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Abstract 

Since most samplings of local species communities are bound to remain substantially 

incomplete for practical reasons, a wide variety of nonparametric estimators of the number 

of unrecorded species have been proposed over the past fifty years. Unfortunately, the 

distinct formulations of each of these estimators naturally lead to substantially divergent 

estimates. The will to try to select, in each case, the estimator expected to be the more 

accurate has long been carried out only on a purely empirical, even arbitrary, basis (as is 

evident from the extensive consultation of much of the past literature on estimating species 

richness of incompletely sampled communities). So that the extrapolation of true species 

richness of a community from its incomplete sampling has long remained quite 

unsatisfactory. Indeed, the definition of a truly rational procedure for selecting the most 

accurate estimator actually requires a solidly established theoretical framework, involving 

conforming, as best as possible, to the general mathematical characteristics of the Species 

Accumulation Function. Accordingly, unveiling, first of all, these mathematical 

characteristics of the Species Accumulation Function was a decisive step forward in this 

perspective. Thereby making it now possible to propose an objective key to rationally 

select the one, within the series of various estimators, which, depending on each particular 

sampling, happens to be the least biased in this particular case, thus providing the most 

accurate estimate of the number of still unrecorded species. And, consequently, making it 

possible, now, to deliver the best estimate of the true species richness of a local community, 

despite its being incompletely surveyed. 
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accumulation equation, Jackknife estimator 

 

 

 
1. Introduction 

Among the most commonly cited descriptors of species communities in the wild, the species 

richness is usually considered as having the “greatest ecological significance” (with the 

degree of unevenness of species abundances coming immediately second). Thus, as already 

emphasized by BROSE et al. [1], “beyond the exhaustive list of their identities, the estimated 

total number of species in a community or in a given area is, by itself, critical to the 

development of evolutionary and ecological theories”. 

Yet, unfortunately, achieving (sub-) exhaustive samplings usually reveals quasi-impossible 

in practice for most communities in the wild. Community samplings are, thus, often 

doomed to remain more or less incomplete.  And this is all the more so when dealing with 

species-rich communities having rather unevenly distributed species abundances. This is 
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particularly the case for either floras or invertebrate faunas, especially (while not only) 

under tropical climates. 

Hence, the strong incentive to develop numerical extrapolation procedures, intended to 

estimate the number of species that have escaped sampling. Thereby allowing a reliable 

estimation of the “true” total species richness of communities, despite their being 

incompletely sampled. 

Early attempts in this perspective have led, during the second half of the last century, to the 

propositions of a series of estimators, formulated as various functions of the numbers f1, f2, 

…fx of singletons, doubletons, … , x-tons (i.e., species encountered once, twice, …, x-times 

during sampling).  The most often mentioned estimators being the series of ‘Jackknife’ 

estimators (JK-1 = f1, JK-2 = 2f1 – f2, JK-3 = 3f1 – 3f2 + f3, etc…) and the ‘Chao’ estimator 

(Chao1 = f12/(2.f2)) [2].  

Now, all these estimators, each of them being formulated in such different ways, can only 

deliver substantially distinct estimates of the number of unrecorded species, for a same 

given sample! Which, naturally, led to the question of how to reliably choose which one of 

these different estimators might be more appropriate and the most accurate, with respect 

to the particular sample under consideration. Now, in the obvious impossibility of being 

able to answer properly this question on a rational basis, it has been witnessed, in the 

literature, a veritable anthology of empirical or even arbitrary proposals, each of them as 

unsatisfactory as the other: see, for example a critical review in [1]. This, in the end, had 

regrettably contributed to cast much doubt on the reliability of numerical extrapolation 

from incomplete samples, in order to estimate the true species richness of incompletely 

sampled communities. 

This very unsatisfactory situation has finally led, at the beginning of this century, to the 

hypothesis that, among all these different estimators, it may be likely that only one of them 

could, in turn, prove to be the most appropriate. More specifically, the estimator to be 

preferred being, in each case, dependent upon the particular sampling under consideration. 

In this new perspective, no estimator could rationally claim to be universally – or, at least, 

usually – the most appropriate. Hence the necessity to select, in each case (i.e. for each 

particular sampling), which of the series of available estimators could really be considered 

the most appropriate, i.e. the least biased one. With this selection being based upon a 

strictly rational procedure. Indeed, this point of view turned out to be correct and, then, 

prompted the research and development of such a kind of more or less rigorous selection 

procedure. 

In their seminal paper, BROSE et al.  [1] deliberately comply with this approach. In 

particular, they suggest that each of the estimators, within the Jackknife series, could, in 

turn, be optimal according to the (yet still unknown) degree of completeness of the 

sampling under consideration. Specifically, these authors argued that the lower the 

completeness of the sampling, the higher should be the order of the Jackknife estimator to 

be selected. However, this first attempt, as meritorious as it was, could not lead, yet, to a 

satisfactory solution in practice (see Discussion section below). And this, in particular, 

because of the circularity of the procedure which implies that completeness be involved 

both as a means of selection and then as the result of this selection. Yet, the paper by BROSE 

et al. [1] finally rightly highlighted the possible avenue toward a future, truly rational 

procedure for selecting the desired “optimal nonparametric estimator”.  

