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Exact analytical solution of Ivancevic options pricing
model (IOPM) or Schridinger’s equation via ADM and
SBA methods

Abstract

This paper is devoted to the study of the general equation of the Ivancevic option pric-
ing model ( IOPM) or Schrodinger’s equation and to determine its analytical solution via
the methods of numerical analysis ADM and SBA. The Ivancevic option pricing model is
an adaptive wave model that is a nonlinear wave alternative to the standard Black-Scholes
option pricing model, it is also a model that links quantum mechanics and financial mathe-
matics.
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Introduction

The classical Black-Scholes model (BSM) is an important financial model for option pricing an
valuation. In this paper, we are interested in the determination of the analytical solution of
the general equation of the Ivancevic [7] or Schrodinger [12] model in quantum mechanics. It is
about the equations:
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(E): ‘ ot E 0z2
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+q|w(t,a:)|2pw(t,a:) =0;pc N*
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where € > 0, > 0 and g > 0.



2 Description of numerical Method ADM and SBA
2.1 Numerical method ADM

Consider the functional equation below :
Fw={f (1)

where F' is an operator defined in the Hilbert space H in H, f is a given function in H and
w is the unknown function. Let us decompose as follows

F=L-R-N (2)

Where L is the linear part of inverse L', R the linear remainder and N the nonlinear part,
(1) becomes :
Lw—Rw— Nw=f (3)

Applying L~ to (3), we get the Adomian canonical form [2]:

w=0+ L f+ L "Rw+ L 'Nw (4)

where
L6 =0.

Let us determine the solution of (1) in the form of a convergent series[3]

=,
n=0
and
+oo
Nw = Z A, < +oo
n=0
where the

A, = A, (wo,wr, ..., wy,)

are Adomian polynomials [5]. We get the following Adomian algorithm[4] :

wy =0 + L_lf

Wpy1 = L' Rw, + L71A,;n > 0.
2.2 The Adomian polynomials
Definition :The Adomian polynomials are defined by :

A() = N(’wo)

A= =2 N ioxf in>1
" A Wk =
k=0 A=0

Theorem 1 The Adomian polynomials are calculated using the formula :

d" n A d" n A
k=0 A=0 k=0 A=0




2.3 Numerical method SBA

Consider the functional equation below :
Fw={f (5)

where F' is an operator defined in the Hilbert space H in H, f is a given function in H and
w is the unknown function. Let us decompose as follows

F=L-R-N (6)

Where L is the linear part of inverse L', R the linear remainder and N the nonlinear part,
(1) becomes :
Lw—Rw—-Nw=f (7)

Applying L= to (3), we get the Adomian canonical form :

w=0+L'f+ L 'Rw+ L 'Nuw (8)

where
LO=0.

Equation (5) is the Adomian canonical form [1]. Using the successive approximations [7], we
get:

wh =0+ L7 (f) + LN RW") + LT (N (@ ) k=1 (9)
This let’s to the following Adomian algorithm :

{w5—9+Lluw4;%kaU%k21 (10)

wy = L7 (R(wyy_y)),n > 1

The Picard principle is then applied to equation (7): let w® be such that N(w") = 0, for
k=1, we get:

wh =0+ L7 (f )+ L~ (N (w?)) )
wl = L (R(w)_y))n > 1
If the series (Z w,ll> converges, then w! = Z wk
n=0 n>1

For k = 2, we get:

wi=0+L1(f)+ L Y(N(w')) (12)
wy = L7HR(w;_4)),n > 1
If the series (Z w%) converges, then w? = Z w?
n=0 n>0
This process is repeated to k.
If the series (Z wﬁ) converges, then w* = Z wk
n=0 n>0
Therefore w = lim wF is the solution of the problem, with the following hypothese at the

k— 400

step k : N(w*) =0,Vk > 0.



Theorem 2 Consider the following Cauchy problem :

| Liw(t,z) =eAw(t,z) + pw (t,z) + Nw (t,2), (t,z) € Q
(p) - { w(0,2) = h(ea:) 8

Associed to the problem (p), the SBA allorithm is given as :

| wf (t,x) = h(z )—|—L_ Nk (t,2)] ;& >1
(pSBA)'{ w%H (t,z) = [aAw[ k(t, ) 4+ pwk ]( z)] ;n>0

(Hy): There is w (t,x) at the step k = 1,such as Nw® (¢,z) = 0.
(Hg): At the step k = 1,w" (¢, ) is the solution of :

{wo(ta:) h(z)
Wy (Gx) = Lyt [eAwg () + pawy, (1,2)] 50> 0.

