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ABSTRACT  
 
The goal of this work is not only the search for the solutions of a nonlinear partial differential 
equation, but how to locate and choose a form of solution verifying the nonlinear partial 

differential equation. In this work, we use the probabilities of appearance of the pairs  ,n m  

linked to iB-functions for which certain terms of the range of coefficients equations are 
grouped together to locate and then determine the solutions of the partial differential 

equation of the KdV type. The pairs  ,n m  when identified, indicate with precision the iB-

function which will choose from the start as the solution function which we want to build. The 
probabilities here are essential data to select the analytical sequences of the solutions to be 
investigated. 
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1. INTRODUCTION  
 

Most often the fundamental difficulty encountered in physical science is that of finding 
solutions to equations which model the dynamics of physical systems. These equations in 
the majority are nonlinear and even strongly nonlinear [1-14]. When the integral method is 
limited in the resolution, one proceeds by searching for the forced solutions[15-25]. But what 
is even more difficult to do is to make the choices of the solution function to introduce into 
the considered equation. 
Within the framework of the resolution of certain types of nonlinear and dispersive partial 
differential equations, we have shown that the use of the iB-function [26-30] was very 
appropriate in this case. 
But this function being multiple, that is to say varying according to three characteristic 
parameters n ,

 
m  and  , choose with precision the values of n ,

 
m  and   so that the iB-

function is solution of the nonlinear  partial differential equation to solve is also difficult. We 
realized that the most probable solution to verify the partial differential equation considered 

depends on the number of times that the pair  ,n m  considered favors the grouping of the 

terms in the range equation that is a probability of appearance of the pairs  ,n m  in the 

total number of pairs which are at the origin of the regroupings [31]. In this work, we go 
through the probabilities of appearance of the pairs to locate the solutions of modified 
nonlinear KdV equation type. The principle consists in injecting into the modified KdV 

equation, the solution of the form  , 0 ,n maJ x t   where 0, , ,a n   and m  are arbitrary 



 

 

constants, x  the independent variable, t  the temporal variable,   and then listing all the 

pairs  ,n m  for which certain terms of the coefficient range equation are grouped together 

and finally identify the most favorable pairs for obtaining solutions. We use the concept of 

probability in the choice of pairs  ,n m   simply because, it makes it possible to avoid the 

hazardous choices of the forms of solutions to be constructed. 
We organize this work in three main sections which are: Some notions on the iB-function, 
results and discussion which has for subsections : obtaining the coefficient range equation, 
the probabilities of the possibilities of grouping, the calculations of the coefficients of the 
terms of the range equation, the search for implicit solutions, the deduction of trigonometric 
solutions  and the conclusion. 
  
 

2. IB-FUNCTIONS  
 

iB- implicit functions are generally defined by 

,

0 0 0

sinh / cosh ,
p p p

m n

n m i i i i i i

i i i

J x x x  
  

     
     

     
                                                        (1) 

where ,

0

p

n m i i

i

J x


 
 
 
  represents the implicit form of the function, 

0 0

sinh / cosh
p p

m n

i i i i

i i

x x 
 

   
   
   
   the explicit form of the function, i  ( 0,1, 2,...,i p ) 

represent the parameters associated with the independent variables ix ( 0,1, 2,...,i p ) , 
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(1), is also called the iB-functions of several variables and any derivative operation 
undertaken in this case is partial. 
The iB-functions of a single variable is  defined by 

     , sinh / cosh ,m n
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where  ,n mJ x  represents the implicit form of the function,  represents the parameter 

associated with the independent variable x , the pair   2,n m R indicates the power of the 

function. 
some important transformations are given by 
 

1, 1 , 1,1,n m n mJ J J  
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  2, 2 , 2,2 ,n m n mJ J J  
                                                                                                          (4)

 

, , , ,n p m p n m p pJ J J  
                                                                                                          (5)

 

 , , , ,n p m p n m p pJ J J   
                                                                                                       (6)

 

 , 2 ,2 , ,n p m p p p n p m pJ J J   
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and 
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Some of  properties in its compact forms which facilitate the addition and multiplication of 
expressions are given by the  following formulas 
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By matching y y  , we obtain 
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The compact trigonometric formulas which result from formulas (12) and (13) are given by 
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3. RESULTS AND DISCUSSION 
 
3.1. OBTAINING THE MAIN RANGE EQUATION 

The modified KdV equation chosen to solve is of the form [32] 
 

2 0,t x x xx xxx xxxxxU U U U U UU U                                                                       (16)  

where   ,
 
 and  are nonlinear coefficients. We assign arbitrary coefficients to the above 

equation to obtain its following generalized form.  



