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An Application of Interacting Boson Model-2 (IBM-2) Configuration 

Mixing in Tin nuclei  

 
  

 

Abstract 
 

Using IBM-2 configuration mixing calculations, the normal and intruder 2p-2h 

bands in even-even tin isotopes are examined. The states of the normal and intruder 

bands were computed separately and then mixed using a basic band-mixing 

Hamiltonian. The experimental data for energy levels and electronic transition 

probability from current and past investigations are compared. 
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1. Introduction 

 
The structure of even-even Sn nuclei has previously been investigated using a 

variety of models, including the BCS approach with neutron two-quasiparticle 

excitation [1], broken-pair or generalized seniority schemes [2], and others.  In the 

Z=50 zone, the presence of a collective band commencing at 0
+
 level [3] is a common 

occurrence. Excitations over the proton shell closure at Z=50 are the source of these 

intruder states [4]. Wenes et al., [5] used a model that included both pure quadrupole 

vibrational excitations of doubly even nuclei and proton 2p-2h configurations paired 

with quadrupole vibrational excitations to examine these collective bands in even-

even Sn isotopes. The lowest 

1
2 state in 

116,118,120
Sn has been defined as vibrational 

states by Ring and Schuck [6]. The levels 

2
2 , 

3
2 and 

1
4 exhibit a vibrational property, 

according to a Coulomb excitation study in even Sn isotopes [7]. The measured value 

of )24;2(
11


EB  for 

116,118
Sn, for example, is the same as the anticipated value 

)02;2(2
11


EB for a two phonon vibrational state. The )02;2(

12


EB and 

)02;2(
13


EB crossover transitions are likewise severely delayed. Wenes et al., 

viewed the low-lying structure of Sn isotopes as evidence of extensive mixing 

between the vibrational and rotational structures. The low-lying levels of 
115,117,119

Sn 

isotopes were recently explained in terms of the )4()5(
FBF

SUU   dynamical 

symmetry )20/6(U  super Lie group [8]. The intruder bands in neighboring Cd [9] 

and Te [10] nuclei have been well described in IBM-2 using a configuration mixing 

analysis. The regular and intruder configurations are strongly intermingled, according 

to these findings. The experimental electric transition rate estimates of several Sn 

isotope transitions also point to a significant mixing of the two coexisting forms. 

 

The goal of this research is to investigate the ground-state band up to two 

phonon triplets and the collective bands in even-even 
112,114, 116,118

Sn nuclei using 

IBM-2 mixing configuration calculations in which the 2p-2h band is linked to the 

ground band's anharmonic quadrupole vibration. In the context of I spin, it's also 

important to consider the implications for Sn isotopes [11]. 

2. The Interacting Boson Model-2 (IBM-2) 
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In this work, the neutron-proton version of the Interacting Boson Model   

(IBM-2) is employed, which distinguishes between neutron ( ) and proton ( ) 

bosons; a detailed explanation of IBM-2 may be found in [12]. In IBM-2, there are 

three terms to the Hamiltonian operator: one for proton bosons, one for neutron 

bosons, and one for interactions between unlike bosons. The approach of Duval and 

Barrett [12] is used in this calculation. The IBM-2 Hamiltonian is defined as follows:: 

 

  MVVQQddddH
d




).()(
^^~~  …….. (1) 

 

Where  

     0)(~~)(

4.2.0

2/1
)12(

2

1 LL

J

L
ddddCLV  





 …….. (2) 

 

refers to the interaction between bosons that are similar. The proton ( ) or neutron 

( ) bosons are represented by the letter  .  

 

Where 
 QQ . as: 

)2(~)2(~)2(
)()(   ddsddsQ 

    …………………… (3) 

 

presented the neutron and proton bosons quadrupole-quadrupole interaction. 
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3,1

~~

2
.)).((

2

1 KK

K

K
ddddsddssddsM   







   .. (4) 

 

is the Majorana force. Both the normal and intruder configurations are computed 

separately using the above Hamiltonian. The two configurations are then combined 

using the mixing operator. 

 

)()(
~~)0(~~

  ddddssssV
mix


  ……… (5) 

 

Where  and   are strength parameters for the interaction between the two 

configurations that can be modified In our approach, mix
VH   was diagonalized using 

the basis consisting of the lowest four eigenstates of each configuration. The entire 

mixing Hamiltonian is then calculated as follows: 

 

)6.......(........................................
21 mixmix

VHHH   

 

where )(
21

HH  is the IBM-2 Hamiltonian for the first (second) configuration, as 

defined by Eq. (6), and the energies of the second configuration have been increased 

by an amount mix
V . 

