Original Research Article

TAXONOMIC AND PHARMACOGNOSTIC EVALUATION OF LEAF OF Mussaenda philippica L. (RUBIACEAE)

ABSTRACT

Mussaenda philippica Linn. belongs to the family Rubiaceae. The study determines various taxonomic and pharmacognostic standards helpful to ensure the identity, purity, safety and efficacy of the medicinal plant, P. phillipica. The leaves were collected, identified, air dried and pulverized. Standard procedures were carried out to obtain microscopic features of the fresh and powdered samples, micromeritic, chemomicroscopy, flourescence properties, soluble extractive values, moisture contents and ash values. The results of the microscopy study of the fresh leaf revealed an hypostomatic distribution of stomata with paracytic stomata on the abaxial surface of the leaf only, stomatal number of 56.8, stomatal index of 25.06%, and epidermal number of 169.8, while the adaxial surface had an epidermal number of 241.9. The plant sample of the leaf also possessed unicellular trichomes. Micromeritic properties of the powdered leaf samples showed bulk volume of 35.33±0.33, tapped volume of 28.00±0.00, bulk density of 0.28±0.00, tapped density of 0.35±0.00, angle of repose of 35.4°, Carr's Index of 20.90±0.74, Hausner's ratio of 1.26±0.01. Chemomicroscopy study on the leaf powder revealed the presence of lignin, starch, cellulose, calcium oxalate crystals, oil, mucilage and protein. The moisture content was 11 %w/w. Results for the total ash, acid-insoluble ash and water-soluble ash values were 9 %w/w, 1%w/w and 5 %w/w respectively. Results for the ethanol-soluble, methanol-soluble and water-soluble extractive values were 18% w/w, 17 % w/w and 25 % w/w respectively. The above results could be used to establish pharmacopoeial standard of fresh and powdered drug of M. philippica.

Key Words: Chemomicroscopy, hypostomatic, micromeritic, *Mussaenda philippica*, pharmacognostic, taxonomic

INTRODUCTION

Mussaenda philippica belongs to the family Rubiaceae, is a large shrub or small tree found growing in semi-shaded or open areas in secondary and primary forests, savannahs and forest edges [1]. It is used in high doses to treat appendicitis and hepatitis [2]. It is usually used as ornamental plant. Phytochemical constituents include Iridoids, flavonoids and triterpenes. The most recognized compounds in M. philippica are the iridoids and triterpene saponins [3]. The plant is extensively grown as an ornamental in botanical gardens, parks and along roadsides [4]. In Nigeria, this species is used to treat dysentery, antidote for snakebites, affections of the chest and lungs and stomachache [5]. Pharmacologically, Sanshiside methyl ester posssess antiviral property[6]. Non-glycosidic iridoids like Mussaein are cytotoxic [7].

Phylogeny of Mussaenda Philippica (white flower) (Scientific Classification)[8].

Kingdom: - Plantae

Clade: - Tracheophytes
Clade: - Angiosperms

Clade: - Eudicots
Clade: - Asterids
Order: - Gentianales
Family: - Rubiaceae
Genus: - Mussaenda
Species: - M. Philippica

Botanical Name - Mussaenda philippica 'Aurorae' Common Name - White Mussaenda, Bankok Rose

Local Name - Afia rose abankuk

Figure 1: Mussaenda philippica in its natural habitat

MATERIALS AND METHOD

Collection, Identification and Preparatioin of the Plant

The plants was collected from Brooks street off Nwaniba road, Uyo Local Government Area, Akwa Ibom State, Nigeria in January 2021. It was identified by Prof. Mrs. Magaret Bassey of the department of Botany and Ecological Studies, Faculty of Sciences, University of Uyo with the voucher number: UUPH 67 (m). The fresh plant was air dried, pulverized and packed in a dry container, well labeled and used when needed.

Anatomical Studies

Microscopic Evaluation of Leaf

Matured fresh leaves of the plant were cut at the petiole. Microscopical examinations of the Epidermis of both adaxial and abaxial surfaces were made by placing the leaf on a glass slide. The sample was irrigated with water and scraped gently with a sharp razor blade till loose cells

from the epidermis were washed away with water and the desired epidermis was reached. The epidermal peels were further cleared with sodium hypochlorite and rinsed gently with water. The epidermal peels were stained with aqueous solution of safranin-O for (five) 5 minutes and 10% glycerol as mountant. The stained samples were viewed on the microscope. Photomicrographs of

the prepared slides were taken with an Amscope MD500 mounted on Olympus CX21 microscope. The transverse section and powder microscopy of the plant were observed and photographs taken [9].

