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Abstract 

This work proposes a numerical approach to model 2D pollutant dispersion in a canal using the famous 

advection-reaction diffusion equations. The advection-dispersion equation model describes transport and 

diffusion problems as seen in mixing conservative, nonbuoyant pollutants deposited into a stream or canal. The 

canal consisted of a narrow channel that allows water inflow through an entry opening and outflow through an 

exit opening. We obtain stability conditions for finite difference schemes and show the existence and uniqueness 

of solutions for the finite element method. The simulations show that the concentration of pollutants in the canal 

is controlled by the divergence term and increases in the direction of fluid flow. 
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1. Introduction 

The adverse effects of pollution on man and the environment have been noticeable for centuries but have 

assumed significant heights in recent years due to the industrial revolution. Pollutions such as air pollution and 

water pollution pose severe threats to plants and animals, including humans. Thus, the possibility of measuring 

the concentration of pollutants and understanding the dynamics of dispersion in the particular medium of 

concern would make it possible to check on the adverse effects. Carrying out such analytical tasks may be 

physically tedious and may not capture the details and critical aspects of the process. Hence, the importance of 

mathematical models in proffering solutions to real-life problems. A mathematical model comprises 

independent and dependent variables and a system of relationships in the form of equation or inequality 

between the variables. The problem is modelled by a governing mathematical equation that considers the crucial 

aspects of the problem. Then where analytical solutions are intractable, numerical methods are adopted to solve 

the equation.   

In [1], mathematical modelling of pollutant dispersion in natural streams is proposed. The dispersion is 

considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM), 

which provides a significant gain in computing time, is used for numerical computations. In [2], the dispersion 

1D longitudinal flow has been studied extensively. In [3], the authors proposed calibrating pollutant dispersion 

in 1D hydraulic models of river networks utilizing a central difference scheme. The river networks were 

modelled using Mage. 



 

 

In [4], a numerical technique has been employed to study and analyze water quality in a reservoir. 2D models 

have been used to model the reservoir's pollutant concentration. The hydrodynamic and dispersion models used 

the Lax-Wendroff method for water flow and its elevation. A forward difference scheme in time and a central 

spatial scheme simulated pollutant concentration. In [5], mathematical modelling of water pollutant control in a 

connected reservoir system is proposed using an implicit finite difference scheme. The reservoir system was in 

the form of two ponds connected by a tunnel. Two mathematical models were employed in the simulation. The 

first model was a static dispersion model that modelled the reservoir system's pollutant level. The second model 

controlled the pollution levels within the ponds. In [6], the researchers developed two techniques for measuring 

salinity intrusion in a stream. The first method used the forward time centred space scheme, while the second 

adopted the MacCormack scheme with function interpolation at the boundary points. Comparing the result with 

the exact solution indicated that the MacCormack scheme is more efficient.  

In [7], the authors modelled the space-time effect of water pollution resulting from industrial wastes. They 

employed a two-dimensional numerical algorithm to solve the equations of mass concentration, momentum, and 

chemical concentration inflow. The output indicated that pollutants flowed downstream, causing more areas to 

be polluted but with less concentration. This has a devastating effect on the aquatic life in the water and water 

usability. In [8], the researchers employed numerical simulations and in-situ sampling to investigate the space-

time changes of non-point source pollution in a small urban locality. The simulations identified residential, 

industrial, and commercial lands as the main sources of pollutant loading and pollution-prone areas. The authors 

in [9] modelled the concentration of pollution and river water quality using coupled reaction advection-diffusion 

equations for the pollutant and dissolved oxygen concentration. Numerical solutions of the model indicated that 

the higher the diffusion and reaction coefficients, the faster the pollutants are discharged from the river leading 

to river purity. Other numerical approaches used to solve similar problems to those considered in this study 

include variational iteration method, and modified homotopy perturbation method [10, 11].   