 

 

2

0 1 2 3 4 0.t x x xx xxx xxxxxn U nU U n U U n UU n U                                                             (17)  

The goal being not only the resolution of the equation,  but also the obtaining of the relations 

of constraints linking the coefficients  0,...,4in i   favoring the widening of the field of 

analysis of the solutions. In order to build solutions in the form 

   , 0, ,n mU x t aJ x t                                                                                               (18)  

where a ,   and 0  are arbitrary constants, n  and m  the indicators of the iB-function, we 

set the change of variable 0x t     and Eq. 17  becomes 

2 3 3 5

0 0 1 2 3 4 0.n U n U U n U U n UU n U                                               (19)  

With regard to the terms of  Eq.19 , we note that progress in the search for the desired 
solution requires to calculate the successive derivatives which constitute the equation. So 
the most imposing terms give  
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The taking into account of the  Eqns. 20-37(20)- )  in the  Eq.19  leads to the following 
equation 
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                                                                                                                                             (38) 
 Eq. 38  is the main coefficient range equation to analyze. Thus, the different values of n  

and m  favorable to the search for solutions will be given in the following sections. 

                                                                                       

3.2 FIELD OF POSSIBLE SOLUTIONS  
 
We are looking for the values of n  and m  for which certain terms of  Eq. 38  are grouped together. 

Thus, to obtain the values of n  and m  for which certain terms of  Eq.38  regroup, we solve the pairs 

of equations in n  and m  such that if 
,i n mJ  and 

,j n mJ    (with i j ) are two terms of   Eq.30 and 

where i and 
j are constants, we have simultaneously n n and .m m  

In this quest, we count a total of 42 pairs of equations which lead to the determination of the pairs 

( ,n m ). Such that we have 

 , 8, 6, 4, 3, 2, 1, 0,1, 2, 3, 4, 6, 8 .n m                                                                    (39)                                                                                           

The combination of the values of n  and m  for which there is a grouping of the terms makes it 

possible to obtain a table of the possibilities of solutions comprising 169 pairs. 

The 169 pairs constitute the extended field of pairs for which the search for solutions must be made. 

But the probabilities of appearance of pairs make it possible to determine the most probable pairs and 

thereby reduce the field of possibilities in order to obtain a restricted field of possibilities in which the 

effective research will be carried out. 

 

3.3. PROBABILITIES OF APPEARANCE OF PAIRS  ( ,n m ) AND DOMINANT 

PAIRS 
 
On the 42 pairs of equations solved in n  and m , the probabilities of obtaining pairs ( n , m ) for 

which certain terms of the range equation are grouped together are given by 



 

 

 2, 2 7 / 42P     ,
 

 3, 3 2/ 42P     ,
 

 6, 6 2/ 42P     ,
 

 8, 8 1/ 42P     , 

 4,4 4/ 42P  ,  2,2 8/ 42P   ,
 

 0,0 8/ 42P   ,
 

 1,1 2 / 42P   ,
 

 4, 4 2/ 42P     ,
 

 6,6 2/ 42P   ,
 

 1, 1 2/ 42P     ,
 

 3,3 1/ 42P   ,
 

 8,8 1/ 42P   . 

 ,P n m  represents the fraction of the number of times that the couple ( ,n m ) appears in the 

grouping possibilities or the probability of obtaining the solution for the pair ( ,n m ). The 

combination of the values of n  and m  obtained above, gives the pairs of the main field or extended 

field of solutions research. With regard to the probabilities of appearance of the pairs, we remark 

that  0,0 8/ 42P   ,
 

 2, 2 7 / 42P    and  2,2 8/ 42P   . Then,  the pairs  

( 0, 0 ),( 2, 2  )  and ( 2, 2 ) are the dominant pairs.  

A combination of the values of n  and m  for these dominant pairs forms the restricted field of search 

for solutions. The following table is the narrow field of the search for solutions such that the pairs 

which  form it will examine in detail to see if they lead to solutions. 

