
A Phenomenological Approach to
Multi-Higgs Production at High Energy

Abstract

We tackle the issue of the factorial growth in the amplitudes of multi-Higgs
production at high energy by developing a phenomenological approach based
on the Higgs splitting functions and Sudakov factors. We utilize the method of
generating functionals to define several jet observables for the Higgs sector. Our
results suggest that pure Higgs splittings should retain a good Ultraviolet (UV)
behavior in contrast to the common picture represented by the breakdown of
perturbation theory and the violation of unitarity due to the high multiplicity
of particles produced at or near threshold, which is found in scalar theories.
We thus argue that the issue of the factorial growth in the amplitude of multi-
Higgs production is probably associated with applying perturbation theory in
a regime where it is no longer valid and with the nλ→∞ limit, as opposed to
being a sign of new physics.
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1 Introduction

It has long been known [1] that in a weakly-interacting theory, the production of high-
multiplicity final states n at sufficiently high energies leads to the breakdown of perturbation
theory when n & 1/λ, where λ is the coupling of the theory. This has been studied
intensively in theories with scalars [2–13], where it was found that for both the broken and
the unbroken phases of φ4 theories, the amplitude of n final state scalars produced at or
near threshold through the decay of a highly off-shell initial scalar would grow ∼ n!λn.
This factorial growth leads to an exponential growth in the cross-section after integrating
over the phase space:

σn ∼
1

n!

∫
dΦn|A1∗→n|2 ∼ n!λn ∼ en log (λn). (1.1)

The factorial growth in the amplitude can be traced to the factorial growth in the
number of Feynman diagrams for φ∗ → nφ, which unlike the case in Quantum Chromo-
dynamics (QCD), lacks destructive interference that would compensate for this factorial
growth. It has been argued in the literature that an exponentially growing cross-section
would signal the onset of strong dynamics in the weak sector, indicating new physics at
high energies.

Recently, the proposed 100-TeV Future Circular Collider (FCC) has renewed the inter-
est in multi-particle production and in particular in the SM Higgs sector. It was suggested
that a very high number of Higgses can be produced near threshold at the scale of tens of
TeV, thereby presenting a probe for new physics through the Higgs sector. More specifically,
the scattering amplitude of h∗ → nh at threshold in the Higgs sector is given by [4, 5]

A1∗→n =
( ∂
∂z

)n
hcl = n! (2v)1−n, (1.2)

where hcl is the classical solution of the Higgs equation of motion at threshold and v is the
Higgs Vacuum Expectation Value (VEV). It was shown in [9] that the cross-section would
exponentiate in the double-scaling limit

σn ∼ enF (nλ,ε), for n→∞, nλ = fixed, ε = fixed, (1.3)

where ε is the average kinetic energy per particle:

ε = (E − nM)/(nM), (1.4)

and F (nλ, ε) is an approximately known function dubbed ”the holy grail” function that
includes all contributions to all orders, including loop contributions. It was argued that the
exponential cross-section would violate unitarity at high energy (or high multiplicity) thus
signaling new physics, (see for example the ”Higgsplosion” proposal [14–18] (also see [19]
for a review)).
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The same results were replicated using a semi-classical treatment analogous to instanton-
based calculations [10,11,18], however, both approaches were derived for the double-scaling
limit in Eq. (1.3), which assumes that n would be large ab initio. However, there is no
reason for the number of produced Higgses to be large from the beginning, as we show that
the probability of producing each extra Higgs should be minuscule, and thus it would be
highly unlikely that the Higgs sector will ever enter a non-perturbative regime at colliders.1

Before proceeding with our approach, we note that in addition to the complication
arising from the factorial growth of the final-state Higgs bosons, there is another com-
plication that arises from the production of the intermediate Higgs itself. As discussed
in detail in [14, 15, 20], the production of the Higgs boson is dominated by gluon fusion
gg → h∗ → n× h, and one needs to include the computation of Feynman diagrams involv-
ing 1-loop polygons with 2+k edges for all k ≤ n, where k is the number of outgoing Higgs
lines. However, the number of contributing diagrams grows with n and eventually explodes
with high multiplicity n � 1. We stress that this issue is beyond the scope of this work.
Interested readers are referred to [14,15,20].

