPP does not apply to dwarf planets like Pluto because of 
their unclear neighbourhood. For RPP to work for a planet, it should have at least one 

significant moon.  

In verification of the Parent equation, we consider the current physical parameters of 

the planets. Hence, we cannot comment on whether RPP was valid during the early 
chaotic stages of planet formation because of the lack of data on planetary parameters 

during that time. 

All the equations discussed in the manuscript are purely classical. Hence they do not 
account for all the relativistic effects caused by the Sun and other heavenly bodies in the 

solar system.  

The moon provides stability to Earth’s rotational axis [13], which means the moon 

prevents the wobbling of Earth’s axial tilt. The moon's effect on Earth’s axial tilt can be 
mathematically realized from the parent equation. Hence, the presence of ‘n’ in equation 

1 is justified because the moon affects a planet’s physical characteristics in real life.  

2.2 Verification of the parent equation by the method of 

substitution 

Without any derivation, the only way to verify the parent equation is by substituting the 

planetary parameters in it and comparing the obtained value of ψ for different planets. 
The example below shows this method for Earth. 

For Earth [14], we have 
     ,  
             , 

                

                   

                  

On substituting the above values in equation 1, 

  
             

                      
  

                           

Similarly, the value of   has been calculated for other planets (in Appendix B) and is 

given in table 3. 

Table 3: Values of PPC for Different Planets 

Name of the 
planet 

Value of ψ 

              

Earth            

Mars            



 
 

Jupiter            

Saturn            

 

As observed in the above table, the value of PPC ranges from             to 

             for all given planets. To use ψ in our calculations, its average value will be 
considered, which can be found using the data from table 3. 

Average value of  

  
                           

 
             

                               

Hence, for any further calculation, the value of ψ will be considered as       
                  . 

The parent equation is expressed in terms of equatorial linear velocity (v) and diameter 
(d), which are related quantities. Hence, the parent equation can be simplified further. 

3 The Relation between Planetary Parameters (RPP) 

To simplify the parent equation, we will substitute the expression    
  

 
 in equation 1, 

which gives us, 

  

   
 

 

  
 

(2) 

where t = Rotation Period of a Planet (about its axis) 
The rest of the quantities are the same as stated before 

      

Equation 2 is the simplified form of the parent equation, and it is also the expression for 
RPP. On the RHS, there are n, ψ, and π. Out of which ψ and π are constants across all the 
planets in our solar system and n is assumed to be a constant for a planet (its value 

changes for each planet). Hence, for a particular planet, the RHS is constant, making the 
equation as follows:                                

  

   
          

(3) 

From the above equation, we realize that,  

“For a planet, the ratio of axial tilt to the product of the square of orbit radius and 

rotation period is always a constant.”  

4 Realization of RPP from the Conservation of Angular 

Momentum 

To obtain RPP’s parent equation from the principle of conservation of angular 
momentum, we make the following assumptions first. 

1. The orbits of planets are perfectly circular, with the Sun stationary at its centre. 

2. The planets orbit the Sun at a constant speed. 



 
 

3. The planets rotate about their axis with constant angular velocity and constant 
equatorial linear velocity. 

4. The planets are perfectly spherical. 

Now consider a planet with mass ‘m’, orbital radius ‘r’, radius ‘R’, equatorial linear 
velocity ‘v’, orbital velocity ‘  ’, the tilt of the rotational axis (axial tilt) ‘θ’ and orbiting 
around its Sun of mass ‘M’. The system is shown in figure 2. 

From classical mechanics, we know that the angular momentum of such a system 
remains constant with time, as gravity is a central force [15]. Now, let’s calculate the 

total angular momentum for the planet about point O’. A planet usually possesses two 
kinds of angular momenta. One is orbital angular momentum, which is due to its orbital 
motion around the point O’. The second is the ‘spin’ angular momentum due to the 
planet’s rotation about its axis. The situation is shown in figure 3. 