 

Table 1: Restricted field of possibilities 
 

 ,n m  2  0  2  

2   2, 2    2,0   2,2  

0   0, 2   0,0   0,2  

2   2, 2   2,0   2,2  

 

 The goal of obtaining the restricted field of pairs aims to verify whether in addition to the dominant 

pairs, there are other pairs which lead to non-trivial solutions. Thus, in the following lines, we will 

solve  Eq.38 for the different values of the above pairs. But before going to the effective resolution, 

we will determine the values of  1,...,4iA i  ,   1,...,4iB i  and  1,...,6iC i   for each pair 

( n , m ) of the restricted field. 

 

3.3. CALCULATION OF COEFFICIENTS OF TERMS  
 

For each couple in the restricted field of possibilities, the values of  1,...,4iA i  ,  

 1,...,4iB i  and  1,...,6iC i 
 

are as follows. 

 For    , 2, 2 ,n m      we have  

2

1 12A a  , 

2

2 28A a  ,
2

3 20A a  ,
2

4 4A a  ,
2

1 24B a  ,
2

2 42B a  ,
2

3 16B a  , 4 0B  ,

1 720C a  , 2 1488C a  , 3 1280C a  , 4 272C a  , 5 0C  , 6 0C  . 

 For    , 2,2 ,n m    we have  



 

 

2

1 4A a , 

2

2 20A a ,
2

3 28A a ,
2

4 12A a , 1 0B  ,
2

2 16B a ,
2

3 40B a ,
2

4 24B a , 1 0C  ,

2 0C  , 3 260C a , 4 1232C a , 5 1680C a , 6 720C a .                                 

 For    , 2,0 ,n m    we have  

1 0A  , 

2 0A  ,
2

3 4A a ,
2

4 12A a , 1 0B  , 2 0B  ,
2

3 16B a ,
2

4 24B a , 1 0C  , 2 0C  ,

3 0C  , 4 272C a , 5 960C a , 6 240C a . 

 For    , 2,0 ,n m     we have  

1 0A  , 

2 0A  ,
2

3 4A a ,
2

4 4A a  , 1 0B  , 2 0B  ,
2

3 8B a , 4 0B  , 1 0C  , 2 0C  , 3 0C  ,

4 32C a  , 5 4C a , 6 0C  . 

 For    , 2, 2 ,n m     we have  

2

1 12A a  , 

2

2 4A a ,
2

3 20A a  ,
2

4 12A a ,
2

1 24B a  ,
2

2 8B a ,
2

3 8B a  ,
2

4 24B a ,

1 720C a  , 2 224C a  , 3 32C a  , 4 0C  , 5 240C a , 6 240C a  . 

 For    , 2,2 ,n m     we have  

2

1 4A a , 

2

2 28A a  ,
2

3 28A a ,
2

4 4A a  , 1 0B  ,
2

2 32B a  ,
2

3 32B a , 4 0B  , 1 0C  ,

2 0C  , 3 464C a , 4 512C a  , 5 0C  , 6 0C  . 

 For    , 0, 2 ,n m     we have  

2

1 12A a  , 

2

2 4A a  , 3 0A  , 4 0A  ,
2

1 24B a  ,
2

2 16B a  , 3 0B  , 4 0B  , 1 720C a  ,

2 400C a  , 3 280C a  , 4 0C  , 5 0C  , 6 0C  . 

 For    , 0,2 ,n m    we have  

2

1 4A a , 

2

2 4A a  , 3 0A  , 4 0A  ,
2

1 4B a  , 2 0B  , 3 0B  , 4 0B  , 1 0C  , 2 0C  , 3 24C a ,

4 0C  , 5 0C  , 6 0C  . 

                                     

3.4 SOLVING THE MAIN RANGE EQUATION  
 
When we fix the values of the pairs ( ,n m ), the resulting range equation is the secondary coefficient 

range equation. Thus, we look for the solutions of Eq. 38  for the pairs of the restricted field of 

possibilities. 



 

 

For the pairs ( 0, 0 ),( 2, 2 ), ( 2, 2 ), ( 2, 0 ), ( 0, 2 ),( 2,0 ) and  ( 0, 2 ) the equation admits 

trivial solutions so that the search for solutions is reduced only for the pairs ( 2, 2  ) and  2,2 . 