 

The energy gap parameter   between the two configurations is calculated using the 

relation [12]; 

 

ph
VNZEBNZEBNZEBNZEB 4),(.),2(.),2(.),(.   ……. (7) 
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EB.  is the ground-state binding energy, and 
ph

V  is the particle-hole interaction 

energy. 

 

Reduced electric transition probability values of transitions and electric 

quadrupole moments are calculated using mixed wave functions. The E2 transition 

operator is defined as follows: 

 

)()(
2222200000

)2(

 QeQeeQeQeeT
E

  …….. (8) 

 

where 
Q is defined by Eq.(3) and 

j
e and 

je  ( )2,0j are variables that can be 

changed. The prefixes 0 and 2 respectively correspond to the normal and intruder 

setups. The reduced electric transition probability )2(EB is written as:  

  

)9.........(
12

1
);2(

2)2(







i

E

f

i

fi
JTJ

J
JJEB  

 

3. Results and Discussion 

 

3.1 Energy Levels 
In Sn isotopes, distinguishing the high-energy members of the usual ground-state 

band is particularly difficult. In these isotopes, even the two phonon triplets mix with 

the 2p-2h band and the neutron two quasiparticle levels. In our calculations, we used 

levels up to the lowest 

1
4  of the regular band and up to the condition of the invading 

band. Only terms in the Hamiltonian involving neutron bosons will contribute to the 

estimation of the energy value because the Sn isotopes' typical configuration lacks 

proton bosons. The three parameters used in the normal band calculation are 
d

 , 0
C , 

and 2
C , and their values are presented in Table (1). 

 

A gamma soft structure is expected for the intruder configuration. For this 

calculation, the intruder band was chosen because it has an )2(/)4(
11


EE  ratio of 

around 2.0, which is close to the SU(5) limit. The values of the parameter 
d

 adopted 

show a smooth variation with the neutron number, peaking at mid-shell. The value of 

  increases from 62N  to 64N , then gradually decreases as the neutron number 

increases. A similar form of neutron number dependency has been reported for the 

parameter   in the computation of Te isotopes. In all intruder bands of Sn isotopes, 

the value of   has been kept constant. The   parameter in the intruder 

configuration has been altered. The adopted values for this parameter are somewhat 

less than zero. Calculations on adjacent Cd isotopes yielded the Majorana force 

parameters 1
 , 2

 , and 3
  [9]. The mix

V  mixing operator admixes the two separately 

determined configurations. According to Jolie and Lehmann [13], there is only one 

free parameter for a U(5)-O(6) mixing using Eq.(5) because the matrix components of 

the two terms containing the two types of bosons are not independent. 

 

As a result, we simply employed one parameter,  , and we didn't vary it based on 

the mass number. The energy-gap parameter   between the two configurations was 
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calculated using Eq.(7). The 50Z  region the 
ph

V  value was found to be 2.540 MeV 

[14]. The required experimental binding energy values were calculated using the Ref. 

[15]. The remaining options are all set to zero. 

 

Table (1a): The IBM-2 Hamiltonian Parameters in (MeV units) for Normal 

Configuration )0( N . 

Parameters  Sn
112  Sn

114  Sn
116  Sn

118  

d
  1.25 1.30 1.25 1.20 

  -0.167 -0.140 -0.147 -0.158 

  0.73 0.65 1.90 0.85 

  0.40 0.40 0.40 0.40 

0
C  -0.31 -0.31 -0.35 -0.31 

2
C  -0.15 -0.15 -0.20 -0.12 

4
C  -0.05 0.0 0.0 0.0 

2
  0.04 0.04 0.04 0.04 

24.0
31
   MeV, 0.0

420
  CCC  MeV  

 

Table (1b): The IBM-2 Hamiltonian Parameters in (MeV units) for Intruder 

Configuration )2( N . 

