
A single-machine scheduling with generalized due dates to
minimize total weighted late work

∗

Abstract

In the paper, we consider a single-machine scheduling problem with generalized due

dates, in which the objective is to minimize total weighted work. This problem was

proven to be NP-hard by Mosheiov et al. [7]. However, the exact complexity remains

open. We show that the problem is strongly NP-hard, and is weakly NP-hard if the

lengths of the intervals between the consecutive due dates are identical.

Keywords: Scheduling; Total late work; Generalized due dates; Computational

complexity

1. Introduction

Consider a scheduling problem such that the due date is assigned not to the specific job

but to the job position. Such a due date is referred to as the generalized due date (GDD).

Since the scheduling problem with GDD was initiated from Hall [4], much research has

been done in [1, 3, 5, 8, 9, 10]. Recently, Mosheiov et al. [7] considered single-machine

scheduling problems with GDD to minimize total late work. They showed that the

problem can be solved by the Shortest Processing Time first (SPT) rule, while it is NP-

hard if each job has a different weight. Note that it is unknown whether the case with

∗

the different weights is strongly NP-hard or not. We establish the exact complexity for

the case with the different weights.

The remainder of this paper is organized as follows. Sections 2 and 3 defines the

problem formally and establishes the computational complexity.

2. Problem definition

Our problem can be formally stated as follows: For each job j ∈ J = {1, 2, ..., n}, let

pj and wj be the processing time and the weight, respectively. Let π =
(
π(1), π(2), ..., π(n)

)

be a schedule, where π(j) is the jth job. For each j ∈ J , let Sj(π) and Cj(π) be the start

and completion times of job j in π, respectively, and π−1(j) be the position of job j in π.

In our model, unlike the traditional scheduling problem, the due date di is assigned not

to the specific job, but to the job positioned ith for each due date i ∈ D = {1, 2, ..., n}.
For simplicity, assume that d0 = 0 and

d1 ≤ d2 ≤ · · · ≤ dn.

GDD has two special cases depending on the condition of the due dates. The first and

the second cases have a common due date with

di = d for i ∈ D, (1)

and identical lengths of the intervals between the consecutive due dates, that is,

di = iδ and di − di−1 = δ for i ∈ D, (2)

respectively. Let the due dates with relations (1) and (2) be referred to as the common

due dates (CDD) and periodic due dates (PDD), respectively. For each j ∈ J , let Tj(π)

and Yj(π) be the tardiness and late work of a job j in π, respectively, which are calculated

as

Tj(π) = max
{
0, Lj(π)

}
and Yj(π) = min

{
pj , Tj(π)

}
,

where Lj(π) = Cj(π) − dπ−1(j). The objective is to find a schedule π to minimize total

weighted late work, which is calculated as

z(π) =
∑

j∈J
wjYj(π).

2

We follows the standard three-field notation 1|β|∑j∈J wjYj introduced by Graham et

al. [2], where β ∈ {CDD, PDD, GDD} describes the characteristics of the due dates.

This paper establishes the complexities of three cases.

Table 1 summarizes our results (note that ‘wNP-hard’ and ‘sNP-hard’ stand for

weakly and strongly NP-hard, respectively).

Table 1: Complexity for 1|β|γ
γ \ β CDD PDD GDD

∑
wjTj wNP-hard [6, 10] wNP-hard [1] sNP-hard [3]

∑
wjYj polynomially solvable [7] wNP-hard (Cor. 1) sNP-hard (Thm. 1)

3. Computational complexity

In this section, we show that 1|GDD|∑wjYj and 1|PDD|∑ wjYj are strongly and

weakly NP-hard, respectively.

Theorem 1. 1|GDD|∑wjYj is strongly NP-hard.

Proof Gao and Yuan [3] showed that 1|GDD|∑wjTj is strongly NP-hard. It is observed

from the reduced instance in their proof that Tj = Yj holds for each job j ∈ J in the

optimal schedule. Thus, 1|GDD|∑ wjYj is strongly NP-hard. ¥

Theorem 2. 1|PDD|∑wjYj is NP-hard.

