
Deep Learning in Agriculture: A Review 

 

 
ABSTRACT 

Deep learning is a kind of sophisticated data analysis and image processing technology, with 

good results and great potential. DL has been applied to many different fields, and it is also 

being applied to the agricultural field. This paper presents a wide-ranging review of research 

with regards to how DL is applied to agriculture. The analyzed works were categorized in 

yield prediction, weed detection, and disease detection. The articles presented here illustrate 

the benefits of DL to agriculture through filtering and categorization. Farm management 

systems are turning into real-time AI-enabled applications that give in-depth insights and 

suggestions for farmer's decision support by using the proper utilization of DL and sensor 

data. 

Keywords: Deep learning, Machine learning, Yield prediction, Disease detection, Weed 

detection



 

1. INTRODUCTION 

In the global economy, agriculture plays a prominent role. As the world's population 

continues to grow, the agriculture sector's demands will significantly increase. Agricultural 

technology and modern agriculture have become new scientific research areas that increase 

agricultural productivity and minimize the impact on the environment by using data-intensive 

methods. The data produced in modern agricultural processes are provided by various 

sensors, which can help to understand the operating circumstances including the climatic 

conditions, soil, and interaction of dynamic crops and the operation itself, thereby improving 

accuracy and faster decision-making. 

DL [1] along with big data technology [2, 3] and high-performance computing [4] has created 

new opportunities for revealing, quantifying, and understanding data-intensive workflows in 

agricultural operating contexts. Among other definitions, DL is defined as the field of science 

that empowers ML and it is also used in more and more scientific fields year after year, such 

as bioinformatics [5-8], biochemistry [9], medicine [10], meteorology [11], economics [12], 

robotics [13-16], aquaculture [17], food safety [18-21] and climatology [22]. 

In this paper, we comprehensively reviewed the application of DL in agriculture. Several 

relevant papers have been presented that highlight the distinct characteristics of 

conventional DL models. The purpose of the review paper is to observe the different models 

of DL that are successfully utilized in the agricultural sector. Researchers will be able to 

choose the most appropriate model for their research based on this information. In the 

future, we hope to develop an application that has a direct connection to agriculture and DL. 

Throughout this review, we have gained some insight into the DL models and their accuracy 

rate for agricultural applications. This will certainly help us to determine which model would 

be most suitable for our application. 

The following is the structure of the current work: In section 2, there is a paper selection 

technique for the survey. Section 3 elaborate the definition, terminology, evolution, tasks of 

learning, and analysis of DL, as well as the most popular learning models. Section 4 

describes the methods implemented for the compilation and classification of submitted 

papers. Last section presents the conclusion. 

As there are many abbreviations used in relevant scientific papers. Tables 1-3 list the 

abbreviations used in this work, which are classified as DL models/algorithms, statistical 

measures, and general abbreviations, respectively.  

Abbreviation Models/Algorithms 

CNN Convolution Neural Network 

RNN Recurrent Neural Network 

GAN Generative Adversarial Network 

LSTM Long Short-Term Memory Network 

DBN Deep Belief Network 

DCNN Deep Convolution Neural Networks 

MCNN Multilayer Convolution Neural Network 

DNN Deep Neural Network       



 

ResNet Residual Network          

R-FCN Region-based Fully Convolutional Network    

R-CNN Region Based Convolutional Neural Network 

DRL Deep Reinforcement Learning   

DenseNet Densely Connected Convolutional Networks 

PSPNet Pyramid Scene Parsing Network 

IRRCNN Inception Recurrent Residual Convolutional Neural Network 

IRCNN Inception Recurrent Convolutional Neural Network 

DCRN Densely Connected Recurrent Convolutional Network 

R2U-Net Recurrent Residual Convolutional Neural Network based on U-
Net model 

NLP Natural Language Processing 

DRQN Deep Recurrent Q-Network 

BPNN Back-propagation Neural Network 

IndRNN Independently Recurrent Neural Network   

DNN_JOA Deep Neural Network with Jaya Algorithm 

ConvXGB Convolutional eXtreme Gradient Boosting 

SDG Stochastic Gradient Descent 

MLNN Multilayer Neural Network   

 