Parameters  Sn
112

 Sn
114

 Sn
116

 Sn
118

 

d
  0.64 0.62 0.59 0.63 

  -0.167 -0.140 -0.147 -0.158 

  -0.21 -0.17 -0.12 -0.07 

  0.40 0.40 0.40 0.40 

0
C  0.0 -0.30 0.0 -0.30 

2
C  -0.15 -0.15 -0.20 -0.12 

4
C  -0.05 0.0 0.0 0.0 

2
  0.04 0.04 0.04 0.04 

24.0
31
   MeV, 0.0

420
  CCC  MeV  

 

The energy levels of 
112-118

Sn even-even isotopes were compared to experiment 

values [16,17,18,19] are listed in Table (2). The estimated and actual energy spectra 

of 
112

Sn and 
114

Sn nuclei have also been shown to agree. The wave function has little 

effect on e energy values. As a result, the transition probabilities must be calculated, 

which are highly dependent on the system's wave function. 

 

 

 

 

 

 

Table (2): Comparison between experimental and IBM-2 energy levels for Sn 

isotopes (in MeV units) 
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Levels 

 

Sn
112

 Sn
114

 

Exp. [16] IBM-2 Exp. [17] IBM-2 

0N  2N  0N  2N  



1
0  0.0 0.0 0.0 0.0 0.0 0.0 



1
2  1.256 1.256 1.255 1.299 1.299 1.301 



1
4  2.247 2.244 2.787 2.187 2.200 2.521 



1
6  2.549 2.611 2.891 3.149 3.183 3.542 



1
8  4.770 4.801 5.011 3.871 3.901 4.341 



1
10  4.880 4.971 5.189 4.139 4.220 4.341 



2
2  2.151 2.220 2.592 2.238 2.267 2.890 



2
0  2.190 2.258 2.491 1.953 1.843 2.225 



2
4  2.521 2.618 3.782 2.614 2.724 3.110 



1
3  2.913 3.141 3.543 3.025 3.125 3.321 



3
0  2.618 2.731 3.109 2.156 2.254 2.980 



3
2  2.476 2.510 3.311 2.2454 2.280 2.897 

 

Levels 

 

Sn
116

 Sn
118

 

Exp. [18] IBM-2 Exp. [19] IBM-2 

0N  2N  0N  2N  



1
0  0.0 0.0 0.0 0.0 0.0 0.0 



1
2  1.293 1.297 1.345 1.229 1.250 1.341 



1
4  2.390 2.397 2.619 2.280 2.289 2.543 



1
6  3.032 3.110 3.431 2.999 2.311 3.761 



1
8  3.492 3.500 3.754 2.889 2.956 3.650 



1
10  3.547 3.521 3.750 3.108 3.209 3.761 



2
2  2.112 2.211 2.311 2.042 2.152 2.675 



2
0  1.756 1.987 2.118 1.758 1.950 2.530 



2
4  2.529 2.610 2.980 2.408 2.507 3.329 



1
3  2.996 3.001 3.622 2.725 2.825 3.761 



3
0  2.027 2.110 2.563 2.058 2.118 2.581 



3
2  2.225 2.229 2.462 2.120 2.129 2.619 

 

 

3.2 Electric Transition Probability 

 
 To calculate the electric operator, we relied on Eq.(8). The identification of 

proton and neutron bosons effective charges 
e  and 

e is crucial for an E2 transition. 

These isotopes lying in SU(5) limit (vibrational symmetry), therefore, the relationship 

between ( 
e , 

e ) and the reduced transition probability B(E2) for vibrational limit is 

given in the form [20]: 
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 
)10......(..........

5
)02;2(

2

11
N

NeNe
EB

 


  

 

where )02;2(
11


EB is the experimental reduced transition probability from the 

first excited states 

1
2  to the ground state 

1
0 , N   is the total number of bosons. The 

relation (10) was used to estimate the effective boson charges for proton and neutron 

bosons. In this calculation we use the following criteria to determine the effective 

charges. 12.0e  e.b is a constant throughout the whole isotopic chain and the 

,09.0e 085.0 , 070.0  and  075.0  e.b  for 
112,114,116,118

Sn respectively and the ration 

ratio 2.1/
02
ee . 

 

Between the states, )2(EB values were obtained by evaluating matrix 

members of the )2( E
T operator. Only the neutron component of the first term of the 

)2( E
T operator contributes to the typical configuration of Sn isotopes. Only 

e and 

 are used to evaluate the matrix elements of the first term of the )2( E
T operator. The 

parameters  and  are the same as in the computation of the energy value. The 

effective neutron bosonic charge values used exhibit a gradually changed with 

neutron number, becoming minimum for 66N . In the calculations on neighboring 

Te isotopes [10], a similar type of variance was detected. For both configurations, the 

effective bosonic charge for neutron bosons has remained constant. The ratio of the 

parameters
02

/ ee , which has been kept constant at 1.2 for all 
112-118

Sn isotopes, has a 

large impact on the E2 matrix elements. 