 Case    , 2, 2n m     

Taking into account the pair    , 2, 2n m     in the Eq. 38 we obtain 

5 2 3 2 3 3 5 2 3 2 3 3

4 2 3 1 7, 7 4 2 3 1 5, 5

5 2 3 2 3 5 2 3

4 0 0 2 3 3, 3 0 0 4 2 1, 1

720 12 24 2 1488 28 42 2

1280 2 20 16 2 272 4 0,

an a n a n n a J an a n a n n a J

an n a a n a n J n a an a n J

       

      

   

   

             

             
                                                                                                                                                                      
                                                                                                                                             (40) 

Eq. 40 is valid for 0a   if and only if we have 

   4 2 2 2

4 2 3 1360 6 12 0,n n n a n a                                                                          (41) 

 4 2 2 2

4 2 3 1744 14 21 0,n n n a n a                                                                         (42) 

 5 3 3

4 0 0 2 3640 10 8 0,n n n n a                                                                            (43) 

and 
5 3

0 0 4 5136 2 .n n an                                                                                                    (44) 

From Eq.44  we obtain 

 5 3

0 0 4 2 2136 / 2 , 0, 0.a n n n n                                                                         (45) 

The introduction of Eq.45 in Eqns.41-44 permits to obtain the constraint relation 

2 340 61 0.n n                                                                                                                 (46) 

The solution in this case is given by 

           5 3 5 3

0 0 4 2 2, 2 0 0 4 2 2, 2 0136 / 2 , 136 / 2 .U n n n J U x t n n n J x t            
        
   

                                                                                                                                             (47) 

 Case    , 2,2n m   

Taking into account the pair    , 2,2n m   in Eq.38 we obtain 

5 2 3 5 2 3 2 3

4 0 0 2 1,1 0 0 4 2 3 3,3

2 3 2 3 3 5 2 3 2 3 3

2 3 1 5,5 4 2 3 1 7,7

260 2 4 2 1232 20 16

28 40 2 720 12 24 2 0,

an n a a n J n a an a n a n J

a n a n n a J n a n a n n a J

      

      

           

             
                                                                                                                                
                                                                                                                                            (48) 

Eq.48is valid for 0a   if and only if we have 

  5 3

4 0 0 2130 2 0,n n an                                                                                          (49) 

2 2 2

2 3 114 20 0,an an n a                                                                                           (50) 

4 2 2 2

4 2 3 1360 6 12 0,n an an n a                                                                            (51) 

and 
5 3 3

0 0 4 2 3616 10 8 0.n n an an                                                                              (52) 

 
From Eq.52, we obtain 

 5 3

4 0 0 2 2130 / 2 , 0, 0.a n n n n                                                                         (53) 



 

 

The introduction of the Eq.53 in Eqns.49-52permits to obtain the constraint relation 
2 2

2 2 3 3213 117 240 0.n n n n                                                                                            (54) 

The solution in this case is given by 

           5 3 5 3

4 0 0 2 2,2 4 0 0 2 2,2 0130 / 2 , 130 / 2 .U n n n J U x t n n n J x t                 
   

                                                                                                                                             (55) 

3.5 TRIGONOMETRIC SOLUTIONS  
 
One of the great peculiarities of the use of the iB-function is that it facilitates the passage from the 

hyperbolic form to the trigonometric form and vice versa. When we make the correspondences 

i   and 
0 0i   with 

2 1i   , we obtain respectively from Eqns. 46,47 the following 

trigonometric solutions 

 

     5 3 2

0 0 4 2 0, 136 / 2 cot ,U x t i n n n an x t        
 

                                        (56) 

and 
 

     5 3 2

4 0 0 2 0, 130 / 2 tan .U x t i n n n x t        
 

                                             (57) 

 

4. CONCLUSION 
 
The objective of this work was to show how, in the impossibility of using the integral methods 
to solve a nonlinear partial differential equation, one can proceed to choose or know the 
suitable form of solution. To this end, we decided to use this technique to first locate the 
forms of solutions and then build them by relying on the modified partial differential 
equations of the KdV type. For this purpose, we have considered building a solution of the 

form  , 0n maJ x t   where 0, , , ,a n m   are real constants to be determined. But the 

fixed values of n  and m  are those which make it possible to indicate with precision the 

solution functions. It is for this that the work to be done first and foremost consisted in 
determining the values of n  and m  for which we suspect the solutions. In this perspective, 

we have obtained 42 possible  ,n m  pairs forming what we have called the extended field 

of the possibilities of solutions. But of all these pairs, only a few are more favorable to 
obtaining the solutions. These pairs, called dominant pairs, are identified through a high 
probability of presence among the pairs for which certain terms of the coefficient range 
equation are grouped together. 