Table 1: Abbreviations for DL algorithms/models 

Abbreviation Models/Algorithms 

RMSE Root Mean Square Error 

MSE Mean Squared Error 

MAPE Mean Absolute Percentage Error 

MAE Mean Absolute Error 

DBN Deep Belief Network 

 

Table 2: Abbreviations for the statistical measures 

Abbreviation Models/Algorithms 

NDVI Normalized Difference Vegetation Index 

RGB Red Green Blue   

DL Deep Learning    

ML Machine Learning   

ANN Artificial Neural Networks 

UAV Unmanned Aerial Vehicle    

RL Reinforcement  Learning   

 

Table 3: General abbreviations 

 

2. RESEARCH METHOD 

The general research method followed is presented in Figure 1. Initially, considering our 

specific review goals, 10 academic databases were used for keyword searches. Seven filters 

were used to pick the main objective of the review. A review of those DL models used in 

agricultural applications is presented here. Therefore, those DL models that do not apply to 



 

the agriculture sector are not considered here. Following the filtering of those models, we 

looked at how those models relate to DL. These models were then examined. In conclusion, 

the result is evident. 

 

Fig. 1: Research method flowchart 

2.1.  Selection of Articles                                                                                             

A comprehensive review of agricultural DL approaches, including yield prediction, disease 

detection, and weed prediction, was conducted using resources such as IEEE Xplore, 

Science Direct, Elsevier, Multidisciplinary Digital Publishing Institute, Social Science 

Research Network, Springer, ResearchGate, Scientific Research Publishing, Frontiers and 

Google Scholar. The following seven filters were used: (i) Target keyword, (ii) Year of 

publication, (iii) Type of publication, (iv) Duplicate check, v) Article title, Abstract and 

Keyword screening for article selection, (vi) Checked references of selected articles (vii) 

Final quality assessment of the selected article. 

In this study, papers published between 2017 and 2021 were considered because of the 

rapid advancement of the field. After that, we focused our search on conference papers and 

journal articles. At the end of the selection process, we came across several similar articles 

based on the results from 10 different databases. After removing duplicates, carefully read 

the titles, abstracts and conclusions of the remaining publications. Finally, during a quality 

assessment, 38 papers were selected for the study. Figure 2 shows the details of the 

process that was followed during our systematic analysis. 

 

3. AN OVERVIEW ON DEEP LEARNING 

In recent years, DL has been very successful in many fields including agriculture. As a 

learning algorithm, DL can make better use of datasets for feature extraction. Due to its 

practicality, DL is becoming increasingly popular with many researchers for research work. 

In this section, we mainly discuss the evolution of DL and introduced some state-of-the-arts 

models and algorithms. 

3.1.  Deep Learning Terminology and Definitions 

DL is a ML technique that builds ANNs to imitate the way the brain functions. In practice, DL 

is also known as deep structured learning or hierarchical learning, and it uses layers of 

hidden data, usually more than six, although non-linear processing is generally greater to 

extract characteristics from data and to transform the data at various levels of abstraction 

(representation). Figure 3 shows a typical DL procedure.  



 

Fig. 2: Filter and search the results: A. Query1 (Q1) = yield prediction, crops images, 

image processing, image classification, transfer learning, deep learning; B. Query2 

(Q2) = disease detection, crops images, image processing, image classification, 

transfer learning, deep learning; C. Query3 (Q3) = weed detection, crops images, 

image processing, image classification, transfer learning, deep learning. 

Fig. 3: A typical deep learning procedure. 



 

3.2.  Evolution of Deep Learning 

The whole DL evaluation [23] can be divided into two phases. The first phase started from 

1943 to 2006, and the second phase started from 2012 till now. In both phases, many new 

technologies and algorithms have been discovered. The year 1943 was the beginning of DL. 

