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Abstract 
 
This article estimates bounds of several special functions. It also gives mathematical proofs and graphs of 
the corresponding functions. The results are applicable in aspect of inequalities. 
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1. Introduction    
 

3T  tree, which was introduced in article [1], brought some interesting inequalities and bound estimation for special 

functions, as shown in [2,3,4,5]. During the study of the tree, several new special functions are found. They are 
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It also needs to estimate the bounds of them. Because there are no corresponding answers on the Internet and related 
reference handbooks [6,7,8]. This paper presents the required answers. Results of this paper are helpful for further study 

of 3T tree. 

 

2. Main Results and Proofs 
 

Theorem 1. Let    be a real number with (1,4) (4, )     ;then 
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Proof. Direct calculation shows 
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The original function can be changed to 
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Since 1 4   ， 4(4 ) 0   . Next is to show 
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Let 
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2 2

2 2

( ) 8 4 4( 1) ( 1)

         8 1 1 4( 1 1) 4( 1) ( 1 1)( 1) .

h      

    

     

           
 

Assume  1 t    ;then 2 5t    and 

2 2

3 2

( ) 8 1 4( 1) 4 ( 1)

       5 4 8 1 4.

f t t t t t t

t t t t

      

     
 

Direct calculation yields       
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Note that, 
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 and when ''( ) 0f t  .This means '( )f t  is monotonically increasing. Since '( ) 0f t   when 

2t  , ( )f t  is monotonically increasing. Considering (2) 0f   , it is obtained 
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Since (4 0)f      and ( ) 0f   ，it holds 
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It is obvious that   0 17.345( ) 44147f    when  4 6.   

Since  (4 0)f     and  0 17.345( ) 44147f   ，it holds 

( ) ( 17.345),  (4,6)f        

□ 

Using Maple software to draw Figure 1, showing the graph of the function 21
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  with (1,4) (4, )a    , 

which is just what Theorem 1 states. The Maple commands are the follows. 
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Figure.1 The graph of the function 
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Direct calculation shows 
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The conditions 0a    and  1   mean  2 ln2 0a   ; thus 

'( ) 0g                                                                                           (3) 

Obviously, (2) and (3) result in '( ) 0f    . Since 1   , it can be (1) 2f a  . When    is to infinity, the value of  ( )f   is 

equal to  a . It leads to ( ) 2a f a   . 

□ 

Corollary 1. Let  
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 with 1   ;then  1.189 ( ) 1.682f   . 

Proof. According to Theorem 2, since 2a   , it can obtain  1.189 ( ) 1.682f    when 1    . 

Using Maple software to draw Figure 2, displaying the graph of the function 
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 when 1x  ,which is just what 

Corollary 1 states. The Maple commands are the follows. 
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Figure.2 The graph of the function  



 

 

Corollary 2. Let 
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Proof. By Theorem 2, Since 1   and 0a    ,it holds  
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a  ，it can get  0.841 ( ) 1.189h   . 

□ 

Using Maple software to draw Figure 3, displaying the graph of the function 
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 when 1x  ,which is just 

what Corollary 2 states. The Maple commands are the follows. 
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Figure.3 The graph of the function  

Theorem 3. Let 
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Corollary 3. Let  
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Proof. According to theorem 3, Since  
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    hence 1.082 ( ) 1.414f    when  

1  .  

□ 

Using Maple software to draw Figure 4, showing the graph of the function 
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. It is seen 1.082 ( ) 1.414f x   

when 1x  ,which is just what Corollary 3 states. The Maple commands are the follows. 
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Figure.4 The graph of the function  



 

 

Corollary 4. Let  
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Proof. According to the analysis of Theorem 3, since 

22
(1) 1.155

2 1
f  


and 

12
lim 1.414

2 1








 


 , so it is directly 

obtained 1.155 ( ) 1.414f     when 1   . 

□ 

Using Maple software to draw Figure 5, showing the graph of the function 
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 when 1x  . The Maple 

commands are the follows. 
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Figure.5 The graph of the function 

Theorem 4. Suppose 
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When  1  and 0a   , this is obviously  ( ) ' 0g    thus 
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Since 1   , it can be 
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Corollary 5. Assume 
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Proof. According to theorem 4, It yields 0.971 ( ) 1.189f      when 1    .  

□ 

Using Maple software to draw Figure 6, showing the graph of the function 
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. It is seen 0.971 ( ) 1.189f x   when 

1x  . This is exactly what Corollary 5 says. The Maple commands are the follows.  
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Figure 6: The graph of the function  

 

3. Conclusion 
 
This paper proves the estimation of several special function boundaries encountered in the research process, provides a 
mathematical foundation and solution ideas for estimating function boundaries, so that it can be applied to engineering 
practice, and it is hoped that it will be helpful to researchers. 
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