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Abstract

A set S of vertices in a graph G = (V (G), E(G)) is a hinge dominating set if every vertex

u ∈ V ∖ S is adjacent to some vertex v ∈ S and a vertex w ∈ V ∖ S such that (v, w) is not an

edge in E(G). The hinge domination number γh(G) is the minimum size of a hinged dominating

set. A set S is called a total dominating set of G if for every vertex in V , including those in S is

adjacent to at least one vertex in S. The cardinality of a minimum total dominating set in G is

called the total domination number of G and denoted as γt(G). In this study, a new parameter

called hinged total dominating set was introduced and defined as, a hinge total dominating set

of a graph G is a set S of vertices of G such that S is both a hinge dominating set and total

dominating set. The hinge total domination number, γht(G), is the minimum cardinality of a

hinge total dominating set of G. We initiate a study of hinge total dominating set and present

its characterization. In addition, we also determine the exact values of hinge total domination

number on some graph families.
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1 Introduction

Total domination in graphs was introduced by Cockayne, Dawes and Hedetniemi [9]. The literature
on this subject has been surveyed and detailed in the two excellent domination books by Haynes,
Hedetniemi, and Slater who did an outstanding job of unifying results scattered through some 1200
domination papers. Much interest in total domination in graphs has recently arisen from a computer
program Graffiti.pc that has generated several hundred conjectures on total domination [14].

On one hand, hinge domination in graphs is a new parameter for domination that was recently
accepted and published last 2018. It was introduced by Kavitha B.N. and Indrani Kelkar and is
still open for many possible studies [15].

In this paper, we combine the hinge domination and total domination of graphs to form a new
variation called hinge total domination of graphs. Moreover, this paper investigates how the hinge
total dominating set behaves in different families of graphs. Specifically, we intend to accomplish
the following:

isaga
Highlight

isaga
Highlight



(i) Characterize the hinge total dominating set of some families of graphs namely; path, cycle,
star graph, complete bipartite graphs, and complete graphs; and

(ii) Find the exact values of the hinge total domination number of some families of graphs namely;
path, cycle, star graph, complete bipartite graphs, complete graphs, and wheel graphs.

All graphs under considered here are nontrivial, simple, undirected, and finite. For graph theoretic
terminologies not specifically defined nor described in this study, please refer to [7].

2 Preliminary Notes

Definition 2.1. [7] A vertex of degree 0 is referred to as an isolated vertex and a vertex of degree
1 is an end-vertex or a leaf.

Definition 2.2. [11] A support vertex is the neighbor of a leaf. If a vertex v is adjacent to two or
more leaves, v is said to be a strong support vertex

Definition 2.3. [2] A graph H is a subgraph of a graph G, denoted by H ⊆ G, if the vertex
set V (H) of H is contained in the vertex set V (G) of G and all edges of H are edges in G, i.e,
V (H) ⊆ V (G) and E(H) ⊆ E(G). For any vertex subset S ⊆ V (G), the induced subgraph by S
denoted by ⟨S⟩G contains all the edges of E(G) whose extremities belong to S.

Definition 2.4. [7] A set S of vertices of G is a dominating set if every vertex in V (G) ∖ S is
adjacent to at least one vertex in S. The minimum cardinality among the dominating sets of G is
called the domination number of G and is denoted by γ(G) . A dominating set of cardinality γ(G)
is then referred to as a minimum dominating set.

Definition 2.5. [16] A set S of vertices in a graph G = (V (G), E(G)) is a hinge dominating set if
every vertex u ∈ V ∖ S is adjacent to some vertex v ∈ S and a vertex w ∈ V ∖ S such that (v, w)
is not an edge in E(G). The hinge domination number γh(G) is the minimum size of a hinged
dominating set.

Definition 2.6. [13] A set S is called a total dominating set of G if for every vertex in V , including
those in S is adjacent to at least one vertex in S. The cardinality of a minimum total dominating set
in G is called the total domination number of G and denoted γt(G). [17] In addition,a dominating
set S of a graph G is a total dominating set if the induced subgraph ⟨S⟩ has no isolated vertices.

Example 2.1. In Figure 1, notice that the γt(G) = 4 and γh(G) = 2. Hence, in C6, γt(G) > γh(G).