This study observes pollutants' behaviour in a canal through numerical simulations of a two-dimensional 

advection-dispersion equation. The numerical solutions of the equation were obtained using both explicit and 

implicit difference schemes and the finite element method. Firstly, the finite difference method was 

implemented. We discretized the model equation using the theta scheme and obtained the stability conditions 

for the finite difference schemes. Simulations of pollutant dispersion were carried out with and without 

including the divergence term. Secondly, we consider a rectangular domain. The solution of the model equation 

and the boundary conditions is obtained with the aid of the FreeFem++ software [12]. We compute the 

approximate solution by a finite element method of Lagrange type P1 for the spatial discretization. An Euler 



 

 

method is used for the time discretization. The interest of this method is the possibility of considering 

unstructured geometries. 

2. Two-Dimensional Model 

2.1. The Governing Equation 

In this section, we consider the parabolic equation. The mathematical model describing the transport and 

dispersion processes is a two-dimensional advection-dispersion equation (ADE); 
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2.2. Initial and Boundary conditions 

The initial conditions are 
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and the boundary conditions are  
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where          is the function that gives the concentration of a pollutant at each point       at time  . We 

consider a bounded media      , with the border    divided into three parts:    the walls,    the entering 

boundary of the non-polluted fluid and    the outer boundary. The velocity of the fluid is given by the vector 

function         , which is tangential to the horizontal walls: 
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where          is the outward normal to   at the point           is the dispersion constant and a function 

          defined in          models the outward flux of pollutant. Moreover, the function          acts as a 

source term and models the injection of the pollutant in the canal. 

We will limit to the following special case:  

                                   and             ,  

where   is a constant. We will always take the right-hand side f with limited support in space (for example, a 

Dirac), and we make simulations with the following possible values: 
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3. Numerical Technique 

3.1. Finite Difference Implementation Using θ-Scheme 

The equation (1) is approximated by a finite difference method in space and the  -scheme for the time 

discretization. Then the values contours of the solution are traced for different right-hand side  . Furthermore, 

the solutions are compared for different values of θ.  

The solution domain of the problem is covered by a mesh of grid lines [13]. The grid point           is defined 

by         ,          for all                 , and                 .  

The  -scheme is given by 

  

  
       

       

  
                  

 
 

  
                

      
 

  
      

 

  
   



 

 

                      

Given that                  , and taking   as a constant, the problem in equation ((Error! No text of specified 

style in document..1) becomes 
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Discretizing equation (Error! No text of specified style in document..6),gives: 
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Simplifying further and taking the value of θ = 1 the Euler Explicit method, we have our discretization as 

follows; 
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Analyzing the stability using the Fourier function; 
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where k denotes the complex part. Let             and             . Now, substituting all these in 

equation ((Error! No text of specified style in document..8) and setting     we have 
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Then we have 
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where   is referred to as the symbol of the difference scheme, it is the multiplier between step   and step    
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Applying                          ,       times yields              .  

Then we have                    . 

Thus the condition for stability is 

 

Thus, for a given value of    and   , the allowed value of    must be such that it satisfies equation (Error! No 

text of specified style in document..13). Also, if         we have,  

     
 

 
      

Taking the time and the divergence term is zero, we have a reduced scheme as 
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We have the finite difference mesh as follows; 

 

Figure 1: finite-difference mesh for the pollutant problem. 

3.2. Iterative Method for Boundary Value Problem 

Applying the boundary conditions in order to write out the algorithm to solve this problem, we have the 

following set of equations; 
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Implementing the above algorithm in Scilab, we have the following: 

 

(a) solution of the Poisson problem  (b) contour for the Poisson problem 

Figure 2: solution of the Poisson problem with                 



 

 

 

(a) solution of the problem with the divergence term (b) contour of the problem with divergence term 

Figure 3: Solution of the problem with                 

Figure 2 shows the solution to the Poisson part of the problem. It is observed that the concentration of the 

pollutant is higher inside the canal. Figure 3 shows the solution when the divergence term is included. The 

concentration of the pollutant is higher in the  -direction because the divergence term acts in this direction.  