Walter Pitts and Warren McCulloch gave a threshold logic [24] to copy human thought 

processes. Then it laid the foundation for both ANN [25-28] and DL. In 1957, the perceptron 

was created by Frank Rosenblatt [29]. Rosenblatt demonstrated a novel McCulloch-Pitts 

neuron [30,31] dubbed the 'Perceptron,' which had actual learning capabilities and could 

perform binary classification on its own. The first-ever version of the continuous 

backpropagation model [32] exhibited by Henry J. Kelley.  His model is based on Control 

Theory [33, 34] but it lays the groundwork for further improvement and will be employed in 

ANN in the future. Stuart Dreyfus displayed backpropagation with the chain rule instead of 

other general rules [35] used in the early days. Kunihiko Fukushima proposed Neocognitron 

[36], which is the first CNN [37,38] architecture that can recognize visual patterns like 

handwritten characters. In 1986, Backpropagation [39] was successfully implemented in the 

neural network by Geoffrey Hinton, Rumelhart, and Williams. It paved the way for 

researchers to quickly train massive DNN [40], which had previously been a major 

roadblock. Yann LeCun [41] trained a CNN to recognize handwritten numerals using 

backpropagation. The authors of [42] published a paper in 2006, where they introduced 

DBN. It is much more efficient to train a large amount of data. The DL community has long 

struggled to find enough labelled data. For this reason, Fei-Fei Li, a professor at Stanford, 

launched ImageNet [43] back in 2009. ImageNet consists of 14 million well-labelled images. 

AlexNet is a GPU-implemented CNN model designed by Alex Krizhevsky in 2012 [44], that 

won the ImageNet image classification contest with an accuracy of 84%. It became the 

highest gain in accuracy compared with others. Then GAN was invented by Ian Goodfellow 

[45].  Since GAN can synthesize data similar to the real world, GAN opens a new door for 

the application of DL in the fields of fashion [46], art [47], and science [48] In 2016, a game 

named Go [49] was played between deepmind's DRL model and the human champion. 

Where the human champion was defeated by a deepmind's DRL model. This is a huge 

achievement for the DL society. Yoshua Bengio, Geoffrey Hinton, and Yann LeCun won the 

2018 Turing Award [50] for their contributions to DL and AI. Figure 4 summarizes the above 

paperwork. 

3.3.  Tasks of Learning 

DL has achieved a higher level of recognition accuracy than ever before. Meeting user 

expectations, this technology supports safety-critical applications such as driver-less cars. 

With the latest advances in DL, computers are now able to perform certain tasks more 

efficiently than humans, such as classifying object images. DL requires a lot of labelled data. 

In addition, powerful computing power is required. DL runs efficiently using a high-speed 

GPU with a parallel architecture. By combining clusters and cloud computing, the 

development team can reduce DL network training time from weeks to hours. 



 

 

Fig. 4: Summary of the deep learning evolution from 1943 to 2019. 

3.4.  Analysis of Learning 

DL, a subset of ML, uses a hierarchical neural network to analyze data. The neuron code is 

connected together within these hierarchical neural networks, similar to the human brain. 

Unlike other existing linear programs in the machine, the DL hierarchy allows a non-linear 

approach to process data in a series of layers to integrate additional information in each 

subsequent layer. 

3.5.  Analysis of Learning 

In 1943, Walter Pitts and Warren McCulloch laid the foundation for DL. After that various DL 

models has developed. Here we have gathered the information on the models which are 

developed between 2017 to 2021. During that time period, many models were invented by 

researchers. We'll go through the most popular models. In 2017, several models were 

proposed by the authors such as DenseNet [51], CapsuleNet [52], IRCNN [53,54], IRRCNN 

[55], RefineNet [56], PSPNet [57], Mask-RCNN [58], Fast-RCNN [59], The growth of the DL 

model also continues in 2018. In that year many notable models had been developed such 

as DCRN [60], R2U-Net [61], DeepLab [62]. After a year, EfficiantNet [63,64] was developed 

by Google AI. Since then several researchers are interested in this model. In 2020, 

UnitedModel [65] was proposed based on CNN architecture. Researchers are still working 

on generating new models in 2021. ConvXGB [66], based on CNN and Chen et al.’s 

XGBoost was also introduced this year. Figure 5 summarizes the above paperwork. 

In this review, the learning models of DL are limited specifically to those that have been used 

in the research 



 

 

Fig. 5: Visualization of the evolution of several DL models from 2017 to date. 

3.5.1.  CNN 

CNN [67] is a specialized type of ANN used for image recognition [68]. This network is a 

MLNN that contains two or more hidden layers. CNN's hidden layers generally consist of a 

series of convolutional layers. The convolutional layer is the primary component of CNN. It 

extracts the input signal's high-level characteristics. After the convolution layer, the pooling 

layer is applied. Pooling operations are set up based on the applications. The pooling 

operation is mostly used to decrease dimensionality and to select the most essential feature. 