Quantitative Microscopy of the Leaf

Quantitative microscopy parameters such as leaf constant studies namely stomatal length and width, guard cell length and width, stomatal number, stomatal index, epidermal cell length and width, epidermal cell number, epidermal cell thickness were carried out using standard procedures

All measurements were made using a calibrated ocular micrometer and ten (10) microscopic fields chosen at random were used and data presented as mean \pm SEM.

Stomatal Index Determination

The stomatal index (S.I) was determined according to Metcalfe and Chalk [10,11]. using the formula:

The sample (quantitative microscopy) was placed under the microscope and the stomatal index was determined using the formula;

$$S.I = \frac{s}{E+S} X100$$

Where S = Number of stomata per unit area

E = Number of epidermal cells in the same area

Micromeritics

The flow property was determined using standard methods [12,13] which constitutes;

Bulk Density and Tapped Density

The weight of 10 g of dried powdered leaf was weighed into 100 ml measuring cylinder and the volume occupied was noted as the bulk volume (Vb). The cylinder was gently tapped repeatedly to obtain a constant volume noted as the tapped volume (Vt). Bulk density was calculated using the formula below;

 $B\rho = M / Vb$

Tv = M / Tv

Where Bρ = Bulk density

M = Mass of powder

Bv = Bulk volume of powder

Tρ = Tapped density

Tv = Tapped volume

Hausner's Ratio and Carr's index

Hausner's ratio a function of interparticle friction was calculated using the formula

Hausner's ratio = Tp / Bp

While $Carr's index = Tp - Bp / Tp \times 100$

Where; Tp = Tapped density
Bp = Bulk density.

Angle of repose $(\theta) = \text{Tan}^{-1}$ (Heap height of powder / Radius of heap base)

Chemomicroscopic Analysis of Leaf Powder

Powdered leaf was examined for its chemomicroscopic properties namely mucilage, lignin, starch, oils, calcium carbonate and calcium oxalate crystals using standard procedures [20].

Fluorescence Analysis of Leaf Powders

The fluorescent analysis of dried leaf powder was carried out using standard method [21].

Physico-chemical Evaluation of Leaf Powders

The physicochemical parameters such as moisture content, ash values (total ash, acid insoluble ash, water soluble ash, sulfated ash), soluble extractive values such as ethanol, methanol and water-soluble extractive values were performed according to the official method prescribed by the WHO guidelines on quality control methods for medicinal plant materials [11,15,16].

RESULTS

The results for the anatomical studies, micromeritic properties, chemomicroscopy, fluorescence properties, soluble extractive values, moisture content and ash values of the leaf are represented in Tables 1- 6 and the adaxial, abaxial, transverse section and powder analysis and the leaf was as represented in Figure 2 (A-E) respectively.

Table 1: Microscopic Features of M. philippica of the leaf

Tuble 1. Milet Obcopie 1 cutures of 111. philippica of the feat			
Leaf surface	Abaxial	Adaxial	
Stomatal morphology	Paracytic	4-	
Stomatal length (µm)	13.96 (15.84±0.46) 19.61	-	
Stomatal width (µm)	8.40 (9.96±0.28) 11.54		
Stomatal pore length (µm)	4.08 (6.33±0.42) 7.69		
Stomatal pore width (µm)	1.63 (2.81±0.19) 3.65		
Stomatal number	52 (56.8±1.30) 64		
Stomatal index	25.06%	_	
Epidermal wall pattern	Polygonal	Irregular	
Length of epidermal layer	$21.05(27.24\pm1.12)31.17$	31.01 (40.97±1.62) 49.65	
(µm)		,	
Width of epidermal layer(µm)	9.01 (13.84±0.63) 14.70	14.70 (18.04±1.13) 26.83	
Thickness (µm)	3.22 (3.92±0.20) 4.81	3.26 (4.61±0.28) 6.21	
Epidermal number	156 (169.8±9.24) 210	215 (241.9±8.83) 271	
Trichome type	Unicellular	-	
Trichome length (µm)	64.49 (137.60±21.79)	-	
	263.25		
Trichome width (µm)	6.97 (9.84±0.51) 12.41	-	

Result presented as Highest range (Mean and standard Error of Mean) Lowest range of 10 determinations