3.2.1. Explicit Euler Method 

Now we consider the entire equation, which is the explicit Euler scheme. We have the scheme as follows; 
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Equation (Error! No text of specified style in document..15) can be written as 
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a) solution of the problem for explicit Euler (b) contour of the problem for explicit Euler 

Figure 4: Solution to the pollutant problem for explicit Euler with                 

It is noted from Figure 4 above that as the source term increases, the pollutant increases, and as such, there is 

more concentration inside the canal. The pollutant increases with time until it reaches a maximum threshold, 

after which it remains constant.  

3.2.2. Implicit Euler Method  

Taking        we have the implicit Euler. We have the discretized scheme as 
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From the scheme (Error! No text of specified style in document..16), we have a system as 

      
 

  
             

where   is the right-hand side of the equation and bc is a contribution from the boundary condition,   is the 

non-symmetric matrix which is of the form. For example, for a     matrix, we have a matrix of the form: 



 

 

  

 
 
 
 
 
 
 
 
 
         

                        
                

        

        

        
                            
                          
                         

   

        

        

        

                 

               

                       
        

        

        

   

                              
                               
                                

        

        

        

                      

                
                             

 
 
 
 
 
 
 
 
 

  

where, 

  
 

  
 

  

   
 

 

   
 

 

  
   

    
  

   
 

 

  
    

  
 

  
 

 

   
 

 

   
 

 

  
   

  
 

  
 

 

   
 

  

   
 

 

  
  

  
 

  
 

  

   
 

  

   
 

 

  
  

Applying the Gauss-Seidel method within the time loop, the convergence rate was found to be faster. The 

solution for the Implicit Euler is as follows:  

 

a) solution of the problem for implicit Euler (b) contour of the problem for Implicit Euler 

Figure 5: Solution to the pollutant problem implicit scheme with               . 



 

 

From Figure 5, it is noted that the implicit Euler scheme gives a better solution than the explicit Euler scheme. 

3.2.3. Crank Nicolson scheme  

Taking          the Crank Nicolson scheme is obtained. The discretized scheme is 

 
 

  
 

 

   
 

 

   
 

 

 

 

  
     

    
 

 

 

   
      

    
 

 
 

 

   
 

 

  
       

    
 

 

 

   
      

    
 

 

 

   
      

   

 
 

 
 

 

   
 

 

  
       

  
 

 

 

   
      

   
 

  
 

 

   
 

 

   
 

 

 

 

  
     

    
 

 

 

   
      

   

 
 

 

 

   
      

     

From the above-discretized scheme, we get a system as 

                    

Using Scilab, we have the solution for the Crank Nicolson as follows:  

 

(a) solution of the problem for Crank Nicolson (b) contour of the problem for Crank Nicolson 

Figure 6: Solution to the pollutant problem Crank Nicolson scheme with                 

In Figure 6, the Crank Nicolson scheme (an improved implicit Euler scheme) also gives a better result. It is 

noted that the pollutant reaches its maximum threshold and then remains constant. 

3.3. Implementation using Finite element 

In this section, we consider a rectangular domain. The solution of equation ((Error! No text of specified style in 

document..1), together with the boundary conditions, is obtained with the aid of the FreeFem++ software [12]. 

We compute the approximate solution by a finite element method of Lagrange type P1 for the spatial 



 

 

discretization. An Euler method is used for the time discretization. The interest of this method is the possibility 

of considering unstructured geometries [14]. We then trace the contour values of the density for different cases. 

3.3.1. Variational formulation 

We approximate the solution of equation ((Error! No text of specified style in document..1) by a finite element 

method of Lagrange type P1 in space and an Euler method for the time discretization. 