To go further in this direction, a decisive element was still missing to the preceding attempt 

– namely unveiling the relevant mathematical relationship which universally constrains the 
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general expression of the so-called “Species Accumulation Function”. And this is required 

because the extrapolation of the Species Accumulation Curve (S.A.C.) has the potential to 

forecast, all-along on-going progressive sampling, the continuous updating of what could 

be the species richness of the community under consideration. So that a reliable estimator 

of the number of still unrecorded species should correspond to – and thus comply with – 

the (numerical) extrapolation of this S.A.C., beyond the currently achieved partial sampling. 

Deriving the mathematical relationship universally constraining the Species Accumulation 

Curve is, thus, intended to play a decisive role in enabling the development of the procedure 

for rationally selecting (according to each particular sampling) the particular type of 

estimator able to deliver the least-biased estimate of the number of still unrecorded species. 

The derivation of this mathematical relationship had been carried out recently [3-5], thus 

finally opening up the perspective for a rational estimation of the true species richness of 

communities, despite having to rely only upon partial samplings. 
 

Based upon this previously established mathematical relationship [3-5], I describe, 

hereafter, the procedure allowing to rationally select, in each case, which estimator turns 

out to be the least-biased one, among the most commonly referenced nonparametric 

estimators. 

 

 

 

2. Method  

 
The so-called Species Accumulation Curve (S.A.C.) accounts for the progressive increase in 

the number of recorded species along the progressive sampling of a community of species. 

Clearly, the shape of the S.A.C. is, in every detail, entirely dependent on the specific 

distribution of species abundances within the sampled community. Accordingly, there are 

as many different shapes – and kinds of mathematical expressions – for the S.A.C.s than 

there are different possibilities of species abundance distributions within species 

communities. That is, a virtual infinity. This explains that no general mathematical 

expression has ever been derived for the S.A.C.s, at least on a rational basis. Only 

empirically designed models have been proposed, as pure approximations [6,7], thus 

irrelevant to our purpose. However, the indefinitely various mathematical shapes that the 

S.A.C.s could potentially take are yet, in no way, arbitrary. In fact, all of these various 

mathematical shapes are expected to comply with a universal, specific mathematical 

constraint, inherent in the very nature of the process of incremental discovery of new 

species, during the progress of on-going sampling.  

It turns out that this mathematical constraint, framing the virtual infinity of expressions 

that the S.A.C.s can take, applies to the series of derivatives of increasing order of the S.A.C.. 

With, more specifically, the derivative of order x being related to the observed number, fx, 

of x-tons (species that are recorded x-times in the on-going sampling). The existence and 

formulation of this mathematical relationship, universally constraining the expressions of 

the S.A.C.s, was demonstrated first in 2014, as reported in reference [3], see also [8]: 
 

∂x R(N)/∂Nx  =  (-1)x-1 fx (N) /CN, x      (1)  
with: 

      * N as the sample size, in term of the number encountered individuals,  
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      * R(N) as the number of currently recorded species – namely the “Species Accumulation 

Function”,  

      * fx (N) as the number of x-tons,  

      * CN, x  = N!/x!/(N-x)! as the number of combinations of x items among N. 
 

Leaving aside the very beginning of sampling (of no practical relevance here), the 

sampling-size N rapidly widely exceeds the numbers x of practical concern, so that, in 

practice, the preceding equation simplifies as: 
 

∂x R(N)/∂Nx  =  (– 1)x-1 (x!/Nx).fx (N)        (2) 
 

Specifically, these relations (either (1) or (2)) have general relevance because their 

derivation – and thus their validity – does not require any specific assumption relative to the 

particular shape of the distribution of species abundances in the sampled assemblage of 

species. Accordingly, the above relations actually constrain the indefinitely diverse 

theoretical expressions of all possible kinds of Species Accumulation Curves. 

In addition, it is to be noted that a second, independently established, demonstration of this 

relation was provided later [4,5] (a summary of these two alternative demonstrations is 

provided in Appendix). Finally, a third, again independent, demonstration was published 

recently by LI & LI [9], based upon the specific properties of the so-called Bernstein 

functions. The coexistence of these three independent demonstrations clearly underlines 

the robustness of this relation, universally constraining the expressions of the S.A.C.s in 

whole generality and, thereby, warrants the reliability of using relations (1) or (2) for 

practical purposes. 

Now, related to our concern of establishing an objective procedure to rationally select the 

best type of nonparametric estimator, two additional relationships, directly stem from 

equation (2). 
 

         2.1 - derivation of the expression of the first derivative of the number of x-tons, fx (N)  

It comes from equation (2) (as already shown in references [10, 11]): 
 

fx (N) = (– 1)x-1 (Nx/x!) [∂x R(N)/∂Nx ]         (3) 
 

The derivation of equation (3), with respect to sample size N, then gives: 
 

∂fx (N)/∂N = (– 1)x-1/x! {x. Nx-1.[∂x R(N)/∂Nx] + Nx.[∂x+1 R(N)/∂Nx+1]}          
 

Applying successively equation (2) to the expressions of [∂x R(N)/∂Nx] and of [∂x+1 

R(N)/∂Nx+1] finally leads to:     
      

∂fx (N)/∂N = [ x.fx (N) – (x+1).fx+1 (N)]/N     (4) 
 

Equation (4) thus provides the expression of the first derivative of the number fx (N) at any 

given sample-size N, in terms of the values taken by fx (N) and fx+1 (N), at sampling-size N.   
 