The fully connected layer is the last layer in the CNN structure, which can be one or more 

layers, and is placed after a series of convolution and pooling layers.  

3.5.2.  DNN 

DNN [69, 70] is usually a FFNN [71], in which data flows from the input layer to the output 

layer without moving backwards, and the link between layers is a forward path and never 

touch a node again. Compositional models are created by DNN architectures, in which the 

object is represented as a layered composition of picture primitives. The large datasets in 

the cloud allow additional large layers to capture high-level patterns and build more accurate 

models. The two stages of a neural network called training and inference, represent the 

production of development. 

3.5.3.  RNN 

RNN [72] is a type of neural network containing loops that allow data to be stored inside the 

network. In short, RNN uses their reasoning from prior experiences to predict future events 

[73].  Recurrent models are useful because they can sequence vectors, allowing the API to 

execute more complex tasks. RNN is commonly used for ordinal or temporal problems, such 

as language translation [74], NLP [75], speech recognition [76]. 

3.5.4.  DCNN 

DCNN [77] is  a type of DL method that differs from traditional CNN in terms of the number 

of hidden layers (typically more than 5), which are used to extract more features and 

enhance prediction accuracy. One type of DCNN increases the number of hidden layers, 

while the other increases the number of nodes in the hidden layer. The DCNN method is a 

supervised learning task that uses raw data to identify classification features. It has been 



 

widely and effectively utilized in computer vision [78] tasks such as object localization, 

detection [79], and image classification [80]. 

3.5.5.  AlexNet 

AlexNet is a CNN that was created by Alex Krizhevsky [44]. It achieved the best results 

among the other modern technology to classify images from the ImageNet [81] in the 

ILSVRC 2010 competition. AlexNet is made up of eight layers, five of which are 

convolutional and three of which are completely connected. It has some features like ReLU 

Nonlinearity, Multiple GPUs, Overlapping Pooling. AlexNet is a sophisticated model that can 

achieve high accuracy on even the most challenging data sets. Its performance suffers 

dramatically when the convolutional layer is removed. It is the main architecture for all object 

retrieval tasks, and it has a lot of potential applications in computer vision and artificial 

intelligence. AlexNet has the potential to be more adopted than CNN for working with 

AlexNet images in the future. 

3.5.6.  ResNet 

ResNet [82] was likely the most breakthrough development in the recent few years in the DL 

community. ResNet permits clients to prepare hundreds or even a huge number of layers 

while as yet accomplishing magnificent results. The performance of many computer vision 

applications such as image recognition has improved thanks to its powerful representational 

ability. There are several types of ResNet, including ResNet-18 [83], ResNet-34 [84], 

ResNet-50 [85], ResNet-101 [86], ResNet-110 [87], ResNet-152 [88], ResNet-164 [89], and 

ResNet-1202 [87]. 

3.5.7.  CaffeNet 

One type of AlexNet is CaffeNet [90]. AlexNet is the name of a classification CNN that 

competed in the 2012 ImageNet Large Scale Visual Recognition Challenge. The primary 

difference between CaffeNet and AlexNet is that CaffeNet does not train with relighting data-

augmentation, and pooling occurs before normalization 

3.5.8.  Inception Model 

The Inception module is used for CNN to achieve more efficient calculations and deeper 

networks by stacking 1 × 1 convolutional dimensionality reduction. These modules are 

designed to solve problems such as computational overload and overfitting. In short, the 

solution is to use multiple kernel filter sizes on CNN, rather than sequentially stacking them 

and ordering them to run at the same level. It has some versions like inception V1 or 

GoogLeNet [91], inception V2[92], inception V3 [93, 94], inception V4 and inception ResNet 

[95]. 

3.5.9.  R-FCN  



 

The R-FCN [96] is a region-based object detector [97]. Unlike prior region-based object 

detectors such as Fast/Faster R-CNN [98,99], R-FCN is fully convolutional. The computation 

is shared across the entire image, unlike earlier per-region network detectors. 

3.5.10.  VGG16 

VGG16 [100], also known as OxfordNet, is a CNN architecture that won the 2014 ILSVR 

(Imagenet) competition. This model was proposed by K. Simonyan and A. Zisserman [101] 

from the University of Oxford in an article titled ``Very deep convolutional networks for large-

scale image recognition". It is one of the best model architectures to date. Similar to its name 

VGG16, it has 16 weighted layers. 