 

Figure 3: Angular Momenta of a Planet 

In figure 3, L is the orbital angular momentum, and l is the spin angular momentum. 
From classical mechanics, we know that L is constant with respect to time, and hence all 

Figure 2: The Planetary System (not to scale) 



 
 

the planets orbit the Sun in the same plane. Here, l is also a constant because we have 
assumed that the planet is rotating about its axis with a constant angular velocity ω. 

So, here, 

         

And 

       

Where I is the moment of inertia of the planet (sphere) about its axis of rotation. 

Hence the total angular momentum in the vertical direction can be written as, 

                (4) 

And the total angular momentum in the horizontal direction is, 

            (5) 

Here, α and β are two arbitrary constants. On substituting the values of l and L, we can 
rewrite equations 4 and 5 as, 

                   (6) 

And 
             (7) 

Now, substituting the value of    as 
   

 
 (T is the orbital period of a planet) in equation 6, 

     

 
         

       
          

  
 

Multiplying R on both sides, 

       
           

  
 

 
        

           

  
 

(8) 

Now from equation 5, 

 

 
          

 
          

  

   
 

(9) 

Dividing equation 9 with equation 8, we get, 

     

   
  

  

   
 

  

           
 

 
    

     

   
 

   

             
 

(10) 



 
 

For a particular planet, everything is a constant on the RHS of the equation, and the LHS 

resembles the parent equation. Hence, it can be said that 

    

             
 

 

 
 

(11) 

And obviously, 

     

   
 

 

 
 

     
      

   
   

So, this is how the parent equation can be realized from the conservation of angular 
momentum. Now, let’s discuss another way to realize the parent equation. 

4.1 Reverse approach to realize the Parent equation 

From equation 11, it is clear that 
 

 
 is related to 

 

 
, and if l and L are directly divided for a 

planet without invoking the conservation principle, it is obtained that, 

 

 
 

 
 
   

    
 

On substituting the value of    in the above equation, 

 

 
 

   

  

 

   
 

   
 

 
 

   

    
 

On rearranging the above equation, 

   

   
 

 

  
 

On multiplying 
 

  
 to both RHS and LHS,  

    

     
 

 

   
 

(12) 

The RHS of the above equation somewhat resembles the parent equation. On 

substitution, it is found that for all planets the LHS of equation 12 is nearly equal to 
 

  
. 

One example is shown below, 

For Earth [14],  

                    

                    

  
                  

                  



 
 

                             

      
              
On substitution, 

   

     
 

                

                                
                   

 

   
 

          

       
                   

 
   

     
 

 

   
 

Hence, the relation is obtained as  

  

   
 

 

  
 

   

     
 

(13) 

The above equation is the parent equation and a rearranged form of equation 11. 

5 Applications 

The first application is a set of planetary hypotheses. In that subsection, we will make 
some hypotheses based on RPP. If any of these hypotheses are proved via observations, 
that can be considered as proof of RPP.   

5.1 Planetary hypotheses 

Previously, the physical characteristics of a planet like the axial tilt, orbit radius, and 
rotational period were considered independent of each other. Hence, it was believed 
that the change in one quantity would not affect the others directly. This concept 
changes with the introduction of RPP because it shows a direct relation amongst these 
physical characteristics. 

So, from equation 3, we have, 

 

   
   

Where k is a constant. Hence, we can write,  

          (14) 

By considering each variable to be a constant one at a time, three relations are 
obtained: 

1.      

This result is obtained by assuming that t is a constant, and it suggests that if a 
planet’s distance from the Sun is changed, keeping its rotational period constant, 
then its axial tilt will also change, and vice versa. This result shows that by simply 
moving a planet close or away from the Sun, a planet’s axial tilt can be changed, 
directly affecting that planet's seasons.  



 
 

2.       

This result is obtained by assuming that r is a constant. It suggests that if we 
change a planet’s axial tilt such that its orbit radius remains the same, then its 
rotation period also changes, and vice versa. According to this relation, the axial 
tilt of a planet directly affects the duration of the day on it.  