         2.2 - derivation of the expression of the first derivative of the number of still unrecorded 

species Δ(N) 

Let Δ(N) be the number of unrecorded species (i.e., species having still escape recording by 

the on-going sampling of a community). Let St be the (unknown) true species richness of 

the sampled community; then Δ(N) = St – R(N). Accordingly, from equation (2), the first 

derivative of Δ(N) satisfies: 
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∂Δ(N)/∂N = – f1 (N)/N               (5) 
 

3. Result  

Procedure of selection of the more accurate type of estimator of the number of 

still unrecorded species, after incomplete sampling 
The ideal goal of a nonparametric estimator E(N) of the number Δ(N) of still unrecorded 

species is, of course, to comply, as closely as possible, to Δ(N). In particular, by decreasing 

with sample size N at the same rate as Δ(N) decreases. Thus, an ideal goal would be: 
 

∂E(N)/∂N = ∂Δ(N)/∂N = – f1 (N)/N         (6) 
 

Now, if this ideal goal for E(N) to consistently match Δ(N) cannot be strictly achieved (as is 

likely), it is at least desirable, for the careful sake of conservatism, that the estimation E(N) 

be a slight underestimate of Δ(N), rather than an overestimate. For this purpose, the rate of 

decrease of E(N) with N – for lack of being able to consistently match the rate of decrease of 

Δ(N) itself – should be slightly faster than this decrease of Δ(N) (rather than slightly 

slower). So that, in practice, the criterium of selection among the available kinds of 

estimators should rely on the absolute rate of decrease |∂E(N)/∂N| of E(N) with N. With 

this rate, |∂E(N)/∂N|, required to be either equal or somewhat higher than is the absolute 

rate of decrease, |∂Δ(N)/∂N|, of Δ(N):   

|∂E(N)/∂N| > |∂Δ(N)/∂N|   
that is (since ∂Δ(N)/∂N is, in essence, negative): 

∂E(N)/∂N < ∂Δ(N)/∂N   
Then: 

∂E(N)/∂N < – f1 (N)/N     (7) 
 

3.1 – Practical key of selection among the top five Jackknife estimators (JK-1 to JK-5) 

As already underlined, I shall focus upon the most often mentioned nonparametric 

estimators, namely the series of ‘Jackknife’ estimators of increasing orders and the ‘Chao’ 

estimator.  

Let consider, first, the series of ‘Jackknife’ estimators of increasing orders. That is: JK-1 = f1, 

JK-2 = 2f1 – f2, JK-3 = 3f1 – 3f2 + f3, … and, more generally, at order ‘m’ (see reference [5]): 
 

JK-m  = Σx=1 to m [(-1)(x-1).C(m, x).fx ]           (8) 
 

where Σx=1 to m stands for the summation from x = 1 to x = m and C(m, x) = m!/x!/(m–x)! is the 

number of combinations of x objects among m.   

According to equation (7), it then follows that if the Jackknife estimator at order m, (JK-m), 

is to be selected, then the first derivative ∂(JK-m)/∂N of ‘JK-m’ should satisfy: 
 

∂(JK-m)/∂N < – f1 (N)/N        (9) 

In particular: 

        (i) for Jackknife at order 1, i.e. JK-1 = f1: 

∂(JK-1)/∂N = ∂f1 (N)/∂N   

and from equation (4), it comes: 

∂(JK-1)/∂N = ∂f1 (N)/∂N = [f1 (N) – 2f2 (N)]/N      

Then, from equation (9), it follows: 

[f1 (N) – 2f2 (N)]/N < – f1 (N)/N 

that is: 
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f1 (N) < f2 (N)      (10) 
 

        (ii)  for Jackknife at order 2, i.e. JK-2 = 2f1 – f2: 

∂(JK-2)/∂N = 2.∂f1 (N)/∂N – ∂f2 (N)/∂N   

and from equation (4), it comes: 

∂(JK-2)/∂N = 2.[f1 (N) – 2f2 (N)]/N – [2.f2 (N) – 3f3 (N)]/N 

Then, from equation (9), it follows: 

2.[f1 (N) – 2f2 (N)]/N – [2.f2 (N) – 3f3 (N)]/N < – f1 (N)/N 

that is: 

f1 (N) < 2.f2 (N) – f3 (N)       (11) 
 

       (iii)  for Jackknife at order 3, i.e.  JK-3 = 3f1 – 3f2 + f3: 

∂(JK-3)/∂N = 3.∂f1 (N)/∂N – 3.∂f2 (N)/∂N + ∂f3 (N)/∂N     

and from equation (4), it comes: 

∂(JK-3)/∂N = 3.[f1 (N) – 2f2 (N)]/N – 3.[2.f2 (N) – 3f3 (N)]/N + [3.f3 (N) – 4f4 (N)]/N 

Then, from equation (9), it follows: 

3.[f1 (N) – 2f2 (N)]/N – 3.[2.f2 (N) – 3f3 (N)]/N + [3.f3 (N) – 4f4 (N)]/N <  – f1 (N)/N 

that is: 

f1 (N) < 3.f2 (N) – 3.f3 (N) + f4 (N)      (12) 
 