Proof For simplicity, for 1|CDD|∑wjTj , let p̄j and w̄j be the processing time and

weight of job j ∈ {1, 2, ..., n}, respectively, and d be the common due date. Yuan [10]

showed that 1|CDD|∑wjTj is NP-hard, even if

n∑

j=1

p̄j ≤ 2d + 1. (3)

Given an instance of 1|CDD|∑wjTj , we can construct an instance of 1|PDD|∑wjYj

with (n + 1) jobs in J = {0, 1, ..., n} such that

· p0 = 0 and w0 = 1 +
∑n

j=1 w̄j ;

· pj = d + p̄j and wj = w̄j , j = 1, 2, ..., n;

· δ = d.
3

It is observed that job 0 is processed at the first position in any optimal schedule for

the reduced instance of 1|PDD|∑wjYj . Thus, we consider only a schedule π for the

reduced instance with π(1) = 0, that is, a schedule π = (0, π̄), where π̄ is the schedule

for a given instance of 1|CDD|∑wjTj . Note that the kth job in π̄ is the (k + 1)th job

in π. Then, we have

Cπ(k+1)(π) =
k+1∑

h=2

pπ(h) =
k∑

h=1

(d + pπ̄(h)) = kd + Cπ̄(k)(π̄), (4)

where the first equality holds due to pπ(1) = 0. If job j is the kth job in π̄, then we have,

by equation (4),

Lj(π) = kd + Cπ̄(k)(π̄)− (k + 1)δ = Cj(π̄)− d = Lj(π̄)

and

Tj(π) = Tj(π̄).

By inequality (3), we have Tj(π̄) ≤ ∑n
j=1 p̄j − d ≤ d + 1 ≤ d + p̄j . Then

Yj(π) = min{pj , Tj(π)} = min{d + p̄j , Tj(π̄)} = Tj(π̄).

Since job 0 is not tardy in π and wj = w̄j , j = 1, 2, ..., n, the objective values of the two

schedules π and π̄ in each instance are the same. This implies that 1|CDD|∑ wjTj is

special case of 1|PDD|∑wjYj . Thus, Theorem 2 holds. ¥
Let a job j be referred to as small if pj ≤ δ, and large, otherwise. Let S and L be

the sets of small and large jobs, respectively. Let

aj =





δ − pj for j ∈ S
pj − δ for j ∈ L.

Furthermore, let aj be referred to as auxiliary processing time for j ∈ L. Under a schedule

π, let a job j be referred to as early if Yj(π) = 0, partially late if 0 < Yj(π) < pj , and

fully late if Yj(π) = pj .

Observation 1. In 1|PDD|∑wjYj, an optimal schedule π can be represented as

π = (πs, πe, πp, πf),

where πs, πe, πp and πf are sequences of small, early, partially late, and fully late jobs,
respectively. Furthermore, the jobs in πi for i ∈ {s, e, f} are sequenced arbitrarily.

4

By Observation 1, henceforth, we construct only a schedule for large jobs. Let d =
∑

j∈S aj and [h] be the hth large job in π. Note that

T[h](π) = max

{
0,

h∑

i=1

a[i] − d

}
and Y[h](π) = min

{
p[h], T[h](π)

}
. (5)

Let P and x be the set of partially late jobs and the first partially late job in the optimal

schedule, respectively. Let x be referred to as a straddling job.

Lemma 1. In an optimal schedule π, jobs in P \ {x} are sequenced in non-increasing
order of wj/aj.

Proof Suppose that there exist two jobs i = [k] and j = [k + 1] in P \ {x} with

wi

ai
<

wj

aj
. (6)

Note that by [k − 1] ∈ P, T[k−1](π) > 0. Then, by {i, j} ⊂ P and (5),

wiYi(π) + wjYj(π) = wi

(
T[k−1](π) + ai

)
+ wj

(
T[k−1](π) + ai + aj

)
. (7)

Let π̄ be the schedule constructed by interchanging the positions of jobs i and j from π.

Then,

wjYj(π̄) + wiYi(π̄) ≤ wj

(
T[k−1](π) + aj

)
+ wi

(
T[k−1](π) + aj + ai

)
. (8)

By (6)-(8), we have

z(π)− z(π̄) ≥ wjai − wiaj > 0.

This contradicts to the optimality of π. ¥

Theorem 3. 1|PDD|∑wjYj can be solved in pseudo-polynomial time.

Proof We present a DP based on Observation 1 and Lemma 1. Suppose that in an

optimal schedule, the auxiliary processing time and the weight of the straddling job x

are a and w, respectively. Renumber the remaining large jobs such that

w1

a1
≥ w2

a2
≥ · · · ≥ wm

am
,

where m = |L| − 1. Then, we construct a schedule of jobs in {1, 2, ..., m} by applying

Algorithm 1. For each k ∈ {1, 2, ..., m}, the kth phase of Algorithm 1 produces a set Sk

of states. Each state in Sk is expressed as a vector S = [s1, s2, s3, s4, s5] representing the

information of a partial schedule for the first k jobs, where
5

· The component s1 is total auxiliary processing time of early jobs;

· The components s2 and s3 are total auxiliary processing time and total weight of

partially late jobs, respectively;

· The component s4 is the last partially late job in the current partial schedule;

· The component s5 is total weighted late work of a partial schedule.