3.5.11.  VGG19 

VGG19 [102] is a CNN architecture. This architecture was developed by the Visual 

Geometry Group back in 2014. Similar to its name VGG19s, it consists of 19 layers where 

16 act as convolution layers and 3 fully connected layers. It is also known for its simpleness. 

All the convolution layers have a kernel size of 3x3. Although the model is simple, it has 

achieved significant accuracy for classification. 

3.5.12.  DRL 

DRL [103] is a rapidly developing field that combines RL [104] and DL. It's also the most 

popular sort of ML since it can handle a wide range of complicated decision-making tasks 

that were before unsolvable by a machine with human-like intelligence. 

3.5.13.  LSTM 

LSTM [105] is a type of RNN created by Sepp Hochreiter and Juergen Schmidhuber in the 

1990s and are now frequently utilized for image [106] sound [107], and time series analysis 

[108] because they employ memory gates to address the vanishing gradient problem. 

3.5.14.  LeNet 

LeNet is the CNN structure proposed by [108]. Generally speaking, LeNet refers to LeNet5 

[109], which is a simple CNN. LeNet5 is a MLNN [110] and is trained using a 

backpropagation algorithm. The main purpose of this architecture is to recognize handwritten 

[111] and machine-printed characters. 

 

4. REVIEW 

We have reviewed several articles which consist of yield prediction, disease detection and 

weed detection using DL. Here we have discussed their learning models and how it works as 

well as its accuracy. 

4.1.  Yield Prediction 



 

Yield prediction is the most essential aspect of proper agriculture for yield mapping, yield 

estimation, supply of grain including crop management, and demand to enhance 

productivity.  Some studies have been discussed regarding yield prediction. The authors of 

[112] proposed an agriculture framework based on supervised smart farming that is used to 

construct a comprehensive yield prediction framework that maps the raw data to the paddy 

productivity prediction values. In this proposed work they construct a model which is an RNN 

DL algorithm called DRQN over the Q-Learning RL algorithm to determine the crop yield. 

The main goal of this work was to reduce the error and increase the forecast accuracy, 

resulting in better food production. In another study of yield prediction, the authors of [113] 

used a DL methodology of yield prediction to develop a model for wheat and barley crops 

based on NDVI and RGB data acquired from UAVs. The main aim of the model was to 

improve performance and provide accurate yield estimation using RGB images. In paper 

[114], the authors use the field images to develop a DCNN framework for automatically 

recognizing and classifying several biotic and abiotic paddy crop stressors. To classify 

automatically distorted paddy crop images acquired throughout the growing stage, the work 

used the pre-trained VGG16 CNN model. The trained model gained an average accuracy of 

92.89%. In another study, the authors [115] proposed a DL framework to predict the yield 

basis on environmental data and optimization techniques that use CNNs and RNNs. To 

predict yields for both corn and soybean this model achieved an RMSE of 9% and 8% of 

their average yields, respectively. A DNN model, CNN, and LSTM are proposed for soybean 

crop yield prediction by the authors [116].  In this study, the RMSE is 0.81 and the % error is 

2.70. The authors of [117] proposed a model that fuses two BPNNs with an IndRNN which is 

called BBI-model. This model can make accurate predictions in different seasons. In another 

study of yield prediction, the authors of [118] proposed a DNN based model is used to 

predict yield. This model has excellent accuracy for predicting corn, which has achieved 12% 

RMSE of average yield. In paper [119], the authors developed a combined model which 

includes CNN and LSTM to predict yield. This model performed well, with an RMSE of 

8.24%. In the future, the proposed method has the potential to enhance yield prediction 

accuracy for additional crops such as corn, wheat, and potatoes more precisely. Also, in the 

next work, the authors [120] developed a model Using CNN and LSTM networks. They 

trained CNN-LSTM, convolutional LSTM, and 3D-CNN architectures with the captured 

images. With the 3D-CNN model, they have achieved 218.9 kg/ha MAE and 5.51% MAPE. 

Finally, the authors of [121] developed a DNN-based model for crop selection and yield 

prediction. This model aims to get better output and prediction. Table 4 demonstrates the 

above paperwork in terms of yield prediction. 