        (iv)  for Jackknife at order 4, i.e.  JK-4 = 4f1 – 6f2 + 4f3 – f4: 

∂(JK-4)/∂N = 4.∂f1 (N)/∂N – 6.∂f2 (N)/∂N + 4∂f3 (N)/∂N  – ∂f4 (N)/∂N   

and, similarly, it comes finally: 

f1 (N) < 4.f2 (N) – 6.f3 (N) + 4.f4 (N) – f5 (N)     (13) 
  

       (v)   at last, more generally, for Jackknife at order m, i.e.  JK-m (= Σx=1 to m [(-1)(x-1).C(m, 

x).fx ]): 

∂(JK-m)/∂N  = Σx=1 to m [(-1)(x-1).C(m, x). (∂fx (N)/∂N)] 

Then, applying similarly equation (4) and equation (9) successively, it comes finally for JK-

m: 

f1 (N) < Σx = 2 to m [(-1)x.(C(m+1, x) – C(m, x)).fx (N)] + (-1)m+1.fm+1(N)         (14) 
 

The five inequalities (10) to (14) thus define the respective domains of selection of Jackknife 

estimators JK-1 to JK-5, allowing each of them to be the one offering the least-biased 

estimation of the number of still unrecorded species, depending on the particular sampling. 

Let now summarize, combining the series of inequalities above. 

It comes the following key of selection for the top five Jackknife estimators. 
 

 
 

Select preferentially: 
 

JK-1 (= f1)   when  f1 < f2 
 

JK-2 (= 2f1 – f2)  when  f2 < f1 < 2f2 – f3 
 

JK-3 (= 3f1 – 3f2 + f3)  when  2f2 – f3 < f1 < 3f2 – 3f3 + f4 
 

JK-4 (= 4f1 – 6f2 + 4f3 – f4)  when  3f2 – 3f3 + f4 < f1 < 4f2 – 6f3 + 4f4 – f5 
 

JK-5 (= 5f1 – 10f2 + 10f3 – 5f4 + f5)  when  f1 > 4f2 – 6f3 + 4f4 – f5 
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This key of selection highlights the conditions (in terms of the relative values of f1 as 

compared to f2, f3, f4, f5, at the right side) that ensure the Jackknife at the corresponding 

order (at the left side) to provide the ‘least-biased’ estimation of the number of still 

unrecorded species (i.e., species having still escape recording by the on-going sampling of a 

community).  

It is worth noting that – as it should be – there is no discontinuity in the estimates at both 

sides of the boundary between the respective domains of two Jackknife of successive 

orders. Thus, at the boundary between:  

* JK-1 and JK-2 (i.e. when f1 = f2), both JK-1 and JK-2 = f2 ; 

* JK-2 and JK-3 (i.e. when f1 = 2f2 – f3), both JK-2 and JK-3 = 3f2 – 2f3 ;  

* JK-3 and JK-4 (i.e. when f1 = 3f2 – 3f3 + f4), both JK-3 and JK-4 = 6f2 – 8f3 + 3f4 ; 

* JK-4 and JK-5 (i.e. when f1 = 4f2 – 6f3 + 4f4 – f5), both JK-4 and JK-5 = 10f2 – 20f3 + 15f4 – 4f5 

 

As simple illustrative examples of application, Figures 1 and 2 provide the estimated 

numbers of unrecorded species obtained by the series of Jackknife estimators, for two 

Butterfly communities sampled at the same site, in years 1987 and 2013, at Gariwang-san 

(Korea), as reported in reference [12].  
 

    
 

Figures 1 & 2 – The numbers of unrecorded species estimated by the series of Jackknife estimators for 

two Butterfly communities sampled in 1987 (left) and 2013 (right) at Gariwang-san (Korea) [12]. The 

selected Jackknife estimator is JK-3 (= 27) for year 1987 while it is JK-4 (= 30.7) for year 2013. 

 

Important notice 

The recorded values of the numbers of x-tons (f1, f2, f3, f4, f5) are inevitably subject to a 

certain dispersion, due to the random draw of individuals during sampling of a community. 

Accordingly, the resulting risk of bias in the evaluation of the numbers fx of x-tons should 

not be overlooked – since these numbers play the determinant role, regarding both the 

values taken by the nonparametric estimators and the criteria of selection of the ‘least-

biased’ estimator. Thus, to reduce this risk as far as possible, it is appropriate to regress the 

distribution of the recorded values of the series f1, f2, f3, f4, f5. Practical experience suggests 

that a simple regression “by eye” is relevant in this respect. For illustrative purposes some 

examples are provided in Figures 3 to 7. 
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Figures 3 to 7 – The numbers fx of species recorded x times for the partial samplings of five reef-

associated fish communities off Jakarta Bay [13]. Note that although x is considered from 1 to 5, the 

regression is continued up to x = 15, for providing a more extended view of the values taken by the fx, 

which is best appropriate for the visual regression. As recorded: grey discs; visually regressed: black 

discs. 

 

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fx

x

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fx

x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fx

x

0

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fx

x

0
1

2
3
4
5

6
7
8
9

10

11
12
13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fx

x



 

9 
 

3.2 – What about the Chao type of nonparametric estimators 

In their seminal paper, BROSE et al. [1] considered that the series of Jackknife is self-

sufficient to account for all the cases of more or less incomplete samplings situations, thus 

requiring to consider no other types of nonparametric estimators. In particular, it does not 

appear any need to resort to Chao-type estimator (as f12/(2.f2)), according to these authors.  