 

  Table (3) compares experimental and computed )2(EB  values for the isotopes 
112-118

Sn. Some of the discrepancies between experimental findings and theoretical 

predictions are discussed. The E2 transition probability of the 


13
22 and 


13

20  

transitions in 
116

Sn are over-predicted. This suggests that the current model may have 

overestimated the intruder band's contributions to the 

3
2 and 

3
0 states. There aren't a 

lot of experimental data on 
112,114

Sn isotopes. The experimental value of the transition 



11

24 is surprisingly tiny when compared to surrounding 
116,118

Sn isotopes, and 

cannot be explained using the current model. One reason could be that there is a 

strong contribution from the neutron two quasiparticle structures in this 

1
4  state,  

 

 

 

 

 

 

 

 
Table (3): IBM-2 and Experimental Electric Transition Probability for 

112-118
Sn isotopes 

in
22

be units  

Isotopes  Transitions Exp.  IBM-2 
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Sn
112

 




11
02  0.0512(12) 0.0050 




12
02  0.00013(4) 0.00018 




12
20   0.029 0.031 




12
22  0.037(150) 0.038 




13
02   0.00019 0.00022 




13
22   0.0014 0.0019 




11
24  0.018(30) 0.020 

 

 

 

 

 

Sn
114

 

 




11
02  0.05(100) 0.055 




12
02  0.07(300) 0.074 




12
20  0.0003 0.00041 




12
22  0.016 0.018 




13
02  0.013 0.0142 




13
22  0.021(60) 0.022 




11
24   0.01 0.011 




12
24  0.25 0.028 

 

 

 

 

 

 

Sn
116

 




11
02  0.0417(13) 0.0420 




12
02  0.0002(8) 0.00025 




12
20  0.0605(101) 0.066 




12
22  0.0131(50) 0.0135 




13
02  0.00017(10) 0.0002 




13
22  0.0101(54) 0.012 




11
24  0.1277(706) 0.129 




12
24  

6
105


  

6
105.5


  




22
24  0403.0  0.047 

 

 

 

 

Sn
118

 




11
02  0.0416(17) 0.044 




12
02  0.00026(4) 0.0003 




12
20  0.0653(103) 0.071 




12
22  0.0237(34) 0.033 




13
20  > 0.00072 0.00088 




11
24  0.0585(103) 0.061 




12
24  < 0.0096 0.0107 

 

Experimental data are taken from Refs. [16,17,18,19] 

 

 

 

resulting in a lower transition probability. The experimental value of the transition 

)20;2(
12


EB for 

112
Sn isotope is approximately half that of 

114,116,118
Sn isotopes, a 

fact that our calculation does not recreate. Except for these discrepancies, practically 
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every other transition can be described using this simple model. One of the biggest 

sources of mistake, we believe, may be traced back to the omission of the 

contributions of two quasiparticle states.  

 

 The electric quadrupole moment of the first excited state was calculated 

based on the following equation:  

 




















J

E

JJ
JTJ

JJ

JJ
Q

)2(
2

1

0

2

5

16
 ……. (11) 

 

We estimated the electric quadrupole moment of the first 

1
2 state in addition to the 

transition probabilities. In Table (4), the IBM-2 results are compared to the 

experimental results. Obviously, the )2(
1


Q  values are negative, which means these 

isotopes have an oblate shape in this first excited state. 

 

 

Table (4): Electric quadrupole moments for first excited states )2(
1


Q  in eb  units 

isotopes Sn
112

 Sn
114

 

Exp.[16] IBM-2 Exp. [17] IBM-2 

)2(
1


Q  -0.03(11) -0.033 - -0.141 

isotopes Sn
116

 Sn
118

 

)2(
1


Q  Exp.[18] IBM-2 Exp.[19] IBM-2 

-0.17(4) -0.18 -0.05(14) -0.057 

 

 

4. Concluding Remarks 

 
In this research, we looked at both regular and intruder configurations using 

IBM-2 mixed configuration calculation. Both normal and intruder bands are 

accurately reproduced by this calculation. The differences between experimental 

B(E2) values and theoretical expectations, particularly in the two phonon triplets in 

the Sn isotopes, suggest that the low lying states have a far more complex structure. 

This analysis did not take into account the neutron two-quasiparticle structure, which 

could have altered the conclusions. 
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