In the case of this study, we have the pairs  0,0 ,  2, 2   and  2,2  having respectively 

for probability  0,0 8/ 42P  ,  2, 2 7 / 42P     and  2,2 8/ 42P  . These three 

pairs indicated are those which are more favorable to obtaining the solutions. But in order to 
detect other particular solutions which do not appear at first glance, we have combined the 
values of n  and m  of the dominant pairs to make what we have called a restricted field of 

the possibilities of obtaining solutions. 

This allowed to obtain a total of nine  ,n m  pairs that we thoroughly examined in search of 

possible solutions. Of all these analyzes, only the dominant pairs  2, 2   and  2,2  made 

it possible to have non-trivial solutions, the pair  0,0  leading to a trivial solution like 



 

 

 U a  . We have deduced from the implicit solutions obtained, the trigonometric 

solutions by making use of the magnificent properties of iB-functions. 

These results obtained confirm our predictions, namely, only the     , 0,0n m   pairs 

having the greatest probabilities of appearance among the pairs of the field of possibilities 
are the most favorable to obtaining the solutions. 
We can see that unlike the classical KdV equation which has the third-order dispersion term 
and admits a pulse-type solitary wave solution for ( ,n m ) = (2,0), the modified KdV equation 

has the term of dispersion of order six and as treated in this article, admits non-trivial 
solutions just for pairs (-2, -2) and (2,2), which are solitary wave solutions of the kink type. 
 
 

 
REFERENCES 
 
1. Bogning J R. Pulse soliton solutions of the modified KdV and Born-Infeld equations , 

International Journal of Modern Nonlinear Theory and Application. 2013; 2 :135-140. 
2. Bogning J R, Porsezian K, Fautso Kuiaté G, Omanda H M. gap solitary pulses induced 

by the Modulational instability and discrete effects in array of inhomogeneous optical 
fibers , Physics Journal. 2015;1(3):216-224. 

3. Bogning J R. N
th
 Order Pulse Solitary Wave Solution and Modulational Instability in the 

Boussinesq Equation. American Journal of Computational and Applied 
Mathematics.2015; 5(6):182-188. 

4. Bogning J R,  Fautso Kuiaté G, Omanda H M and Djeumen Tchaho C T.Combined 
Peakons and multiple-peak solutions of the Camassa-Holm and modified KdV 
equations and their conditions of obtention. Physics Journal. 2015;1(3): 367-374. 

5. Bogning J R. Analytical soliton solutions and wave solutions of discrete nonlinear 
cubic-quintique Ginzburg-Landau equations in array of dissipative optical system,. 
American Journal of Computational and Applied Mathematics. 2013 ; 3(2) : 97-105. 

6. Bogning J R and Kofané T C. Analytical solutions of the discrete nonlinear Schrödinger 
equation in arrays of optical fibers,  Chaos, Solitons & Fractals. 2006;28(1):148-153. 

7. Bogning J R. 
 
Sech

n
 Solutions of the generalized and modified Rosenau-Hyman 

Equations,  Asian Journal of Mathematics and Computer Research. 2015; 9(1): 1-7.  

8. Bogning J R, Djeumen Tchaho C T and Omanda H M. Combined solitary wave 
solutions in higher-order effects optical fibers, British Journal of Mathematics and 
Computer Science.2016; 13(3): 1-12.  

9. Djeumen Tchaho C T, Bogning J R and Kofané T C. Modulated Soliton Solution of the 
Modified Kuramoto-Sivashinsky's Equation, American Journal of Computational and 
Applied Mathematics. 2012; 2( 5): 218-224. 

10.  Djeumen Tchaho C T,  Bogning J R  and Kofane T C.  Multi-Soliton solutions of the 
modified Kuramoto-Sivashinsky’s equation by the BDK method,  Far East J. Dyn. 
Sys.2011; 15( 2): 83-98. 

11. Djeumen Tchaho C T, Bogning J R and Kofane T C. Construction of the analytical 
solitary wave solutions of modified Kuramoto-Sivashinsky equation by the method of 
identification of coefficients of the hyperbolic functions, Far East J. Dyn. Sys, 2010; 
14(1): 14-17.  

12. Njikue R, Bogning J R and Kofane T C. Exact bright and dark solitary wave solutions of 
the generalized higher order nonlinear Schrödinger equation describing the 
propagation of ultra-short pulse in optical fiber , J. Phys. Commun. 2018;  2: 025030.  