Our own theoretical approach also agrees with this statement. Moreover, the Chao type 

estimators regrettably suffer from a conceptual defect, intrinsically linked to their 

nonlinear formulation in terms of fx. As already pointed out previously [14], for this very 

reason the Chao-type estimators cannot satisfy, as obviously required, the rule of additivity 

[14]. As a result, when using the Chao-type estimators, the estimate made on a set 

comprising several subsets unfortunately does not correspond, as it should, to the sum of 

the estimates made on each of these subsets. 

Thus, in accordance with the previous option of BROSE et al. [1], it appears that the series of 

Jackknife estimators (in practice, aptly limited to the set of the five first Jackknife) is 

sufficient by itself to offer a relevant panoply of potential estimators, among which to 

choose for an optimized estimation of the number of still unrecorded species.  

 

4. Discussion 
As recalled in Introduction, the possibility of estimating the number of unrecorded species 

in a presumably incomplete sampling began with a rather unsatisfactory situation, up to 

the end of the preceding century. Namely, the puzzling dilemma of having to choose, among 

a lot of available estimators providing divergent estimates. And this, without disposing, 

however, of any reliable key to select rationally the particular type of estimator expected to 

reliably provide the least-biased estimation. This very uncomfortable era eventually came 

to an end with the publication of the seminal paper by BROSE et al. [1]. Although this 

publication remained too much ignored thereafter, because many authors regrettably 

persist in choosing, rather arbitrarily, the kind of estimator which they personally consider 

– or even claim - as being the "best". And this, despite, the paper by BROSE et al. relevantly 

highlights that no unique, universally best estimator can reasonably exist. BROSE et al. put 

forward, accordingly, that the best – least biased – estimator might well differ in each 

practical case, being particular to each given sampling. They further suggested that the 

sampling criterion to be considered first was the degree of completeness of the sample 

under consideration. A practical procedure of iterative selection thus arises from this, 

inviting to determine which estimator among the lot of available ones (in particular the 

Jackknife series) is intended to perform best, i.e. more accurately. 

The question arguably remained, however, as to whether this advocated relation between 

the degree of sampling-incompleteness on the one hand and the preferred order of 

Jackknife estimator on the other hand is: 

          (i)  solidly confirmed from a theoretical point of view, 

          (ii) the only effective factor to be considered when trying to select the least biased 

estimator of the number of still unrecorded species. 

Thanks to the procedure developed in this work, it now reveals possible to address and 

answer (by the negative) each of these two fundamental questions. 

Figure 8 summarized the results from a wide series of reported case studies [7, 12, 13, 15-

29] involving the numerical extrapolations of 62 incomplete samplings of various animal 

communities distributed worldwide, both marine and terrestrial. The numerical 

extrapolations were carried out using the procedure of selection of the “least-biased” 
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estimator of the number of unrecorded species initially proposed in [5] and alternatively 

argued above in section 3.1. Thanks to its theoretically based establishment, this key of 

selection of the “lest-biased” estimator may admittedly serve as a reliable reference, against 

which to compare other procedures of selection, such as – here – the one previously 

proposed by BROSE et al. [1]. The features highlighted in Figure 8 aptly allow, accordingly, 

to address the two questions put forward above. 

First, as advocated by BROSE et al., it obviously exists a trend for the order of the selected 

Jackknife estimator to increase with decreasing levels of completeness of samplings. 

Second, there remains, yet, much scatter in this relationship.  

Thus, pointing out that other factors, besides the degree of sampling-incompleteness, are 

likely to be also involved. And, accordingly, to be relevantly considered in the rational 

selection of the least-biased estimator. 

More precisely, the coefficient of determination of the correlation between the order of the 

selected Jackknife estimator and the level of sampling incompleteness is r2 = 0.48 only. This 

emphasizes that the degree of sampling incompleteness is no more than part only (48%) of 

the factors involved in determining the selected order of the actually least-biased Jackknife 

estimator.  

This indeed is no surprise. Arguably, the particular distribution of the species abundances 

in the sampled community, especially the degree of unevenness of species abundance 

distribution (including the distribution of abundances of the still unrecorded species), is 

likely to also play a key role in this matter. Indeed, it turns out that the actually recorded 

numbers f1, f2, …fx of singletons, doubletons, …, x-tons (and, thus, the Jackknife estimators, 

as any other nonparametric estimators) are sensitive not only to the level of sampling 

incompleteness, but also to the degree of unevenness of the species abundance distribution 

within the community of species under consideration. And, more generally, sensitive to all 

the factors involved in defining the extrapolation of the Species Accumulation Curve R(N), 

which ultimately forecasts the number of still unrecorded species – as highlighted by the 

universal relationship (1) constraining this Curve. 
 

 
Figure 8 – The selected least-biased Jackknife estimator (JK-1 to JK-5) of the number of unrecorded 

species plotted against the corresponding estimated sampling completeness for a series of 62 samplings  

[7, 11, 13, 15-29]. Obviously, the order of the selected Jackknife estimator tends to increase with 
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increasing sampling incompleteness – as suggested by BROSE et al. [1]. However, the dispersion turns out 

to be much too wide to allow to reliably rely upon this criterion only to select the best estimator, as too 

optimistically proposed by BROSE et al.. 