Author Crops Model/Algorithm Result 

[112] Paddy DRL 93.7% accuracy 

[113] Wheat and Barley CNN 8.8% error rate 

[114] Paddy VGG-16  92.89% accuracy 

[115] Corn and Soybean CNN-RNN Corn: 
RMSE=9% 

Soybean: 
RMSE = 8% 

[116] Soybean DNN/CNN, 
LSTM based 

2.70% error rate 



 

[117] Rice BBI Summer: 
MAE = 0.0044 
RMSE = 0.0054 

Winter: 
MAE = 0.0074 
RMSE = 0.0192 

[118] Corn DNN RMSE = 12% 

[119] Soybean CNN-LSTM RMSE = 8.24% 

[120] Wheat, Barley, Oats CNN-LSTM,  
3D-CNN 

MAE = 218.9 kg/ha 
MAPE = 5.51% 

[121] 6-various crops 
 

DNN Aus rice: 
Accuracy = 97.7% 
MSE = 2.3% 

Aman rice: 
Accuracy = 94.6% 
MSE = 5.4% 

Boro rice: 
Accuracy = 96.7% 
MSE = 3.3% 

Potato: 
Accuracy = 97.3% 
MSE = 2.7% 

Wheat: 
Accuracy = 96% 
MSE = 4% 

Jute: 
Accuracy = 94.1% 
MSE = 5.9% 

 

Table 4: Yield prediction table 

4.2.  Disease Detection 

The control of pests and diseases outdoors (on arable land) and in greenhouses is among 

the most important issues in agriculture. Spraying insecticides uniformly throughout the 

planting area is the most common way to control pests. Although this approach is effective, it 

comes up at a high price and is environmentally harmful. Impacts on the environment can be 

surplus in agricultural production, secondary damage in groundwater pollution, impacts on 

wildlife and local ecosystems, etc. DL methods can reduce the problems to a manageable 

level. The authors [122] are presented with pre-trained models like VGG19 for classifying 

diseases such as early blight, late blight, and healthy in potato leaves. They have achieved 

97.8% accuracy.    In another study [123], the authors identify 5 kinds of tomato leaves 

diseases using CNN. They achieved 99.84% accuracy. The authors of [124] detect tomato 

crop disease and classification using two pre-trained DL architectures, AlexNet and VGG16. 

They obtained 97.49% accuracy for AlexNet and 97.29% accuracy for VGG16 net in their 

tests. In another work [125], the authors compared three DL models: AlexNet, GoogLeNet, 

and ResNet to identifying tomato leaf disease. Then they worked with ResNet and the SGD 

optimization algorithm and achieve the best accuracy of 97.28%. In another study [126], the 

authors use Google’s pre-trained CNN model known as inception-v3 to detecting tomato leaf 



 

disease. Leaf pesticide intensity is divided into three categories: good, average and bad. 

They achieved 99% accuracy. The authors of [127] detect wheat crop diseases using CNN 

because it has automatically extract features by processing the raw images directly. Their 

proposed method obtained 84.54% accuracy. In another work [128], the authors adopted a 

CNN model for detecting diseased leaves in the Mango plant. Their proposed model can 

detect five kinds of mango leaf disease: anthracnose, Alternaria leaf spots, Leaf Gall, Leaf 

Webber, and Leaf burn with 96.67% accuracy. In next paper [129], an MCNN was proposed 

to classify the mango leaves that have been infected by the Anthracnose fungal disease. 

Their proposed model can classify infected leaves from a fungal disease named 

Anthracnose with 97.13% of accuracy.  In the next study [130], the authors detect apple 

leaves diseases like apple black rot, apple cedar apple rust, healthy apple, and apple scab 

with their proposed model CNN and they achieved 98.54% accuracy. The authors of [131] 

developed a CNN model based on a Lenet architecture for soybean plant disease 

recognition and classification. This model performed well and achieved a 99.32% accuracy. 