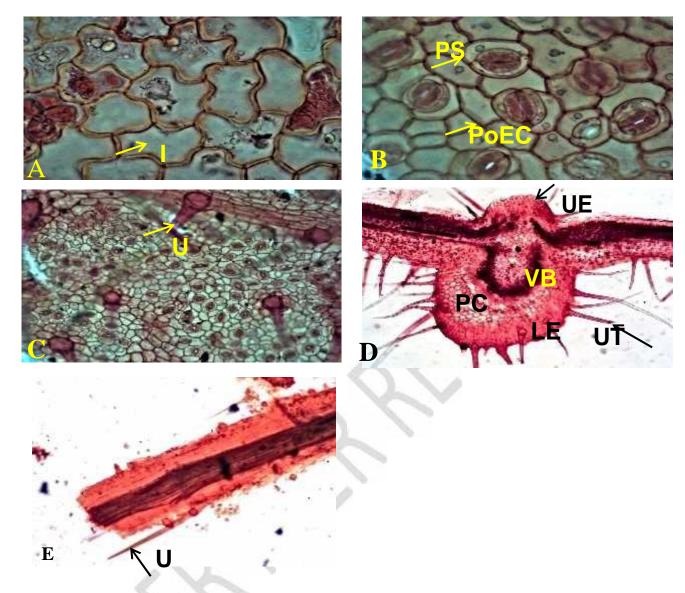


Figure 2: A; Adaxial surface (IE; Irregular epidermal cell shape), B and C: Abaxial surface (PoEc; Polygonal epidermal cell shape), PS; Paracytic stomata, UT; Unicellular trichome. D: Transverse section of the leaf: UE; Upper epidermis, VB; Vascular bundles, UT; Unicellular trichome, PC; Parenchyma cells; LE; Lower epidermis. E: Powder analysis showing UT; Unicellular trichome

Table 2: Micromeritic Properties of M. philippica Leaf

Parameters	Values
Bulk Volume (cm)	35.33±0.33
Tapped Volume (cm)	28.00±0.00
Bulk Density (g/ml)	0.28 ± 0.00
Tapped Density (g/ml)	0.35 ± 0.00
Flow Rate (g/s)	0.68 ± 0.02
Angle of Repose (°)	35.4
Hausner's ratio	1.26±0.01
Carr's Index	20.90 ± 0.74
Diameter of Heap (cm)	6.93±0.08

Result presented as Mean±Standard Error of Mean of 3 determinations

Table 3: Chemomicroscopy of *M. philippica* Leaf

Constituents	Qualitative Test	Observation	Inference
Lignin	Phloroglucinol+ con.F	HCL	Red stain
on sample	Lignin present		
Starch	N/50 iodine	Blue-black coloration	Starch present
Cellulose	$N/50$ iodine+ 66% H_2 S	SO_4	Blue coloration
	Cellulose present		
Calcium	Sample cleared and	Calcium Oxalate	Calcium Oxalate present
Oxalate	viewed under	Crystals seen	
Crystals	microscope	,	Calcium Oxalate
,	+ 80% HCL	Crystal dissolves	crystals present
Oils	Sudan IV, view	Sample stains pink	Oil present
0110	under microscope		
Mucilage	Ruthenium red,	Sample stains pink	Mucilage present
Machage	view under	1	
	microscope		
Protein	1% picric acid and	Yellow stain	Protein present
Howin	millions reagent	strands present	r rotem present
	minons reagent	strailus present	

Table 4: Florescence Properties of M. philippica Leaf

Extract	Sample	Physical Observation Color	UV-254nm Color	UV-365nm Color
N-hexane	Leaf	White	White	Brown
DCM	Leaf	Green	Green	Orange
Ethyl Acetate	Leaf	White	White	Pink
Ethanol	Leaf	Green	Green	Orange
Methanol	Leaf	Green	Green	Brown
Water	Leaf	Brown	Purple	Grey

Table 5: Water-Soluble Extractive Value, Ethanol-Soluble Extractive, Methanol-Soluble Extractive Value for Leaf Powders of *M. philippica*

Parameters	Weight(g)	Percentage(%w/w)
Water-soluble extractive value	0.25 ± 0.00	25
Ethanol-soluble extractive	0.18 ± 0.00	18
value	0.45	
Methanol-soluble extractive	0.17 ± 0.00	17
<mark>value</mark>		

Table 6: Moisture Content, Total Ash Value and Acid-Insoluble Ash for the Leaf of *M. philippica*

Parameters	Weight(g)	Percentage (%w/w)
Moisture content	0.33 ± 0.00	11
Total ash value	0.27 ± 0.00	9
Acid-insoluble ash value	0.03 ± 0.01	1
Water-soluble ash value	0.15 ± 0.01	5