 

         5. Conclusion 
Incomplete samplings are common cases in most local biodiversity surveys – especially 

those addressing invertebrate local communities worldwide. Thus, the estimation of the 

number of species still remaining unrecorded is key to evaluate the true species richness of 

these communities – indeed a major descriptor of species diversity. 

However, estimating the number of species remaining unrecorded due to unavoidable 

incomplete samplings proves being quite a difficult matter. As proof, the difficulties 

encountered in this regard throughout the second-half of the 20th century. Difficulties 

paradoxically resulting from the somewhat “plethoric” creativity of the statisticians, 

delivering a multiplicity of competing – and unfortunately diverging – nonparametric 

estimators. The horizon in this matter then began to brighten with the founding publication 

of BROSE et al. in year 2003. A publication which marked a decisive step ahead, although 

remaining still partial, due to its still insufficient theoretical foundation. Finally, it is only 

the unveiling of the fundamental mathematical relation constraining, in all generality, the 

shape of the Species Accumulation Curve which ultimately made it possible to establish the 

sound, theoretical foundation required to derive a rational procedure of numerical 

extrapolation of the Species Accumulation Curve. And, by doing so, offering the key to a 

procedure making it possible to rationally select, in each case, which among the series of 

available estimators actually happens to be the least biased. 
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APPENDIX 

A.1 - Derivation of a universal mathematical framing of the Species Accumulation 

Function R(N): the constraining relationship between ∂xR(N)/∂Nx and  fx(N) 

The shape of the theoretical Species Accumulation Curve is directly dependent upon the 

particular Species Abundance Distribution (the “S.A.D.”) within the sampled assemblage of 

species. That means that beyond the common general traits shared by all Species 

Accumulation Curves, each particular species assemblage give rise to a specific Species 

Accumulation Curve with its own, unique shape, considered in detail. Now, it turns out that, 

in spite of this diversity of particular shapes, all the Species Accumulation Curves are, 

nevertheless, constrained by a same mathematical relationship that rules their successive 

derivatives (and, thereby, rules the details of the curve shape since the successive 

derivatives altogether define the local shape of the curve in any details). Moreover, it turns 

out that this general mathematical constraint relates bi-univocally each derivative at order 

x, [∂xR(N)/∂Nx], to the number, fx(N), of species recorded x-times in the considered sample of 

size N. And, as the series of the fx(N) are obviously directly dependent upon the particular 

Distribution of Species Abundance within the sampled assemblage of species, it follows 

that this mathematical relationship between ∂xR(N)/∂Nx and fx(N), ultimately reflects the 

indirect but strict dependence of the shape of the Species Accumulation Curve upon the 

particular Distribution of the Species Abundances (the so called S.A.D.) within the 

assemblage of species under consideration. In this respect, this constraining relationship is 

central to the process of species accumulation during progressive sampling, and is 
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therefore at the heart of any reasoned approach to the extrapolation of any kind of Species 

Accumulation Curves. 

This fundamental relationship may be derived as follows. 

Let consider an assemblage of species containing an unknown total number 'S' of species. 

Let R be the number of recorded species in a partial sampling of this assemblage 

comprising N individuals. Let pi be the probability of occurrence of species 'i' in the sample 

This probability is assimilated to the relative abundance of species ‘i' within this 

assemblage or to the relative incidence of species ‘i' (its proportion of occurrences) within a 

set of sampled sites. The number Δ of missed species (unrecorded in the sample) is Δ = S – 

R. 

The estimated number Δ of those species that escape recording during sampling of the 

assemblage is a decreasing function Δ(N) of the sample of size N, which depends on the 

particular distribution of species abundances pi: 

Δ(N)  = Σi (1-pi)N            (A1.1) 

with Σi  as the operation summation extended to the totality of the 'S' species 'i' in the 

assemblage (either recorded or not) 

The expected number fx of species recorded x times in the sample, is then, according to the 

binomial distribution: 

fx  =  [N!/X!/(N-x)!] Σi [(1-pi)N-x pix ]   = CN, x  Σi (1-pi)N-x pix        (A1.2)  

with CN, x  = N!/X!/(N-x)!  

We shall now derive the relationship between the successive derivatives of R(N), the 

theoretical Species Accumulation Curve and the expected values for the series of ‘fx’.  

According to equation (A1.2): 

 
►    f1 = N Σi [(1-pi)N-1 pi] = N Σi [(1-pi)N-1 (1- (1-pi))]  = N Σi [(1-pi)N-1] - N Σi [(1-pi)N-1(1-pi))]  

= N Σi [(1-pi)N-1] - N Σi [(1-pi)N].      