In the next paper [132], a DCNN was designed to operate symptom-wise recognition of 

cucumber diseases by authors. Cucumber leaf images captured in the field were segmented 

to create the symptom images. This model had a significant recognition result, with an 

accuracy of 93.4%. The authors of [133], proposed a slightly modified CNN model named 

LeNet. This model was mainly used to detect and identify diseases in tomato leaves using 

the simplest approach. This model has achieved an average accuracy of 94-95%. The 

authors of [134], developed a DL system with VGG16 architecture to detect rice plant 

diseases. Due to the small dataset, the accuracy of the detection was not high enough. This 

model only achieved a 60% test accuracy. In paper [135], the authors proposed GoogLeNet 

and Cifar10 models based on DL are proposed for leaf disease recognition. This model aims 

to enhance maize leaf disease recognition accuracy and reduce the number of network 

parameters. The GoogLeNet and Cifar10 models achieved an average accuracy of 98.9%, 

and 98.8% respectively. The authors of [136], proposed a DCNN based method to identify 

rice diseases. Images of diseased and healthy rice leaves and stems were collected from 

the rice experimental field to make the dataset. This proposed model has achieved 95.48% 

of accuracy. In next study [137], a weakly supervised DL framework was proposed by the 

authors for the recognition and identification of wheat diseases. Two different architectures 

that are VGG-FCN-VD16 and VGG-FCN-S was implemented to train the dataset. The 

system achieved the recognition accuracy of 97.95% and 95.12% respectively. Paddy is one 

of the most important crops all over the world. Lots of farmers are not aware of paddy leaf 

disease. Here, some studies have been introduced on the application of DL to detect and 

classify paddy leaf diseases. In another study [138], the authors of proposed a special 

classification technique of DL which is AlexNet. This model is used to detect paddy leaf 

diseases like bacterial leaf blight, brown spots, and leaf smut. Their proposed model has 

achieved 99.42% accuracy. According to [139], the authors proposed an effective image 

processing and ML technique are used to identify and classify diseases and the 

classification of pests. Five layers of the CNN technique are applied to classify the images. 

Their proposed model can detect four kinds of leaves: healthy, leaf blast, brown spot, and 

hispa. The model achieved an accuracy of 93.6%. In paper [140], the authors proposed a 

DCNN model to classify rice plant diseases. AlexNet was used for feature extraction and 

SVM was used for classification. A total of 619 images of rice diseases were collected from 



 

the real field conditions belonging to the four classes: (a) Rice Blast, (b) Sheat Blight, (c) 

Bacterial Leaf Blight and (d) Healthy Leave. For 80% - 20% training-testing partitions, the 

proposed model has 91.37% accuracy of rice disease classification. In the next paper [141], 

the authors proposed a DCNN model for the classification of rice plants according to health 

status based on leaves images. The three classes of classifiers were applied through 

transfer learning from an Alexnet Deep network representing normal, snail-infested, and 

unhealthy plants. The network has performed well, with an accuracy rate of 91.23%. The 

authors of [90], proposed an open-source DL framework named the CaffeNet model. Due to 

limitations in GPU memory, they have fine-tuned CaffeNet with a small amount of training 

and testing image batch size. CaffeNet architecture consists of eight learning layers: five 

convolutional layers and three fully connected layers. The developed model can classify 13 

types of paddy pests and diseases with an accuracy rate of 87%. In next study [142], the 

authors suggested an optimized DNN using Jaya Algorithm to identify and classify diseases 

of paddy leaves. They have compared their model with ANN, DNN and DAE. The accuracy 

of the proposed method is 98.9% for the blast affected, 92% for the sheath rot, 95.78% for 

the bacterial blight, 94% for the brown spot and 90.57% for the normal leaf image. In another 

study [65], the authors proposed a joint CNN architecture based on InceptionV3 and 

ResNet50 called UnitedModel, which is capable of classifying grape images into 4 

categories, including 3 different symptom images, namely black rot, isariopsis leaf spot, esca 

and healthy images with an average of 99.17% validation accuracy and test accuracy of 

98.57%. Finally, the authors of [143] proposed a CNN-based disease detection and 

diagnosis method which is based on basic leaf images that can discriminate between the 

uninfected and diseased leaves of diverse plants with sufficient accuracy. Table 5 highlights 

the above papers for the case of disease detection. 

