A single-machine scheduling with generalized due dates to
minimize total weighted late work

Abstract

In the paper, we consider a single-machine scheduling problem with generalized due
dates, in which the objective is to minimize total weighted work. This problem was
proven to be NP-hard by Mosheiov et al. [7]. However, the exact complexity remains
open. We show that the problem is strongly NP-hard, and is weakly NP-hard if the

lengths of the intervals between the consecutive due dates are identical.
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1. Introduction

Consider a scheduling problem such that the due date is assigned not to the specific job
but to the job position. Such a due date is referred to as the generalized due date (GDD).
Since the scheduling problem with GDD was initiated from Hall [4], much research has
been done in [1, 3, 5, 8, 9, 10]. Recently, Mosheiov et al. [7] considered single-machine
scheduling problems with GDD to minimize total late work. They showed that the
problem can be solved by the Shortest Processing Time first (SPT) rule, while it is NP-
hard if each job has a different weight. Note that it is unknown whether the case with




the different weights is strongly NP-hard or not. We establish the exact complexity for
the case with the different weights.
The remainder of this paper is organized as follows. Sections 2 and 3 defines the

problem formally and establishes the computational complexity.

2. Problem definition

Our problem can be formally stated as follows: For each job j € J = {1,2,...,n}, let
p; and w; be the processing time and the weight, respectively. Let 7 = (77(1)7 m(2), ...y w(n))
be a schedule, where 7 () is the jth job. For each j € 7, let S;(7) and C;(m) be the start
and completion times of job j in 7, respectively, and w~*(j) be the position of job j in 7.
In our model, unlike the traditional scheduling problem, the due date d; is assigned not
to the specific job, but to the job positioned ith for each due date i € D = {1,2,...,n}.

For simplicity, assume that dy = 0 and
dy <dy <---<odp.

GDD has two special cases depending on the condition of the due dates. The first and

the second cases have a common due date with
di=d for i €D, (1)
and identical lengths of the intervals between the consecutive due dates, that is,
d; =10 and d; —d;—1 =6 for 1 €D, (2)

respectively. Let the due dates with relations (1) and (2) be referred to as the common
due dates (CDD) and periodic due dates (PDD), respectively. For each j € 7, let T};(m)
and Y;(7) be the tardiness and late work of a job j in 7, respectively, which are calculated
as

T;(m) = max{O,Lj(w)} and Y;(m) = min {pj,Tj(ﬂ)},

where L;(m) = Cj(m) — dr-1(j). The objective is to find a schedule 7 to minimize total

weighted late work, which is calculated as

()= 3 wY(n).
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We follows the standard three-field notation 1|3|3_,c 7 w;Y; introduced by Graham et
al. [2], where 8 € {CDD,PDD,GDD} describes the characteristics of the due dates.
This paper establishes the complexities of three cases.

Table 1 summarizes our results (note that ‘wNP-hard’ and ‘sNP-hard’ stand for

weakly and strongly NP-hard, respectively).

Table 1: Complexity for 1|8|y
N CDD | pp | 6pp |

> w;T; wNP-hard [6, 10] wNP-hard [1] sNP-hard [3]
> w;Y; || polynomially solvable [7] | wNP-hard (Cor. 1) | sNP-hard (Thm. 1)

3. Computational complexity
In this section, we show that 1|{GDD| )" w;Y; and 1|PDD| 3  w;Y; are strongly and
weakly NP-hard, respectively.
Theorem 1. 1|GDD|) w;Y; is strongly NP-hard.
Proof Gao and Yuan [3] showed that 1|GDD| > w;Tj is strongly NP-hard. It is observed

from the reduced instance in their proof that T; = Y; holds for each job j € J in the
optimal schedule. Thus, 1|GDD| ) w,;Y; is strongly NP-hard. W

Theorem 2. 1|PDD|% w;Y; is NP-hard.
Proof For simplicity, for 1|CDD|) w,T}, let p; and w; be the processing time and

weight of job j € {1,2,...,n}, respectively, and d be the common due date. Yuan [10]
showed that 1|{CDD| " w;T; is NP-hard, even if

> pj<2d+1. (3)
1

j=
Given an instance of 1|C'DD| )" w;T;, we can construct an instance of 1|/PDD| )" w;Y;
with (n + 1) jobs in J = {0,1,...,n} such that

. pozoandw():l%—zyzlﬂfj;
. p] :d_’_p] and wj:wj»j:1727"‘7n;

- d=d.



It is observed that job 0 is processed at the first position in any optimal schedule for
the reduced instance of 1|/PDD| )" w;Y;. Thus, we consider only a schedule 7 for the
reduced instance with 7(1) = 0, that is, a schedule 7 = (0,7), where 7 is the schedule
for a given instance of 1|CDD| )" w;T;. Note that the kth job in 7 is the (k + 1)th job

in w. Then, we have

k+1

Cr(t1) (T Zpﬂh) Z (d+ pan)) = kd + Cr() (T), (4)
h=1

where the first equality holds due to p,(;) = 0. If job j is the kth job in 7, then we have,
by equation (4),

Lj(m) = kd + Criy(7) — (k+1)d = Cj(7) —d = L;(7)

and

By inequality (3), we have Tj(7) < >3 pj —d < d+1 < d+ p;. Then

Yj(m) = min{p;, Tj(m)} = min{d + p;, T;(7)} = T;(7).

Since job 0 is not tardy in 7 and w; = wy, j = 1,2, ...,n, the objective values of the two
schedules m and 7 in each instance are the same. This implies that 1|{CDD|>" w;Tj is
special case of 1|/PDD| )" w;Y;. Thus, Theorem 2 holds. W

Let a job j be referred to as small if p; < 6, and large, otherwise. Let S and £ be

the sets of small and large jobs, respectively. Let

0—p; forjes
pj—0 forjeL.

aj; =

Furthermore, let a; be referred to as auxziliary processing time for j € £. Under a schedule
m, let a job j be referred to as early if Y;(w) = 0, partially late if 0 < Yj(7) < p;, and
fully late if Y; () = p;.