(H3) : At the step k = 2, Nw! (t,z) = 0.So the algorithm :

f wh (t,x) =h(x)+ L7 [Nt (t,2)] k> 1
(pspa) : { wk | (t,z) =L " [EA’u}[Z(t, T) + pwk ](t,a:)] ;n >0

is convergent for k > 2 and we obtain : w! (t,2) = w?(t,x) = ... = w*(t,z). From which the
unique solution of the problem (p) is

t,x) = li (t, ).
w(t,z) = lim w(t )

Proof. At step k = 1, we have the following algorithm:

(p1) wg (t,2) = h(z)
whyy (tx) =L [eAwl(t,2) + pwl (t,2)] ;0 >0
according to hypothesis (H;) and (Hs) ,the solution of (p;) is w! (t,x) = Z wk (t,z). Ac-

cording to the hypothesis (H3) ,at step k = 2, Nw! (t,2) =0
we get the following alorthm :

wd () = h(x)
“’2’{ Wiy (b2) = L [eAwd(t,2) + ok (6,2)] 5 7> 0

Thus, we obtain the same al

gorithm as in step k = 1, then w2 (t,z) = w! (t,x) .Thus, in a recursive way it will be for each
step k > 2,w! (t,z) = w3(t, x) w3 (t,x) =
Then the solution of the problem (p) is w(t x) = . lim w”(t,x).
— 400

Suppose that the problem (p) has two distinct solutions w(t, z) # v(¢, ), and consider their
difference ¢(t,x) = w(t, z) — v(t, x).
For each solution, we have :



and

{ i (t,7) = h(z )—I—L_ [ z)] sk
vp i (ta) = Lt [eAvi(t, w)+uv (t, )]; >0

Vk > 1, N(wF=1 (t,) = 0 and N(v*~! (¢,2) = 0,50 we obtain :

{ wk (t,7) = h(z ) k:>1
wk y (t,2) = L' [eAwk (¢, 2) + pwk (t,2)] ;0 >0

and

vk (t,z) = h(z) ;k>1
U§+1 (t,z)=L;" [5AU7kL(tv$) + pok (t7$)] in>0

For the difference we get :

{ Qb (t,x) =0;k>1
ok 1 (ta) = Lyt [eApk(t, ) + pek (t,2)] ;0 >0

from which

ok (t,7) =0,¥n >0

Thus ¢ (¢, 2) ngn t,x) = 0 and w(t,z) = v(t,x) which contradicts our hypothe-

n=0
sis. Therefore the problem (p)has a unique solution w(t,z). m

3 Resolution via numerical method ADM
Consider the following equation

2
(E) : iawe()fs’x) 4 35; 2 4 gl )P w (t,2) = 0

w(0, ) = Bela®

Let us determine the canonical form of Adomian, the equation

2
i@w (t,x) n 0w (t, x)

2p —_0- *
pr 2 +qlwt, )| wt,z)=0peN

is equivalent to

ow (t,z) . 9w (t,x)
ot o2

from which we obtain the canonical form :

+ig|w (t,2)[* w (t,z)

t

¢

2

w(t,z) =w(0,x) +i€/6127(?x)dz+iq/ lw (z,2)]* w(z,z) dz.
x

0 0



Thus, we obtain the Adomian algorithm :
wo (t, ) = w (0, 1:)
Wt (t, ) = ZE/aQ)dz—i-i/A (z,z)dz;m >0
n+1 8.732 q n I ] -
0

t

Let’s calculate the polynomials: : Ag, A1, Ao, ...

AO = |B|2pw
Ay = w; (wowo)” + pwo (w1 + Wrwo)? ™
Ay = 2 (awp)? wa + 2p (awy + bwo)’F1 (w1) +p(p—1)(2(aws + bwy + cuwyp))

Let’s calculate the terms: wqg (¢, ) ,w; (¢, ), ...

we obtain thus : )
wo (t, ) = Pe'*”

w1 (t,{l:) = Bit (—€a2 +q |/B|2p) iax

[z’t( ca +q|B\ )}2

we (t,x) =6
3
ws (t,z) =0 [it ( - +q|ﬁ‘2p)}
wy, (t,x) = B [it (7€a2 o w‘zp)rei‘”

n!
Therefore, the solution of problem (E) obtained by the ADM method is :

x) = -i:.own(t,z) = Bexp {z ((—6(12 —I—q|,3|2p> t—|—a:1:>} .
n=0

Consider the following equation

Ow (t 0w (¢
;L2 TG v 1,2) gl (6 ) 1) = 0

w(0, ) = Bela®

Let us determine the canonical form of Adomian, the equation

8w (t,x) 0%w (t, )
ot e Ox?

is equivalent to

+ pw (£, 2) + q |w (t,2)|*P w (¢, 2) = 0;p € N*

ow (t,z) . w(t,z) | . 2p
5 g2 +ipw (t,x) +iqlw (¢, z)[ w (¢, x)

from which we obtain the canonical form :

t t

72 (wo)

w(t,z) =w(0,2) +25/62)dz+w/w(z,x)dz+iq/|w(z,x)|2pw(z,x)dz.