3.   
 

  
 

This result is obtained by assuming that θ is a constant. It suggests that by 

changing a planet’s orbit radius such that its axial tilt remains the same, its 
rotation period also varies, and vice versa. According to this relation, as a planet 
moves closer to the Sun (perihelion), then the duration of its day increases. 
Similarly, as the planet moves away from the Sun (aphelion), the day's duration 

decreases. However, the change in the day's duration may not be very significant 
because the difference in ‘r’ is not very drastic (due to our solar system's lower 
eccentricity of orbits). Kepler’s third law of planetary motion shows a relation 
between orbit radius and orbital period [16]. Similarly, the RPP offers an 
association between orbit radius and rotation period.  

All the above relations show the interdependence between planetary parameters. 
Using the above relations, we can understand how the change in one of the parameters 

affects the others during the final stages of planetary formation [17]. 
 

6 Conclusion 

We started this paper with a relation between different planetary parameters and the 

connection between those parameters was intriguing, especially the inclusion of n in 
RPP. The proper definition of n was critical to understand, as it affects other 
parameters of a planet. Then we discussed a theoretical approach to obtain RPP. In the 
end, the applications of RPP showed the beautiful ways in which we can use it in our 
ongoing research. RPP relates quantities that seemed independent hence it has opened 
new horizons in planetary research.  

 

7 Acknowledgments 

We want to express our gratitude to our friends, Gauri Padalkar, for assisting us in 
designing the diagrams and Shivom Thakkar for helping edit the manuscript.

 

8 Author contributions 

Rajat Saxena came up with the parent equation and the analyses of moons. Sagar 
Kumar Biswal developed the theoretical approach to the parent equation and the 
applications of RPP. Both authors contributed equally to the design of the manuscript. 

Competing Interests: The authors declare that they have no competing interests. 

 



 
 

References 

[1] R. Saxena, “Law and equation of interplanetary relationship and its applications,” International 

Astronomy and Astrophysics Research Journal 3 (2), 22-32, 2021. 

[2] Williams, David R. "Moon fact sheet." NASA Fact sheets (2006). 

[3] Williams, David R. "Mars fact sheet.” 

http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html (2004) 

[4] Williams, D. "Jovian Satellite Fact Sheet." Retrieved March 27 (2018): 2019. 

[5] Williams, David R. "Saturnian satellite fact sheet." online] (National Aeronautics and Space 

Administration, 1999, accessed November 8, 2004) available from http://nssdc.gsfc.nasa. 

gov/planetary/factsheet/saturniansatfact.html (1995). 

[6] Williams, D. "Uranian Satellite Fact Sheet." NASA (National Space Science Data Center). Archived from 

the original on (2010): 01-18. 
[7] Williams, D. "Neptunian Satellite Fact Sheet." NASA. Retrieved (2008): 01-18. 

[8] Hubbard, William B., Buratti, Bonnie and Marley, Mark. "Saturn". Encyclopedia Britannica, 7 May. 

2021, https://www.britannica.com/place/Saturn-planet. Accessed 18 January 2022. 

[9] Owen, Tobias Chant. "Jupiter". Encyclopedia Britannica, 11 Oct. 2021, 

https://www.britannica.com/place/Jupiter-planet. Accessed 18 January 2022. 

[10] Ingersoll, Andrew P. "Uranus". Encyclopedia Britannica, 13 Dec. 2021, 

https://www.britannica.com/place/Uranus-planet. Accessed 21 January 2022. 

[11] Delsemme, Armand H. and Kavelaars, J.J.. "Kuiper belt". Encyclopedia Britannica, 10 Nov. 2021, 

https://www.britannica.com/place/Kuiper-belt. Accessed 21 January 2022. 