Observation 1. In 1|PDD|% w;Y;, an optimal schedule © can be represented as
™= (’/Tsa Tey, Tip, ﬂ-f)a

where m,, T, ™y and Ty are sequences of small, early, partially late, and fully late jobs,
respectively. Furthermore, the jobs in 7; fori € {s,e, f} are sequenced arbitrarily.



By Observation 1, henceforth, we construct only a schedule for large jobs. Let d =

> jes aj and [h] be the hth large job in 7. Note that

h
T[h] (7T) = max {O, Z afg) — d} and Y[h] (7T) = min {p[h],T[h} (7‘(‘)} . (5)
i=1

Let P and z be the set of partially late jobs and the first partially late job in the optimal

schedule, respectively. Let = be referred to as a straddling job.

Lemma 1. In an optimal schedule 7, jobs in P\ {x} are sequenced in non-increasing
order of w;/a;.

Proof Suppose that there exist two jobs ¢ = [k] and j = [k + 1] in P\ {z} with

w; wy
Wi Y

a; aj '

Note that by [k — 1] € P, Tj—q)(m) > 0. Then, by {i,j} C P and (5),

w; Yi(m) 4+ w; Yy () = wi (Tjp—1)(7) + a;) + w; (Tip—y(7) + a; + a;). (7)
Let 7 be the schedule constructed by interchanging the positions of jobs ¢ and j from 7.
Then,

w;Y;(7) + wYi(7) < w; (T[k:fl] () + CLj) + w; (T[kfl] (m)+a; + G,i). (8)
By (6)-(8), we have

z(m) — 2(7) > wja; — wia; > 0.

This contradicts to the optimality of 7. B
Theorem 3. 1|PDD|Y w;Y; can be solved in pseudo-polynomial time.
Proof We present a DP based on Observation 1 and Lemma 1. Suppose that in an

optimal schedule, the auxiliary processing time and the weight of the straddling job x

are ¢ and w, respectively. Renumber the remaining large jobs such that

where m = |£] — 1. Then, we construct a schedule of jobs in {1,2,...,m} by applying
Algorithm 1. For each k € {1,2,...,m}, the kth phase of Algorithm 1 produces a set Si
of states. Each state in Sy, is expressed as a vector S = [sq, S2, 83, S4, S5 representing the

information of a partial schedule for the first k jobs, where
5



- The component s; is total auxiliary processing time of early jobs;

- The components s, and s3 are total auxiliary processing time and total weight of

partially late jobs, respectively;
- The component sy is the last partially late job in the current partial schedule;
- The component s5 is total weighted late work of a partial schedule.

The initial set Sy contains only one state [0,0,0,0,0]. For each k € {1,2,...,m}, Sk
is obtained from Sy_; through three mappings, Fi, F5, and F3, which translate S :=

[s1, 82, 83, 84, S5] € Sk—1 into the states in Sy as follows:
1) Calculate F; defined by
Fi(ag, wg, S) = [s1, S2, S3, S4, S5 + wg(ag + 0)].
Note that job k becomes a fully late job through mapping Fi;
i1) Calculate Fy defined by
Fy(ag, wg, S) = [s1, 82 + ak, 3 + Wi, k, $5 + wi(s2 + ax)].
Note that job k becomes a partially late job through mapping Fb;
ii1) If s1 4+ a < d, then calculate F3 defined by
Fs(ag, wg, S) = [s1 + ak, S2, S3, S4, S5)-
Note that job k becomes an early job through mapping Fj.

After completing the mth phase, we place the straddling job z if jobs x and s4 can be
the first and last partially late jobs, respectively. That is, shift all (partially and fully)
late jobs to the right by (s1 +a—d) and insert the straddling job x on interval [s1, $1 + a]
if the state S € S,,, belongs to the following set from (5):

0={5eS,|s1<d<s;taand §<sy+a+sy—d<as, +d}.
At this time, total weighted late work of a feasible schedule is calculated as
G(S)=s5+(ss+tw)(s1+a—d) for SeQ.

Algorithm 1 outputs a schedule with the minimum G(S) among S € Q.
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Algorithm 1: DP for 1|PDD| )" w;Y; with a fixed straddling job

1 Sy« {[0,0,0,0,0]};

2 for k — 1 tom do

3 for each S := [s1, 52, 83, 84, $5] € S—1 do

4 ‘ Sk — Sk U Fy(ag, wg, S) U Fy(ag, wg, S) U F3(ag, wg, S);

5 end

6 end
70={SeSn|s1<d<sitaandd<s;+a+sys—d<as +0};
8 for each S := [s1, $2, 83, 54, 85] € Q do

9 ‘ G(S) « s5 + (s3 +w)(s1 +a —d);

10 end
11 return min{G(S) | S € Q};

Note that the number of states in the algorithm is bounded by O(IA?WT), where
L= |L], A= Ycra;, W =3 wj, and T = > . -wjp;. Hence, Algorithm 1
is a pseudo-polynomial algorithm. Since the possible number of straddling job is [,

1|PDD| )" w;Y; can be solved in pseudo-polynomial time. W

Corollary 1. 1|PDD|%" w;Y; is weakly NP-hard.

Proof It immediately holds by Theorems 2 and 3.

4. Concluding remarks

We consider a single-machine scheduling problem with generalized due dates and
total weighted late work criterion. Although the problem has been known to be NP-
hard, its exact complexity is not established. We prove its strong NP-hardness, and

weak NP-hardness of the case with periodic due dates.
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