0 0



Thus, we obtain the Adomian algorithm :

wo (t,z) = w (0, )

¢
2
Wn+1 (¢, ) :is/awgi(;’x)dz+iu/wn (z,z)dz+iq/An(z,x)dz;n20
x

0 0 0

t t

Let’s calculate the polynomials : Ag, A1, Ao, ...

Ag = |5|2p w
Ay = wy (wop)” + pwo (w1Wg + Wwo)pf )
Ay = 2 (Wowo)” wa + 2p (Wowy + wrwo)’™ (w1) +p(p — 1) (2 (Wows + w1 W1 + Wawp))’ ™~ (wo)

Let’s calculate the terms : wq (¢, ), w1 (t,x),ws (¢, ), ..
we thus obtain : .
Wo (t7 J}) = Beiax
wy () = Bit (11— ea® + q|B*7) e
[it (u—sa +q18? )}

w2 (ta l‘) = B 21

[it (u —ea® +q IBIQ”)}
b 3!

ws (t,x) =

it (- ca® +q10™)]"
wy, (t,x) =0 ' erer
n!
Therefore, the solution of problem (FE) obtained by the ADM method is : :

x) = fwn(t,a:) = Bexp {z ((u —ea?® —|—q|ﬁ|2p> t—|—am)} )
n=0

4 Resolution via numerical method SBA
Consider the following equation

2
iy ] I e g ) ) = 0

w(0,z) = Beia®

Let us determine the canonical form of Adomian, the equation

20bn) | FOID) | b)) = 0 (13)
ot dx?
is equivalent to

ow(t,z) . O*w(t,x) . 2
T v +ig|w (¢, )| w(t, x) (14)




By putting
Nuw (t,z) = iq|w (¢, 2)|*" w (t, )
from which we obtain the Adomian [1] canonical form :
¢ ¢

0w (z,x)

w(t, ) :w(o’x)+ig/T2’dz+/Nw(z,m)dz.

0 0

Applying to (15) the method of successive approximations [6], we obtain :

2 k
.'L'

0

We thus obtain the SBA algorithm [8] :
wf (t,2) = wk (0,7) + /ka’l (z,2)dz , k>1

t
82 k
wﬁ+1 (t,x) :i5/%dz in >0
0

(15)

(16)

(17)

Let’s apply Picard’s principle[9] to (17), at step k = 1, Nw® (t,2) = 0, si w° (¢,z) = 0, hence

¢
wg (t,z) :ﬁei‘”—l—/]\fwo (z,x)dz , k>1

2
wh 44 (t,z):ie/aai(zx)dz ;n >0

22
0
Therefore we have
w} (t,3) = feer
wi (t,z) = —laQﬁste“””
ws (t,r) = —fa4t265 etar
wi (t,x) = za6t3ﬁs elae
—e1at .
w, (tw):»@i( , ) e n=0
n!
from which at step k = 1, we obtain :
1 : iax (_EZG’ t)
t,x)= 1 = —ea’t
W o) =t e > CE e [ - catt).

p=0

Then let’s calculate Nw? (¢, x)

Nuw' (t,z) = iq|w' (t,x)’2p w! (t,x) — igB*Pw' (t,x) £ 0



therefore, we modify problem (F) into an equivalent problem :

Z_aw (t, )

0w (t, )

(E): ot T o2

w(0,z) = Beia®

where

Nuw (t,z) = q|w (t,2)|* w (t,z) — q |8 w

Therefore, we obtain:

0w (t,x)

ow (t,x)
ot o oa?

then the canonical form of Adomian|9]

t

w(t,z) = Be'* + é‘i/

0

0w
ox

The new algorithm is then :

+q|B)* w (t,z) + Nw (t,2) = 0

(t,2)

+qi |7 w (t, ) + iNw (t, )

t t

T be il [ (o) d+i [ Fu(e.a)

0 0

¢
wk(t,z)) = Pe*® + i/ﬁwk’l (z,2)dz; k> 1
0

¢
0*wk (z,x)

who b)) =i [ R

0

Let’s determine w! (¢, )

hence

¢
dz+q\ﬂ|2pi/wﬁ(z,x)dz;n20
0

w' (t,z) = Bel™ io (Z (q 81 - “25) t) )

n!
n=0

We thus obtain Nw® (t,2) = 0
Recursively we have:

w! (z,2) = w? (z,2) = ... = w" (2,2)