[12] Ekers, R. (2018). The Prague IAU General Assembly, Pluto and the IAU processes. Proceedings of the 

International Astronomical Union, 13(S349), 51-57. doi:10.1017/S1743921319000115 

[13] R. Rast, S. Finney, L. Cheng, J. Schmidt, K. Gerein, A. Miller, “Effects of the Moon on the Earth in the 

Past, Present, and Future,” University of Saskatchewan Undergraduate Research Journal, October 16, 

2017.  

[14] Curtis, Howard D. "Orbital Mechanics for Engineers." Embry (Riddle Aeronautical University, Elsevier 

Aerospace Engineering Series, Elsevier Butterworth (Heinemann, Oxford, UK (2005), pp. 583. 

[15] Kleppner, Daniel, and Robert Kolenkow. An introduction to mechanics. McGraw Hill Education (India) 

Private Limited, Special Indian Edition 2009, pp. 380-382.  

[16] Feynman, Richard P, Robert B. Leighton, and Matthew L. Sands. The Feynman Lectures on Physics, 

Volume 1, Pearson India Education Services, 2019. Print, pp. 7-2 

[17] Goldreich, Peter, Yoram Lithwick, and Re’em Sari. "Final stages of planet formation." The Astrophysical 

Journal 614.1 (2004): 497.  

https://www.britannica.com/place/Saturn-planet.%20Accessed%2018%20January%202022
https://www.britannica.com/place/Jupiter-planet.%20Accessed%2018%20January%202022
https://www.britannica.com/place/Kuiper-belt.%20Accessed%2021%20January%202022


 
 

Appendix A 

 

To understand our thought process while developing the parent equation as shown in Table 
A1: 

Table A1: Obtaining the parent equation 

Planet Name  

  
 

      

 

  
 

           

 

   
 

           

  

   
 

              

   

   
 

              

Earth [14]                                                        

Mars [14]                                                        

Jupiter [14]                                                        

Saturn [14]                                                        

 

The result of 
 

   for the selected planets was coming close. In an attempt to bring the value of 
 

   

even closer, different quantities were multiplied to it until a constant was obtained. The result of 

this trial and error was the Parent equation. In Table A1, the data obtained is very small hence, 
plotting it on a graph is difficult. To make a graph, we’ll find the logarithm of each entry, as 
shown in Table A2. 

Table A2: Obtaining the parent equation logarithmically 

Planet  

Name 
         

 

  
   

 

        
 

  
   

 

        
 

   
   

 

 

        
  

   
   

 

 

        
   

   
   

Earth [14]                               

Mars [14]                               

Jupiter [14]                               

Saturn [14] 24.31 24.64 32.71 28.71 27.21 

 

Based on the data of Table A2, we will plot Figure A1. 

 

Figure A 1: The convergence of different physical parameters of a planet 
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It can be seen that all planets follow a similar curve.    



 
 

Appendix B 

 

The value of ψ calculated for different plane
 

For Earth we know [14], 
      
              
              

                  

                  
On substituting the values in equation 1, 

 

 
             

                      
                 

                           

 

For Mars we know [14], 

      
              

               

                  

                 

On substituting the values in equation 1, 

 

 
              

                     
                    

                          

 

For Jupiter we know [14], 

       
                

              

                   

                  
On substituting the values in equation 1, 

  
                

                        
  

                          

 
For Saturn we know [14], 
       
              

             

                    

                  

On substituting the values in equation 1, 

  
             

                          
 

                          

 

For Uranus we know [14], 

             

             

             

                    

                  
On substituting the values in equation 1, 

  
           

                         
 

                          

 

For Neptune we know [14], 

              

               
             

                 

                  
On substituting the values in equation 1, 

  
               

                     
 

                         

 
Observation: 
In equations B1 and B2, the axial tilt for both planets is similar; however, the value of n for Mars 
is double Earth’s n. To compensate for this doubling, the equatorial linear velocity of Mars 
becomes nearly half of Earth’s  . This mechanism ensures that we always get the value of   

similar for all planets.  