Discussion

The results of the microscopy study using the fresh leaf revealed the presence of paracytic stomata and polygonal epidermal cell shape (Figure 2B), a stomatal number of 56.8±1.30, stomatal index of 25.06%, and epidermal cell number of 169.8±9.24 on the abaxial surface of the leaf, while the adaxial surface had no stomata but had an irregular epidermal cell shape (Figure 2A) and epidermal cell number of 241.9±8.83. The mean stomatal length and width for the abaxial surface of the leaf were 15.84 µm and 9.96 µm (Table 1). The micromeritic study showed angle of repose of 35.4° indicating a good flow. Hausner's ratio and Carr's index were 1.26 and 20.90% as shown in Table 2 indicating a passable to fair flow characteristics. In recent times, the Compressibility index and the closely related Hausner's ratio have become simple, fast, and a popular method of predicting powder flow characteristics. The Compressibility index has been proposed as a measure of inter-particulate interactions and as an indirect measure of bulk density, size, shape, surface area, moisture content and cohesiveness of powders. Umoh *et al.* [17] reported using same parameters for establishing standards in *Gnetum africanum* Welw (Gnetaceae), *Buchholzia coriacea* Engl Caparidaceae, Umoh *et al.* [18] and *Jatropha tanjorensis* J.L. Ellis & Saroja. (Euphorbiaceae) Umoh *et al.* [19].

Chemomicroscopy study on the leaf revealed the presence of lignin, starch, cellulose, calcium oxalate crystals, oil, mucilage and protein as shown in Table 3 as also reported by Johnny and Bassey [20] for *Cola pachycarpa* leaf and stem powders. Calcium oxalate crystals play a central role in a variety of important functions, including tissue calcium regulation, protection from herbivory and metal detoxification [21]. Thus, plants with calcium oxalate crystals shows good antioxidant properties when formulated into pharmaceuticals. The fluorescence property of the powdered sample for different solvent extracts revealed different colors indicating the presence of phytochemicals like: anthocyanins, phenols, tannins and flavonoids when viewed in daylight, lower and higher wavelengths of UV light. This property is useful in characterizing crude drugs, identifying authentic samples and recognizing adulterants. In a mixture of different drugs of two or more species, fluorescence studies help to identify a particular drug by the use of estimates of intensity of fluorescence [22].

The ethanol-soluble, methanol-soluble and water-soluble extractive values were 18 % w/w, 17 % w/w and 25 % w/w respectively. From the result obtained above, water is the best solvent for the extraction of the constituents of the plant. The water-soluble extractive value indicates the presence of water-soluble matters such as sugars, amino acids and vitamins derived from the plants.

The moisture contents was 11 %w/w which suggests a moderate moisture content as it is within the limit (8 % to 14 %) for vegetable drugs [11]. High moisture content is uneconomical and in the presence of suitable temperature could lead to enzymatic activation and hydrolytic reactions as well as proliferation of microbial growth which may lead to degradation of active constituents. The plant possesses moderate moisture content and is stable for use but for better quality should be stored properly as it is subject to degradation. The total ash, acid-insoluble ash and water-soluble ash values for the leaf were 9 %w/w, 1 %w/w and 5%w/w as shown in table 6. The total ash values for leaf was within the limit (Total ash value limit should not exceed 14 %w/w) and the acid-insoluble ash values of leaf was also within the limit (should not be greater than 2, European Pharmacopoeia [23]. Ash value is useful in determining authenticity and purity of

sample. The ash value indicates the presence of Inorganic ions. During ashing, organic matter gets oxidized and certain amount of volatile elements are lost.

Conclusion

It can be said that the data obtained can assist in the proper identification and provides basis for standardization of the leaf of *Mussaenda philippica*.