13. Bogning J R and Kofané T C.  Solitons and dynamics of nonlinear excitations in the 
array of optical fibers,  Chaos, Solitons & Fractals .2006; 27(2): 377-385. 

14. Bogning J R. Exact solitary wave solutions of the (3+1) modified B-type Kadomtsev-



 

 

Petviashvili family equations, American Journal of computational and applied 
mathematics. 2018; 8(5):85-92. 

15. Bogning J R, Djeumen Tchaho C T  and Kofané T C. Construction of the soliton 
solutions of the Ginzburg-Landau equations by the new Bogning-Djeumen Tchaho-
Kofané method,  Physica Scripta. 2012; 85: 025013-025018. 

16. Bogning J R, Djeumen Tchaho C T and  Kofané T C. Generalization of the Bogning- 
Djeumen Tchaho-Kofane Method for the construction of the solitary waves and the 
survey of the instabilities,  Far East J. Dyn. Sys. 2012;20(2):101-119. 

17. Tiague Takongmo Guy and Bogning J R. Construction of solitary wave solutions of 
higher-order nonlinear partial differential equations modeled in a nonlinear hybrid 
electrical line, American Journal of circuits, systems and signal processing. 2018; 
4(3):36-44. 

18. Tiague Takongmo Guy and Bogning J R. Construction of solitary wave solutions of 
higher-order nonlinear partial differential equations modeled in a modified nonlinear 
Noguchi electrical line, American Journal of circuits, systems and signal processing. 
2018;4(1)8-14 

19. Tiague Takongmo Guy and Bogning J R. Construction of solitary wave solutions of 
higher-order nonlinear partial differential equations modeled in a nonlinear capacitive 
electrical line, American Journal of circuits, systems and signal processing. 2018; 
4(2):15-22. 

20. Tiague Takongmo Guy and Bogning J R. Construction of solutions in the shape (pulse, 
pulse) and (kink, kink) of a set of two equations modeled in a nonlinear inductive  
electrical line with crosslink capacitor, American Journal of circuits, systems and signal 
processing. 2018; 4(2):28-35. 

21. Tiague Takongmo Guy and Bogning J R.  (kink, kink) and (pulse, pulse) exact solutions 
of equations modeled in a nonlinear capacitive electrical line with capacitor, American 
Journal of circuits, systems and signal processing 2018;4(3):45-53. 

22. Tiague Takongmo Guy and Bogning J R. Solitary wave solutions of modified 
telegraphist equations modeled in an electrical line, Physics Journal,  2018;4(3):29-36. 

23. Tiague Takongmo Guy and Bogning J R. Coupled soliton  solutions  of modeled 
equations in a Noguchi electrical line with crosslink capacitor, Journal of Physics 
communications. 2018;2:105016. 

24. Rodrique Njikue, Bogning J R and Kofané T C. higher order nonlinear Schrödinger 
equation family in optical fiber and solitary wave solutions, American journal of optics, 
American Journal of optics and photonics. 2018; 6(3): 31-41. 

25. Bogning J R, Djeumen Tchaho C T and Kofané T C. Solitary wave solutions of the 
modified Sasa- Satsuma nonlinear partial differential equation American Journal of 
Computational and Applied Mathematics. 2013; 3(2): 97-107.  

26. Bogning JR .Mathématique: les fonctions implicites de Bogning&applications. Editions 
universitaires Européenne. Germany; 2019. 

27. Bogning JR. Mathematics for physics. The implicit Bogning functions&applications. 
Lambert Academic Publishing. Germany; 2019. 

28. Bogning J R. Mathematics for nonlinear physics :Solitary wave in the center of the 
resolution of dispersive nonlinear partial differential equations, Dorrance Publishing Co; 
USA; 2019. 

29. Bogning JR. Eléments de la Mécanique Analytique et de la Physique quantique. 
Editions universitaires Européenne. Germany; 2020. 

30. Bogning JR. Elements of Analytical Mechanics and Quantum Physics. Lambert 
Academic Publishing. Germany; 2020. 

31.  Ngouo Tchinda C and Bogning JR. solitary waves and property management of 
nonlinear dispersive and flattened optical fiber. American Journal of optics and 
photonics. 2020; 8(1): 87-32. 

32. Russel JS. Report on waves. Report of the fourteenth of the British association for the 



 

 

advancement of science.1884. 
 
 
 