The initial set S0 contains only one state [0, 0, 0, 0, 0]. For each k ∈ {1, 2, ..., m}, Sk

is obtained from Sk−1 through three mappings, F1, F2, and F3, which translate S :=

[s1, s2, s3, s4, s5] ∈ Sk−1 into the states in Sk as follows:

i) Calculate F1 defined by

F1(ak, wk, S) = [s1, s2, s3, s4, s5 + wk(ak + δ)].

Note that job k becomes a fully late job through mapping F1;

ii) Calculate F2 defined by

F2(ak, wk, S) = [s1, s2 + ak, s3 + wk, k, s5 + wk(s2 + ak)].

Note that job k becomes a partially late job through mapping F2;

iii) If s1 + ak < d, then calculate F3 defined by

F3(ak, wk, S) = [s1 + ak, s2, s3, s4, s5].

Note that job k becomes an early job through mapping F3.

After completing the mth phase, we place the straddling job x if jobs x and s4 can be

the first and last partially late jobs, respectively. That is, shift all (partially and fully)

late jobs to the right by (s1 +a−d) and insert the straddling job x on interval [s1, s1 +a]

if the state S ∈ Sm belongs to the following set from (5):

Q = {S ∈ Sm | s1 ≤ d < s1 + a and δ ≤ s1 + a + s2 − d < as4 + δ}.

At this time, total weighted late work of a feasible schedule is calculated as

G(S) = s5 + (s3 + w)(s1 + a− d) for S ∈ Q.

Algorithm 1 outputs a schedule with the minimum G(S) among S ∈ Q.
6

Algorithm 1: DP for 1|PDD|∑ wjYj with a fixed straddling job

1 S0 ← {[0, 0, 0, 0, 0]};
2 for k ← 1 to m do

3 for each S := [s1, s2, s3, s4, s5] ∈ Sk−1 do

4 Sk ← Sk ∪ F1(ak, wk, S) ∪ F2(ak, wk, S) ∪ F3(ak, wk, S);

5 end

6 end

7 Q = {S ∈ Sm | s1 ≤ d < s1 + a and δ ≤ s1 + a + s2 − d < as4 + δ};
8 for each S := [s1, s2, s3, s4, s5] ∈ Q do

9 G(S) ← s5 + (s3 + w)(s1 + a− d);

10 end

11 return min{G(S) | S ∈ Q};

Note that the number of states in the algorithm is bounded by O(lA2WT), where

l = |L|, A =
∑

j∈L aj , W =
∑

j∈L wj , and T =
∑

j∈L wjpj . Hence, Algorithm 1

is a pseudo-polynomial algorithm. Since the possible number of straddling job is l,

1|PDD|∑wjYj can be solved in pseudo-polynomial time. ¥

Corollary 1. 1|PDD|∑ wjYj is weakly NP-hard.

Proof It immediately holds by Theorems 2 and 3. ¥

4. Concluding remarks

We consider a single-machine scheduling problem with generalized due dates and

total weighted late work criterion. Although the problem has been known to be NP-

hard, its exact complexity is not established. We prove its strong NP-hardness, and

weak NP-hardness of the case with periodic due dates.

References

[1] B.-C. Choi, K.M. Kim, Y. Min, M.-J. Park, Scheduling with generalized and periodic due dates

under single- and two-machine environments, Optimization Letters, 16(2022), 623–633.

[2] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation

in deterministic sequencing and scheduling: A survey, Annals of Discrete Mathematics, 3(1979), 287–

326.

7

[3] Y. Gao and J.J. Yuan, Unary NP-hardness of minimizing total weighted tardiness with generalized

due dates, Operations Research Letters, 44(2016), 92–95.

[4] N.G. Hall, Scheduling problems with generalized due dates, IIE Transactions, 18(1986), 220–222.

[5] N.G. Hall, S.P. Sethi and C. Sriskandarajah, On the complexity of generalized due date scheduling

problems, European Journal of Operational Research, 51(1991), 100–109.

[6] E.L. Lawler and J.M. Moore, A functional equation and its application to resource allocation and

sequencing problems, Management Science, 16(1969), 77–84.

[7] G. Mosheiiv, D. Oron, D. Shabtay, Minimizing total late work on a single machine wiht generalized

due dates, European Journal of Operational Research, 293(2021), 837–846.

[8] M.-J. Park, B.-C. Choi, K.M. Kim, Y. Min, Two-machine ordered flow shop scheduling wiht gener-

alized due dates, Asia-Pacific journal of Operational Research, 37(2020) 1–16.

[9] S. Srikandarajah. A note on the generalized due dates scheduling problem, Naval Research Logistics,

37(1990), 587–597.

[10] J.J. Yuan, The NP-hardness of the single machine common due date weighted tardiness problem,

Journal of Systems Science and Complexity 5(1992), 328–333.

8