Figure 1: Total Domination and Hinge Domination on C6

Example 2.2. In Figure 2, notice that the γh(G) = 3 and γt(G) = 2. Hence, in C3, γh(G) > γt(G).
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Figure 2: Hinge Domination and Total Domination on C3

Example 2.3. Consider the path P6 below. By the definition of a hinge dominating set and total
dominating set, it is visible that the set S = {v0, v1, v4, v5} is a hinge dominating set and at the
same time a total domination set. Hence, S is a hinge total dominating set of P6. This implies
that γht(P6) ≤ 4. But no set with three or lesser number of vertices can hinge totally dominate P6,
meaning γht(P6) > 3 or γht(P6) ≥ 4. Therefore, we have γht(P6) = 4.

Figure 3: Hinge Total Domination on P6

3 Main Results

Definition 3.1. A hinge total dominating set of a graph G is a set S of vertices of G such that
S is both a hinge dominating set and total dominating set. The hinge total domination number,
γht(G), is the minimum cardinality of a hinge total dominating set of G.

3.1 Some Realization Results

Theorem 3.1. Let G = (V (G), E(G)) be a nontrivial connected graph with leaf vertices v. If
S ⊆ V (G) is a nonempty hinge total dominating set of G, then S contains all the leaf vertices of G.

Proof. Let v ∈ V (G) be a leaf vertex of G. On a contrary, assume that v /∈ S, then v ∈ V (G)∖ S.
Since a leaf vertex is only adjacent to one support vertex, then vertex v cannot be adjacent to
a vertex in S and a vertex in V (G) ∖ S. This means that S is not a hinge dominating set, a
contradiction to the assumption that S is a hinge dominating set of G. Thus, v ∈ S. □

Corollary 3.2. If S is a nonempty hinge total dominating set of G with leaf vertices, then S
contains all support vertices of G.

Proof. Let y ∈ V (G) be the support vertices of G. By Theorem 3.1, all leaf vertices are in S.
Suppose y /∈ S, then all leaf vertices are not adjacent to any vertex that is in S. This means that S
is not a total dominating set, a contradiction to the assumption that S is a hinge total dominating
set of G. Thus, y ∈ S. □

Remark 3.1. For any nontrivial, connected graph G = (V (G), E(G)), the set V (G) is a hinge total
dominating set.

3.2 Path Graphs

Theorem 3.3. Let Pn be a path graph, n ≥ 6, with vertex set V (Pn). Then S ⊂ V (Pn) is a
nonempty hinge total dominating set if and only if the following holds:

(i) The leaf and support vertices of Pn are in S;

(ii) The induced subgraph, ⟨V (Pn)∖ S⟩, form a class of P2;
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(iii) The induced subgraph, ⟨S⟩, has no trivial graph.

Proof. Since Pn, n ≥ 6, is a nontrivial connected graph, by Theorem 3.1 and Corollary 3.2, the leaf
and support vertices of Pn are in S. This proves (i).

Let v ∈ ⟨V (Pn) ∖ S⟩ and S be a nonempty hinge total dominating set of Pn. Then, |N(v) ∩
⟨V (Pn) ∖ S⟩| = 1 and |N(v) ∩ S| = 1. This implies deg (v) = 1. Since v is arbitrary, thus for all
v ∈ ⟨V (Pn) ∖ S⟩, deg (v) = 1. So, the induced subgraph, ⟨V (Pn) ∖ S⟩, form a class of P2. This
proves (ii).

Suppose the induced subgraph, ⟨S⟩ has an isolated vertex. This implies that there exist a
vertex a in the vertex set of ⟨S⟩ that is not adjacent to some b ∈ S. This means that S is not a
total dominating set, a contradiction since S is a hinge total dominating set. Hence, the ⟨S⟩ has
no trivial graph. This proves (iii).

The converse immediately follows. □

Remark 3.2. For a path Pn of order 2 ≤ n ≤ 5, V (Pn) is the hinge total dominating set.

Theorem 3.4. If Pn is a path graph of order n ≥ 6, then

γht(Pn) =



n+4
2

if n ≡ 0 (mod 4) ;

n+5
2

if n ≡ 1 (mod 4) ;

n+2
2

if n ≡ 2 (mod 4) ;

n+3
2

if n ≡ 3 (mod 4) .

Proof. Let Pn be a path graph of order n ≥ 6 and V (Pn) = {v0, v1, ..., vn−1}. Assume S ⊂ V (Pn)
is nonempty set hinge total dominating set of Pn. Since Pn is a connected graph, by Theorem 3.1
and Corollary 3.2, {v0, v1, vn−2, vn−1} is in S.