  

  
            

Let   be a test function. We multiply the above equation by   and integrate it over the domain 

 
  

  
    

 

 

          
 

 

           
 

 

       
 

 

  

Integrating by parts and applying the boundary conditions yields 

 
  

  
  

 

 

                 
 

 

 
 

 

   
  

    
  

 

  

     
 

 

  

 
  

  
  

 

 

                
 

 

 
 

 

     
 

 

    
  

    
  

 

  

  

Applying Green's formula, we have 

 

  
            

  

    
  

 

  

   
  

    
  

 

  

   
  

    
  

 

  

        
 

 

          
 

 

              
 

 

    

Applying the boundary conditions, we see that 

  
  

    
  

 

  

     
  

    
  

 

  

     
  

    
  

 

  

             
 

  

   

Hence we have 

 

  
                 

 

 

          
 

 

              
 

 

               
 

  

  

Hence the variational problem can be written as: Given          , find the value of       such that  
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where 

 

  
                         

 

 

               
 

  

    

              
 

 

    
  

  
  

 

 

    

         
 

 

       
 

 

    

We want to find             such that 

 

  
                                    

                       

Let              be a basis of   , we have 

                        

 

   

  

                        

 

   

  

 

  
         

 

   

         

 

   

 

 

           

 

   

         

 

   

                

 

   

   

         

 

   

  
             

 

   

            

where the Mass and Stiffness matrix are respectively 

                  

 

   

 

   

  



 

 

We prove the existence and uniqueness of the solution to the (non-symmetric) variational problem: 

Find     such that  

                 

where   is a Hilbert space,      and        is a continuous, coercive bilinear form that is not necessarily 

symmetric. The Lax-Milgram Theorem guarantees both existence and uniqueness of the solution to the 

variational formulation [14]. 

Firstly, we see that the space           is a Hilbert space. The mapping   is a bilinear, continuous, coercive 

form of  : 

               
 

 

   
  

  
     

                  
 

 

   
  

  
       

            
 

 

    
  

  
                                

              
 

 

    
  

  
                                

                        
  

  
 

     
           

                                        

                       

Thus, a is continuous. We will now show that it is coercive. 

The coercivity of the variational form in equation (Error! No text of specified style in document..17) can be proved 

in part by the Gårding inequality. By the Gårding inequality, there is a constant K < ∞ 

           
     
  

 

 
   

     
           

where   is a constant. 



 

 

Thus,        itself may not be coercive, but adding a sufficiently large constant multiplied by the   -inner 

product makes it coercive overall      . We show this in the sequel. 

           
     
      

     
   

  

  
  

 

 

        

By Holder's inequality, we have 

 
  

  
     

 

 

   
  

  
        

 

 

  

  
  

  
 

     
          

                    

Showing that                   is positive. 

Hence, we get 
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Thus   is also coercive. Hence by the Lax-Milgram theorem, we have the existence and uniqueness of the 

solution. 

3.1.2 Implementation of FEM in FreeFem++ 

 

Figure 7: Finite element mesh for the pollutant problem  

 

Figure 8: Contour for the pollutant problem; f = 3, g = 0.5 

 

Figure 9: Contour for the pollutant problem; f = 3, g = 1.0 



 

 

 

Figure 10: Contour for the pollutant problem; f = 10, g = 1.0 

4. Discussion 

In the case of the finite difference method, three schemes were employed to simulate the solution of the 

pollutant dispersion numerically. The Crank Nicolson scheme produced much better results than the implicit 

and explicit Euler schemes. The results revealed that a high pollutant concentration was noticed within the canal 

in the absence of divergence term. The inclusion of the divergence term led to the dispersion of pollutants in the 

direction of fluid flow.   

Moreover, the behaviour observed in the finite element implementation is quite like that of finite difference. 

Different plots were obtained for the different values of the source term f and the flux   across the boundary. It 

is observed that there is more concentration of the pollutant inside the canal when the flux across the boundary 

   is small. The concentration becomes relatively well spread as the flux increases.  

5. Conclusion 

The proposed finite difference schemes for spatial discretization and the theta scheme for time converged as 

long as the given condition is satisfied. In contrast, implicit schemes converge unconditionally, allowing the use 

of large or minimal time/spatial steps. The model can be upgraded to 3D to simulate the flow of the pollutant 

down the stream. The result can be helpful in understanding situations where the water flows into another dam, 

river or ocean, in which the amount of pollutant can affect aquatic life. Also, the model can be extended to 

include terms that account for the effects of life inside the canal. A limitation to the method is that it is still to be 

validated by experimental results within the same parametric study. 
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