REFERENCES

- 1. Fosberg, F.R., Sachet, M.H. and Oliver, R. L. Flora of Micronesia. Part 5. Bignoniaceae-Rubiaceae. In: Smithsonian Contributions in Botany. 1993; 81(5)1-135.
- 2. Alejandro, G. J. D., Meve, U. and Liede-Schumann, S. A taxonomic revision of Philippine *Mussaenda* (Rubiaceae, Mussaendeae). Annals of the Missouri Botanical Garden, 2016; 101(3), 457-524.
- 3. Yoshio, T., Hiroshi, N. and Hiroyuki, I. Two new iridoid glucosides from *Mussaenda parviflora* and *Mussaenda shikokiana* Phytochemistry. 1997; 16(9):1401-1404.
- 4.Puff, C. Flora of Thailand: Rubiaceae. 2007, https://homepage.univie.ac.at/christian.puff/_FTH-RUB/FTH RUB_HOME.htm
- 5. Ibironke, O.A. and Victor, O.O. Effect of media and growth hormones on the rooting of Queen of Philippines (*Mussaenda philippica*). Journal of Horticulture, 2016; 21: 1-5.
- 6. Sunit, Suksamram, Kanjana, Wongkrajang and Kanyawim, K. Iridoid glucosides from the sepals of Barleria lupulina. Planta Medica. 2003; 69:877-9.
- 7. Jing-Qiu Dai, Zhong-Li Liu, Li Yang. Non-glycosidic iridoids from *Cymbaria mongolica* Phytochemistry. 2002; 59:537–542.
- 8. Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 2016; 181(91): 1-20.
- 9. Killedar, G. S., Harianth, N. and Sameer J., Nadaf, S. and Karade, R. Phytochemical potential of *Memecyclon umbellatum*. Burm. Leaf extracts. Journal of Drug Delivery and Therapeutics, 2014; 4(2): 30-35.
- 10. Metcalfe, C. R. and Chalk, L. *Anatomy of the Dicotyledons*. Clarendon Press, Oxford, 1979; 1(2):279p.
- 11. African pharmacopoeia. General methods of Analysis Pharmacopoeia., 1986; 11:121-208
- 12. Mbah, C. C., Builders, P.F., Akuodor, G. C. and Kunle, O. O. Pharmaceutical characterization of *Bridelia ferruginea* Benth (Euphorbiaceae). Tropical Journal of Pharmaceutical Research, 2012; 11(4): 637-644.
- 13. Trease, G. E. and Evans, W. C. Pharmacognosy. Elserviers Ltd., United Kingdom, 2009; 16:560 570.
- 14. Kokate, C. K., Purohit, A. P. and Gokhale, S. B. *Analytical Pharmacognosy*, Nirali publication, 2005; 30:199.
- 15. Khandelwal, K. R. Practical pharmacognosy techniques and experiments. New Delhi: Nirali Prakashan., 2002; 15 163.

- 16. Kumar, D., Gupta, J., Kumar, S., Arya, R., Kumar, T. and Gupta, G. Pharmacognostic evaluation of *Cayratia trifolia* (Linn.) leaf. Asian Pacific Journal of Tropical Biomedicine, 2012; 2(1): 6 10.
- 17. Romanus A. Umoh, Uwemedimo F. Umoh, Imoh I. Johnny, Omodot T. Umoh, Victor U. Anah, Anwanabasi E. Udoh, Akwaowoh A.Elijah, Moses A. Adefabi and Etido A. Matthew. Phytopharmacognostic Evaluation of the Leaves of *Gnetum africanum* Welw (Gnetaceae). Journal of Complementary and Alternative Medical Research, 2020; 11(3): 32-41.
- 18. Romanus A. Umoh, Uwemedimo F. Umoh, Imoh I. Johnny, Anwanabasi E. Udoh, Victor U. Anah, Omodot T. Umoh, Akwaowoh A. Elijah and Ndifreke S. Essienutin. Phytopharmacognostic Standardization of the Leaves of *Buchholzia coriacea* Engler. (Capparidaceae). Journal of Complementary and Alternative Medical Research, 2020; 11(2): 33-42.
- 19. Romanus A. Umoh, Uwemedimo F. Umoh, Imoh I. Johnny, Omodot T. Umoh, Victor U. Anah, Anwanabasi E. Udoh, Akwaowoh A. Elijah and Blessing E. Andrew. Phytopharmceutical Standardization of Leaves of *Jatropha tanjorensis* J. L. Ellis & Saroja. (Euphorbiaceae). Journal of Complementary and Alternative Medical Research, 2020; 11(2): 1-10.
- 20. Imoh I. Johnny and Margret E. Bassey. Pharmacognostic and Taxonomic Studies of *Cola parchycarpa* K. Schum. (Malvaceae). Asian Plant Research Journal, 2020; 6(3): 33-45.
- 21. Paul, A. N. Plant calcium oxalate crystals formation, function and its impact on human health. Frontiers in Biology. 2012; 7(3): 254-266
- 22. Kasthuri, O. R. and Ramesh, B. Physicochemical and Flourescence Analysis of leaves of *Alternanthera brasiliana* (L). Kuntze and *Alternanthera bettzickiana* (Reegl) Voss. International Journal of Pharmaceutical Science Reviews and Research. 2018; 51(1):11, 66-71.
- 23. .European Pharmacopoeia. *Pharmacopoeia limits of Crude Drugs*. Strasbourg: Council of Europe.2007; 6:124-164.