If n ≡ 0 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−4
4

}. Hence,
V4i = {v0, v4, v8, ..., vn−4} and V4i+1 = {v1, v5, v9, ..., vn−3}. Notice that |V4i| = n−4

4
+ 1 = |V4i+1|.

The remaining vertices that is not covered by V4i and V4i+1 are vn−2 and vn−1. By Theorem 3.1
and Corollary 3.2, {vn−2, vn−1} are in S. Thus,

|S| = |V4i|+ |V4i+1|+ |{vn−2, vn−1}| =
n− 4

4
+ 1 +

n− 4

4
+ 1 + 2

=
n− 4

4
+ 1 +

n− 4

4
+ 1 + 2 =

n− 4 + 4 + n− 4 + 4 + 8

4

=
2n+ 8

4
=

n+ 4

2
.

If n ≡ 1 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−5
4

}. Hence,
V4i = {v0, v4, v8, ..., vn−5} and V4i+1 = {v1, v5, v9, ..., vn−4}. Notice that |V4i| = n−5

4
+ 1 = |V4i+1|.

The remaining vertices that is not covered by vertex sets V4i and V4i+1 are vn−3, vn−2 and vn−1.
By Theorem 3.1 and Corollary 3.2, {vn−2, vn−1} are in S. Now, suppose vn−3 /∈ S. Then, vn−3 ∈
V (Pn) ∖ S is not adjacent to all vertices of V (Pn) ∖ S, which is a contradiction since S is a hinge



total dominating set. Hence, vn−3 ∈ S. Therefore,

|S| = |V4i|+ |V4i+1|+ |{vn−3, vn−2, vn−1}| =
n− 5

4
+ 1 +

n− 5

4
+ 1 + 3

=
n− 5 + 4 + n− 5 + 4 + 12

4
=

2n+ 10

4

=
n+ 5

2
.

If n ≡ 2 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−2
4

}. Hence,
V4i = {v0, v4, v8, ..., vn−2} and V4i+1 = {v1, v5, v9, ..., vn−1}. Notice that |V4i| = n−2

4
+ 1 = |V4i+1|.

All vertices are covered by vertex sets V4i and V4i+1. Therefore,

|S| = |V4i|+ |V4i+1| =
n− 2

4
+ 1 +

n− 2

4
+ 1

=
n− 2 + 4 + n− 2 + 4

4
=

2n+ 4

4

=
n+ 2

2
.

If n ≡ 3 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−3
4

}. Hence,
V4i = {v0, v4, v8, ..., vn−3} and V4i+1 = {v1, v5, v9, ..., vn−2}. Notice that |V4i| = n−3

4
+ 1 = |V4i+1|.

The remaining vertex that is not covered by remark 3 is vn−1. By Theorem 3.1, vn−1 is in S.
Therefore,

|S| = |V4i|+ |V4i+1|+ |{vn−1}| =
n− 3

4
+ 1 +

n− 3

4
+ 1 + 1

=
n− 3 + 4 + n− 3 + 4 + 4

4
=

2n+ 6

4

=
n+ 3

2
.

Furthermore, let x be an arbitrary element in S. Suppose we have S ∖ {x}. Then the induced
subgraph ⟨V (Pn) ∖ S⟩ now contains either P1 or P3, a contradiction to the second condition of
Theorem 3.3. This means that S is not a hinge total dominating set. Hence, S is a hinge total
dominating set with minimum cardinality, |S| = γht(Pn). Therefore, the results follow. □

3.3 Cycle Graph

Theorem 3.5. Let Cn be a cycle graph, n ≥ 4, with vertex set V (Cn). Then S ⊂ V (Cn) is
nonempty set hinge total dominating set if and only if the following holds:

(i) The induced subgraph, ⟨V (Cn)∖ S⟩, form a class of P2;

(ii) The induced subgraph, ⟨S⟩, has no trivial graph.

Proof. Let v ∈ ⟨V (Cn)∖ S⟩ and S be a nonempty hinge total dominating set of Cn. Then,
|N(v) ∩ ⟨V (Cn) ∖ S⟩| = 1 and N(v) ∩ S| = 1. This implies deg (v) = 1. Since v is arbitrary, thus
for all v ∈ ⟨V (Cn) ∖ S⟩, deg (v) = 1. So, the induced subgraph, ⟨V (Cn) ∖ S⟩, form a class of P2.
This proves (ii).

Suppose the induced subgraph, ⟨S⟩ has a trivial graph. This implies that there exist a vertex
a in the vertex set of ⟨S⟩ that is not adjacent to some b ∈ S. This means that S is not a total
dominating set, a contraction since S is a hinge total dominating set. Hence, the ⟨S⟩ has no trivial
graph. This proves (ii).