— Bexp [z ((q 8% — “25) t+ ax)}



so the solution of problem (E) is :

w(t,r) = Bexp [z ((q 8% — aQa) t+ am)} )
Consider the following problem :
Ow (t, ) 0%w (t, )

;L 2T TG v 4,2) gl (1) 1) = 0
w(0,z) = Beia®

We obtain the following Adomian algorithm:

¢ t t
2
w(t,z) = w(0,x) + ie %dz + iu/w (z,2)dz —|—7Jq/Nw (z,2)dz (18)
x
0

0 0

where
Nuw (t,z) = |w (t,2)|* w (t,z)

Let us apply the method of successive approximations to (18),

¢
2,k
wh(t, z) = wk (0,7) + is/awaix(j’w)dwr

0 ¢ (19)

t
iu/wk (z,x) dz—i—iq/N'w’f_1 (z,2)dz, k> 1
0 0

We are looking for the solution of (F') in the form of a series[10]

—+o0
wh(t,w) =Y wi(t,z)
n=0

At each step k > 1, we have the following algorithm [11]:

¢
wk(t,z) = wk (0,z) + iq/kafl (z,2)dz
0

t t
62 k
wh (¢, @) :ie/%dz—l—w/wﬁ (z,2)dz;n >0
0

0

Let’s calculate the terms of the series

+oo
wh(t,z) =Y wh(tx)
n=0

At step k = 1, for w%(t, ) = 0, we have Nw’(¢,z) = 0 and we obtain ::

10



wi(t,z) = peie®
wi(t,z) = Bi (1 — a’e) te'™®
2

oy = =) 07

he . 2
wé(t,x) — ﬁ (Z (('u’ _3? E)) t) eiaz

therefore

—+o00 . 2 n
. — 4
wl(t,x) = Belo? Z (Z (('u’ a 5)) ) _
n=0
Calculate Nw' (¢, ), we have :
Nw' (t,2) = qlw' (t,2)| w' (t.2) = g |5 w' (t.2) # 0
We then modify problem (F) into an equivalent problem:
a t 0w (t,
wte) | Pw(to)

(F): a1 S o
w(O ) = et

+pw (t,7) + |87 w(t2) + Nw(z,2) =0 (g

where _

Nw(z,2) = q|w(t,2) [ w (t,2) — g |5 w (t,2)
we have the following canonical form :
t t

f t
2 ~
%derw/w(z,w)dz+qz’|5|2p/w(z,x)dz+i/Nw(z,;c)dZ
0

0 0 0

w(t,z) =w(0,z) +1
Let’s apply the method of successive approximations to (19),

¢ ¢ ¢
] . 52 k -
wh(t,z) = w” (O,x)—l—ia/%dz—&—z u+q|ﬁ|2p /wk z,x dz—l—z/ka_1 (z,2)dz,k > 1
x
0 0

0

Thus, at each step k > 1,the following algorithm is obtained :

wg (t,z) = w* (0,z) Jri/]vwk’l (z,2)dz, k> 1

t

32 k

wh o (t,x) = ie/%dz+z(u+q|ﬁ|2p /w (z,2)dz;m >0
0 0

11



Let’s calculate w!(¢,z) at step k = 1

w(t, ) = wk (0,2) +i/]vw0 (2,x)dz

i
82 ’1
wy 4 (t, ) = ia/%dzﬁ-z u+q|ﬁ|2” /w z,x)dz;n >0
0 0

for w%(t,z) = 0 we have : Nw®(¢,z) = 0, hence

w(l)(tv I) = wh (va)
t

t t

2,,,1

whatta) =i [ B D be i [l e+ ai 57 [l (e dein 2 0
0 0 0

wi(t,z) = pete®

wi(t,r) = ﬁit( —a E—|—q|5|2p)e
wi(tz) = ﬁ(it Gl qup))
)

2!
Wl a) = B(it (u—a Z+qﬁ|2p )
whtz) - ﬁ(it (u—aQ:qﬂIQP)) Jiaa

the solution at step & =1 is

i~ g )’

—= n!
= fBexp {z ((u —a’e+gq |5|2p> t+ ax)]
We thus obtain :
wh (t,x) = w? (t,x) = ... = wh (t,x) = Bexp [z ((u —a’e + q|ﬂ|2p) t+ax)} .
Thus the solution of problem (F) :

w(t,x) = kEToowk (t,x)

= fexp [z ((u— a2€+q‘ﬁ|2p)t+am)}

4.1 Conclusion

The SBA and ADM methods have allowed us to successfully solve the Ivancevic option pricing
model (IOPM) in financial mathematics, the Schrodinger model in quantum mechanics and the
classical Black-Scholes equation.
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