Then, according to equation (A1) it comes: f1 = N (Δ(N-1) - Δ(N))  = - N (Δ(N) - Δ(N-1))   

= - N (∂ Δ(N)/∂N) = - N Δ'(N)    

where Δ'(N) is the first derivative of  Δ(N) with respect to N.    Thus:    

f1  =  - N Δ'(N)     ( = - CN,1  Δ'(N)  )         (A1.3) 

Similarly: 

►   f2 = CN, 2 Σi [(1-pi)N-2 pi²]     according to equation (A1.2) 

= CN, 2 Σi [(1-pi)N-2 (1- (1-pi²))]   = CN, 2  [Σi [(1-pi)N-2] - Σi [(1-pi)N-2(1- pi²)]] 

= CN, 2 [Σi [(1-pi)N-2] - Σi [(1-pi)N-2(1- pi)(1+ pi)]]  = CN, 2 [ Σi [(1-pi)N-2] - Σi [(1-pi)N-1(1+ pi)]] 

= CN, 2 [(Δ(N-2) - Δ(N-1)) - f1/N ]     according to equations (A2.1) and  (A1.2) 

= CN, 2 [- Δ'(N-1) - f1/N]  = CN, 2  [ - Δ'(N-1) + Δ'(N)]   since  f1 = - N Δ'(N)     (cf. equation (A1.3)). 

= CN, 2 [(∂ Δ'(N)/∂N)] = [N(N-1)/2] (∂² Δ(N)/∂N²) = [N(N-1)/2] Δ''(N) 

where Δ''(N) is the second derivative of  Δ(N) with respect to N.    Thus: 

f2  =  [N(N-1)/2]  Δ''(N)     =  CN, 2  Δ''(N)            (A1.4) 

►  f3 = CN, 3 Σi [(1-pi)N-3 pi3]   which, by the same process, yields: 
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= CN, 3 [Σi (1-pi)N-3 - Σi (1-pi)N-2 - Σi [(1-pi)N-2 pi] - Σi [(1-pi)N-2 pi2 )]]   

= CN, 3 [(Δ(N-3) - Δ(N-2)) - f1*/(N-1) - 2 f2/(N(N-1))]  according to equations (A2.1) and  (A1.2) 

where f1* is the number of singletons that would be recorded in a sample of size (N - 1) 
instead of N.   
According to equations (A1.3) & (A1.4):   

f1*  =  - (N-1) Δ'(N-1)  =  - CN-1, 1  Δ'(N-1)    and    f2  =  [N(N-1)/2] Δ''(N)   = CN-1, 2  Δ''(N)     (A1.5) 

where Δ' (N-1)  is the first derivate of  Δ(N) with respect to N, at point (N-1).   Then,   

f3  = CN, 3 [(Δ(N-3) - Δ(N-2)) + Δ'(N-1) - Δ''(N) ]   =  CN, 3 [ -Δ'(N-2) + Δ'(N-1) - Δ''(N) ]   

=  CN, 3 [ Δ''(N-1) - Δ''(N) ]  = CN,3 [ - ∂ Δ''(N)/∂N ] =  CN, 3 [ - ∂3 Δ(N)/∂N3] = CN, 3 Δ'''(N) 

where Δ'''(N) is the third derivative of  Δ(N) with respect to N.  Thus : 

f3 =  - CN, 3 Δ'''(N)              (A1.6) 

Now, generalising for the number fx of species recorded x times in the sample: 
►  fx = CN, x  Σi [(1-pi)N-x pix]    according to equation (A1.2), 

= CN, x Σi [(1-pi)N-x (1 - (1 - pix)) ]  = CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x (1 - pix)]]   

= CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x (1 - pi)( Σj pij )]]    

with Σj  as the summation from j = 0 to  j = x-1. It comes: 

fx  = CN, x [Σi (1-pi)N-x - Σi [(1-pi)N-x+1 ( Σj pij)]]   

= CN, x [Σi (1-pi)N-x - Σi (1-pi) N-x+1 - Σk [(Σi (1-pi) N-x+1 pik )]] 

 with Σk  as the summation from k = 1 to k = x-1 ; that is: 

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk (fk*/C(N-x+1+k), k )]  according to equations (A1.1) and  (A1.2)) 

where C(N-x+1+k), k = (N-x+1+k)!/k!/(N-x+1)! and fk* is the expected number of species  

recorded k times during a sampling of size (N-x+1+k)  (instead of size N).   

The same demonstration, which yields previously the expression of f1* above (equation 
(A1.5)), applies for the fk* (with k up to x-1) and gives:  
   

fk* = (-1)k (C(N-x+1+k), k ) Δ(k)(N-x+1+k)         (A1.7) 

where Δ (k)(N-x+1+k)  is the kth derivate of  Δ(N) with respect to N, at point (N-x+1+k).   Then,   

fx  = CN, x [(Δ(N-x) - Δ(N-x+1)) - Σk ((-1)k Δ(k)(N-x+1+k) )]            , 

which finally yields :  

fx  = CN, x [(-1)x (∂Δ(x-1)(N)/∂N) ] = CN, x [(-1)x (∂xΔ(N)/∂Nx)].   That is:  

fx = (-1)x CN, x Δ(x)(N)  = (-1)x CN, x [∂xΔ (N)/∂Nx]      (A1.8)  

where  [∂x Δ (N)/∂Nx] is the xth derivative of  Δ(N) with respect to N, at point N.    
Conversely: 

[∂x Δ(N)/∂Nx] = (-1)x fx /CN, x                   (A1.9)  
Note that, in practice, leaving aside the beginning of sampling, N rapidly increases much 

greater than x, so that the preceding equation simplifies as: 
 