Author Crops Model/Algorithm Result 

[122] Potato VGG19 97.8% accuracy 

[123] Tomato   CNN 99.84% accuracy 

[124] Tomato AlexNet  97.29% accuracy 

VGG16 net  97.49% accuracy 

[125] Tomato      ResNet 97.28% accuracy 

[126] Tomato  Inception-v3 99% accuracy 

[127] Wheat CNN 84.54% accuracy 

[128] Mango CNN 96.67% accuracy 

[129] Mango MCNN 97.13% accuracy 

[130] Apple CNN 98.54% accuracy 

[131] Soybean CNN 99.32% accuracy 

[132] Cucumber DCNN 93.4% accuracy 

[133] Tomato LeNet 94% accuracy 

[134] Rice VGG16 60% accuracy 

[135] Maize GoogLeNet 98.9% accuracy 

Cifar10 98.8% accuracy 

[136] Rice DCNN 95.48% accuracy 

[137] Wheat VGG-FCN-VD16 97.95% accuracy 



 

VGG-FCN-S 95.12% accuracy 

[138] Paddy AlexNet 99.42% accuracy 

[139] Paddy CNN 93.6% accuracy 

[140] Paddy DCNN 91.37% accuracy 

[141] Rice Plant DCNN/AlexNet 91.23% accuracy 

[90] Paddy CaffeNet 87% accuracy 

[142] Paddy DNN_JOA Blight: 95.7% 

Blast: 98.9% 

Sheath rot: 92% 

Brown spot: 94% 

Normal leaf: 94% 

[65] Grape UnitedModel 99.17% accuracy 

[143] Generalized 

procedure for 

different crops (25 in 

total) 

DNN/CNN 99.53% accuracy 

 

Table 5: Disease detection table 

4.3.  Weed Detection 

Another key issue in agriculture is weed detection and management. Weeds are cited by 

many farmers as the greatest serious hazard to agricultural productivity. Weed identification 

is crucial for sustainable agriculture since weeds are difficult to recognize and distinguish 

from crops. Similarly, the combination of sensors and DL algorithms can achieve accurate 

weed recognition and discrimination at a low cost without adversely affecting the 

environment. Weed detection using DL could lead to the development of equipment and 

robots to eradicate weeds, eliminating the demand for herbicides. Four studies have been 

introduced on the application of DL to the detection of agricultural weeds. In paper [144], the 

authors use the inception model (V2) to the detecting of weeds in crops. Their approach 

model can detect weed with 98% of accuracy.  In next study [145], the authors detect weed 

on broad-leaf using CNN algorithms with 96.88% accuracy.  In paper [146], the authors 

proposed a new model using R-FCN with ResNet-101. They also compare their proposed 

model with Faster R-CNN and R-FCN. Their model gets an overall better result than Faster 

R-CNN and R-FCN with 81% of accuracy detecting farmland weed. The authors of [147] 

employ the DCNN method to estimate the growth stage of several weed species in terms of 

the number of leaves with 70\% overall accuracy and 96% accuracy while accepting a two-

leaf variance. Table 6 shortens the above papers for the case of weed detection. 

Author Functionality Models/Algorithms Results 

[144] Effective in detecting weeds in 
crops. 

Inception model 
(V2) 

98% accuracy 

[145] Detecting weed on Broad-leaf CNN 96.88% accuracy 

[146] Object detection of weeds R-FCN 81% accuracy 

[147] Weed Growth Stage Estimator DCNN 70% accuracy 



 

 

Table 6: Weed detection table 

 

 

5. CONCLUSION 

In this review, the number of articles included was 38 in total. Twenty-four of the articles are 

about DL applications in disease detection, ten are about DL applications in yield prediction, 

and four are about weed detection. Among these three sections, the largest number of 

articles are related to applications of DL in disease detection. Figure 6 illustrates the 

appearance of articles based on their proportion of selection.  

 

Fig. 6: The distribution of articles according to the selection is represented via a pie 

chart. 

We have performed a survey of DL based technologies and their applications in the field of 

agriculture. DL has been utilized in several agricultural applications, including yield 

prediction, disease detection, and weed detection. In recent years, DL has become a 

popular research topic, and numerous applications have been developed. Nevertheless, DL 

still has a lot more potential for agriculture that needs to be fully exploited. Our goal is for this 

survey to encourage more researchers to explore DL and apply it to solve various 

agricultural problems.  In future work, we plan to apply the general concepts and DL best 

practices outlined in this survey to other agricultural fields that have not yet fully utilized this 

modern technology. The overall advantages of DL are encouraging and can be further used 

to achieve smarter, more sustainable agriculture and safer food production. 
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