The converse immediately follows. □

Remark 3.3. For a cycle graph C3, γht(C3) = 3.



Theorem 3.6. If Cn is a cycle graph of order n ≥ 4, then

γht(Cn) =



n
2

if n ≡ 0 (mod 4) ;

n+1
2

if n ≡ 1 (mod 4) ;

n+2
2

if n ≡ 2 (mod 4) ;

n+3
2

if n ≡ 3 (mod 4) .

Proof. Let Cn be a path graph of order n ≥ 4 and V (Cn) = {v0, v1, ..., vn−1}. Assume S ⊂ V (Cn)
to be nonempty hinge total dominating set of Cn.

If n ≡ 0 (mod 4) , then S contains vertex sets V4i and V4i+1 where
i = {0, 1, 2, ..., n

4
}. Hence, V4i = {v0, v4, v8, ..., vn} and V4i+1 = {v1, v5, v9, ..., vn+1}. Notice that

|V4i| = n
4
+ 1 = |V4i+1|. Since v0 = vn and v1 = vn+1, it necessary to subtract 2 in the cardinality

of S to avoid counting the same vertex twice. Therefore,

|S| = |V4i|+ |V4i+1| − 2 =
n

4
+ 1 +

n

4
+ 1− 2

=
n+ 4 + n+ 4− 8

4
=

2n

4

=
n

2
.

If n ≡ 1 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−1
4

}. Hence,
V4i = {v0, v4, v8, ..., vn−1} and V4i+1 = {v1, v5, v9, ..., vn}. Notice that |V4i| = n−1

4
+ 1 = |V4i+1|.

Since v0 = vn, it necessary to subtract 1 in the cardinality of S to avoid counting the same vertex
twice.Therefore,

|S| = |V4i|+ |V4i+1| − 1 =
n− 1

4
+ 1 +

n− 1

4
+ 1− 1

=
n− 1 + 4 + n− 1 + 4− 4

4
=

2n+ 2

4

=
n+ 1

2
.

If n ≡ 2 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−2
4

}. Hence,
V4i = {v0, v4, v8, ..., vn−2} and V4i+1 = {v1, v5, v9, ..., vn−1}. Notice that |V4i| = n−2

4
+ 1 = |V4i+1|.

Since no vertex is repeated, therefore,

|S| = |V4i|+ |V4i+1| =
n− 2

4
+ 1 +

n− 2

4
+ 1

=
n− 2 + 4 + n− 2 + 4

4
=

2n+ 4

4

=
n+ 2

2
.

If n ≡ 3 (mod 4) , then S contains vertex sets V4i and V4i+1 where i = {0, 1, 2, ..., n−3
4

}.
Hence, V4i = {v0, v4, v8, ..., vn−3} and V4i+1 = {v1, v5, v9, ..., vn−2}. Notice that |V4i| = n−3

4
+2 and

|V4i+1| = n−3
4

+1. In addition, the vertex vn−1 is also in S since S∖ {v} would make S not a hinge
dominating set, a contradiction. Now, notice that v1 = vn+1, so, it necessary to subtract 1 in the



cardinality of S to avoid counting the same vertex twice. Therefore,

|S| = |V4i|+ |V4i+1|+ |{vn−1}| − 1 =
n− 3

4
+ 2 +

n− 3

4
+ 1 + 1− 1

=
n− 3 + 8 + n− 3 + 4 + 4− 4

4
=

2n+ 6

4

=
n+ 3

2
.

Furthermore, let x be an arbitrary element in S. Suppose we have S ∖ {x} . Then the induced
subgraph ⟨V (Cn) ∖ S⟩ now contains either P1 or P3, a contradiction to the second condition of
Theorem 3.3. This means that S is not a hinge total dominating set. Hence, S is a hinge total
dominating set with minimum cardinality, |S| = γht(Cn). Therefore, the results follow. □

3.4 Star Graph

Theorem 3.7. For any star graph K1,n, n ≥ 1, γht(K1,n) = n+ 1.

Proof. Let K1,n be a star graph with V (K1,n) = {x, v0, v1, ..., vn−1}. Since K1,n are composed of
leaf vertices {v0, v1, ..., vn−1} and support vertex {x}, by Theorem 3.1 and Corollary 3.2, V (K1,n)
must be in the hinge total dominatimg set S. Therefore, γht(K1,n) = |S| = n+ 1. □

3.5 Complete Bipartite Graph

Theorem 3.8. Let Km,n be a complete bipartite graph, m,n ≥ 2 with partite sets A and B such
that |A| = m and |B| = n. Then, S ⊂ V (Km,n) is nonempty hinge total dominating set if and only
if the following holds.