[∂x Δ(N)/∂Nx] = (– 1)x (x!/Nx) fx(N)                   (A1.10) 
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In particular: 
[∂Δ(N)/∂N] = f1(N)/N               (A1.11) 
[∂2 Δ(N)/∂N2] = 2 f2(N)/N2      (A1.12)                

 

This relation (A1.9) has general relevance since it does not involve any specific assumption 
relative to either (i) the particular shape of the distribution of species abundances in the 
sampled assemblage of species or (ii) the particular shape of the species accumulation rate. 
Accordingly, this relation constrains any theoretical form of species accumulation curves. 
As already mentioned, the shape of the species accumulation curve is entirely defined (at 
any value of sample size N) by the series of the successive derivatives [∂xR(N)/∂Nx] of the 
predicted number R(N) of recorded species for a sample of size N: 
 

[∂xR(N)/∂Nx] = (-1)(x-1) fx /CN, x                   (A1.13)  
with [∂xR(N)/∂Nx] as the xth derivative of  R(N) with respect to N, at point N and CN, x = N!/(N-
x)!/x! (since the number of recorded species R(N) is equal to the total species richness S 
minus the expected number of missed species Δ(N)).  
As above, equation (A1.13) simplifies in practice as: 
 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A1.14) 
 

Equation (A1.13) makes quantitatively explicit the dependence of the shape of the species 
accumulation curve (expressed by the series of the successive derivatives [∂xR(N)/∂Nx] of 
R(N)) upon the shape of the distribution of species abundances in the sampled assemblage 
of species. 

 

A2 - An alternative derivation of the relationship between ∂xR(N)/∂Nx and fx(N) 

Consider a sample of size N (N individuals collected) extracted from an assemblage of S 

species and let Gi be the group comprising those species collected i-times and fi(N) their 

number in Gi. The number of collected individuals in group Gi is thus i.fi(N), that is a 

proportion i.fi(N)/N of all individuals collected in the sample. Now, each newly collected 

individual will either belong to a new species (probability 1.f1/N = f1/N) or to an already 

collected species (probability 1– f1/N), according to [8]. In the latter case, the proportion 

i.fi(N)/N of individuals within the group Gi accounts for the probability that the newly 

collected individual will contribute to increase by one the number of species that belong to 

the group Gi (that is will generate a transition [i-1 → i] under which the species to which it 

belongs leaves the group Gi-1 to join the group Gi). Likewise, the probability that the newly 

collected individual will contribute to reduce by one the number of species that belong to 

the group Gi (that is will generate a transition [i → i+1] under which the species leaves the 

group Gi to join the group Gi+1) is (i+1).fi+1(N)/N. 

Accordingly, for i > 1: 

 ∂fi(N)/∂N  =  [i.fi(N)/N – (i+1).fi+1(N)/N](1 – f1/N)    (A2.0) 

Leaving aside the very beginning of sampling, and thus considering values of sample size N 

substantially higher than f1, it comes: 

                   ∂fi(N)/∂N  =  i.fi(N)/N – (i+1).fi+1(N)/N                 (A2.1) 

Let consider now the Species Accumulation Curve R(N), that is the number R(N) of species 

that have been recorded in a sample of size N. The probability that a newly collected 

individual belongs to a still unrecorded species corresponds to the probability of the 

transition [0 → 1], equal to i.fi(N)/N with i = 1, that is: f1(N)/N (as already mentioned).  

Accordingly, the first derivative of the Species Accumulation Curve R(N) at point N is   

∂R(N)/∂N = f1(N)/N                             (A2.2) 
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In turn, as f1(N) = N.∂R(N)/∂N (from equation (A2.2)) it comes:                              

∂f1(N)/∂N = ∂[N(∂R(N)/∂N)]/∂N = N(∂2R(N)/∂N2) + ∂R(N)/∂N 
 

On the other hand, according to equation (A2.1):  

∂f1(N)/∂N = 1.f1(N)/N – 2.f2(N)/N  =  f1(N)/N – 2f2(N)/N,  

and therefore: 

N(∂2R(N)/∂N2) + ∂R(N)/∂N =  f1(N)/N – 2f2(N)/N 
 

And as ∂R(N)/∂N = f1(N)/N according to equation (A2.2): 

∂2R(N)/∂N2  =  – 2f2(N)/N2                       (A2.3) 
 

Likewise, as f2(N) = –N2/2.(∂2R(N)/∂N2), it comes: 

∂f2(N)/∂N  =  ∂[–N2/2.(∂2R(N)/∂N2)]/∂N  =  – N(∂2R(N)/∂N2) – N2/2.(∂3R(N)/∂N3) 
 

As ∂f2(N)/∂N = 2f2(N)/N – 3f3(N)/N,  according to equation (A2.1), it comes: 

– N(∂2R(N) /∂N2) – N2/2.(∂3R(N)/∂N3) = 2f2(N)/N – 3f3(N)/N 
 

and as ∂2R(N)/∂N2 = – 2f2(N)/N2, according to equation (A2.3), it comes: 

∂3R(N)/∂N3  =  + 6f3(N)/N3                       (A2.4) 

More generally: 

∂xR(N)/∂Nx  =  (– 1)(x-1) (x!/Nx) fx(N)                   (A2.5) 

 

 
 

 