(i) 1 ≤ |S ∩A| and 1 ≤ |S ∩B|;

(ii) |S ∩A| ≤ m− 1 and |S ∩B| ≤ n− 1.

Proof. Without loss of generality, suppose all vertices from partite set A are not in S. Then, all
vertices in B that is in S are not adjacent to vertices in S. This means that S is not a total
dominating set of Km,n, a contradiction to the assumption that S is a hinge total dominating set.
Hence, atleast one vertex from A must be in S. Therefore, 1 ≤ |S ∩A|. The same is true for partite
set B, so, 1 ≤ |S ∩ B|. This proves (i). Now, suppose all vertices from partite set A are in S.
Then, all vertices in B that is not in S are not adjacent to vertices in Km,n ∖ S. This means that
S is not a hinge dominating set of Km,n, a contradiction to the assumption that S is a hinge total
dominating set. Hence, at least one vertex from A must not be in S. Therefore, |S ∩ A| ≤ m − 1.
The same is true for partite set B, so, |S ∩B| ≤ n− 1. This proves (ii).

The converse immediately follows. □

Theorem 3.9. If Km,n is a complete bipartite graph with m,n ≥ 2, then γht(Km,n) = 2.

Proof. Let Km,n be a graph with partite sets A and B such that m,n ≥ 2. Assume S to be a hinge
total dominating set of Km,n.

Suppose γht(Km,n) = 1 where a ∈ A is the only element of S. Then, vertices A ∖ {a} is not
adjacent to any vertex in S. This implies that S is not a hinge dominating set. In addition, vertex
a ∈ S i not adjacent to any vertices in S which implies that S is not a total dominating set. This is
a contradiction since S is a hinge total dominating set. Hence, γht(Km,n) ̸= 1 or γht(Km,n) ≥ 2.
Since we can find vertices a ∈ A and b ∈ B that makes the set S = {a, b} a hinge total dominating
set, hence, γht(Km,n) ≤ 2. Therefore, γht(Km,n) = 2. □



3.6 Complete Graph

Theorem 3.10. For any complete graph Kn, n ≥ 2, γht(Kn) = n.

Proof. Assume S to be a hinge total dominating set of Kn. Suppose γht(Kn) < n. Then there
exists a vertex x ∈ V (Kn) ∖ S. Since all the vertices in Kn are adjacent, then no vertex x can
make S a hinge dominating set. This is a contradiction since S is a hinge dominating set. Hence,
γht(Kn) ≥ n. By Remark 3.1, all vertices of Kn can make S a hinge total dominating set. Hence,
γht(Kn) ≤ n. Therefore, γht(Kn) = n. □

3.7 Wheel Graph

A wheel graph W3 is the same as a complete graph K4. By Theorem 3.10, γht(K4) = 4. Hence,
by transitive property of equality, γht(W3) = 4.

Remark 3.4. For a wheel graph W3, γht(W3) = 4.

The next result presents the parameter of the wheel graph which is equivalent to the hinge total
doination of cycle graphs.

Theorem 3.11. For any wheel graph Wn, n ≥ 4, γht(Wn) = γht(Cn) .

Proof. By definition, wheel graph is a join of a cycle graph Cn and a trivial graph K1. Assume
S ⊆ V (Wn) is a nonempty hinge total dominating set of Wn. Now, by Theorem 3.6, the γht(Cn)
was determined. Suppose x ∈ K1 is not in S, then no condition was defied in the assumption of S.
The same result holds if x ∈ K1 is in S. With this, the least number of vertices in Wn is the same
as the least number of vertices in Cn. Therefore, γht(Wn) = γht(Cn) . □

4 Conclusion and Recommendation

Hinge domination has been used to create better network communication [16] while Total dominations
has been used to represent network design in minimizing trade-off between resource allocation and
redundancy [13]. In this study, we combined these types of domination and introduced Hinge
Total domination. We present some characterizations and exact values for a hinge total domination
number on some graph families namely; path graphs, cycle graphs, star graphs, complete bipartite
graphs, complete graphs, and wheel graphs. Moreover, some vertices that is always present in any
hinge total dominating set was also identified.

It is recommended to investigate further the hinge total domination in the binary operations of
graphs.
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