In this work, we try to approach the issue of multi-Higgs production at high energies
differently. We follow a more phenomenological approach to argue that the Higgs sector
should retain a good UV behavior at high energy scales relevant to the FCC. Here we try to
utilize the success of QCD in describing multi-jet events to the Higgs sector by extending
the definition of jets to the Higgs sector. This analogy is motivated by the fact the Higgs
quartic coupling λ at high energy exhibits a behavior similar to asymptotic freedom in
QCD. More specifically, the Renormalization Group Equation (RGE) running of λ was
calculated up to the Next-to-Next-to-Leading˙Order (NNLO) [21–23], and shows that λ
becomes smaller at higher energies and eventually runs to a fixed point at scales & 109

GeV. This behavior is somewhat similar to asymptotic freedom in QCD, in spite of the fact
that λ does not become non-perturbatively strong in the Infrared (IR) region. In addition,
at high energies relevant for the 100 TeV collider, the Higgs can be treated as massless in a
manner similar to the case in QCD. This represents enough motivation to extend the QCD
treatment to the Higgs sector at high energies.

To describe our approach more concretely, we imagine an intermediate off-shell Higgs
produced with very high energy that subsequently undergoes multiple splittings into several
soft Higgses with small transverse momenta. This picture allows us to define a splitting
function for the Higgs in a way similar to the QCD splitting functions. If we visualize these
radiated soft Higgses (together with their possible decay products) as Higgs ”jets”, then we
can use the splitting functions to resum all the soft splittings radiated off the hard Higgs
through the usual Sudakov factor.

The analogy with the QCD sector can be extended to allow for the description of the

1In [10], it was argued that the total probability associated with multi-boson states should rapidly fall
with energy in the high-energy regime: Γ(1∗ → n) ∼ |A(1∗ → B)|2Γ(B → n) ∼ e−2D(E), where B is an
intermediate N -state bubble formed by the initial virtual particle, and D(E) is a function of energy which
will eventually cut off the amplitude.
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evolution of the Higgs distribution through the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) equation [24–26]:

∂fB(z, µ2)

∂µ2
=
∑
A

∫ 1

z

dξ

ξ

dP(z/ξ, µ2)

dzdp2
T

fA(ξ, µ2). (1.5)

Defining the Higgs distribution through the DGLAP equation allows us to furnish
several useful observables that can be used to study the Higgs production at high energies.
As we shall see, this picture suggests that the Higgs production should remain well-behaved
at high energies, i.e., the number of Higgses produced at high energy should remain low
and the Higgs sector should be well-described by the Standard Model (SM). We note here
that with this approach, perturbative unitarity is assumed ab initio as we will be using
perturbation theory implicitly. This is justified as we will do our calculation in the region
of the phase space where it remains valid, and use the results as insight to argue that the
good behavior should be extrapolated to all regions in the phase space.

We should emphasize here, however, that we are not claiming to have solved the fac-
torial divergences problem, which is more of a technical problem associated with Quantum
Field Theory (QFT) and perturbation theory. Instead, what we are suggesting is that this
problem is probably an artifact resulting from applying perturbation theory (and other
semi-classical treatments) in a regime where it breaks down and from assuming the double-
scaling limit, and therefore should not be interpreted as a sign of new physics and should
not appear in real processes at colliders, at least in the SM Higgs sector.

This paper is organized as follows: In Section. 2 we derive the splitting functions
of the Higgs cubic and quartic interactions and use them to find the associated Sudakov
factors. In Section 3 we define a number of Higgs jet observables for both the cubic and the
quartic interactions by utilizing the method of generating functionals and show that the
average number of Higgses expected at high energy should remain low. We also compare the
cubic and the quartic interactions and find that cubic splittings are dominant. We relegate
some of the technical details to Appendix A. In Section 4 we estimate the contribution of
secondary emissions and then we discuss our results and the future outlook in Section 5.

2 Splitting Functions and the Sudakov Factors

Our starting point will be to derive the splitting functions for the Higgs cubic and quartic
interactions and then to use them to find the corresponding Sudakov factors. In doing so,
we follow the method originally introduced in [24] and recently utilized by [35] to find all
of the splitting functions for the entire Electroweak (EW) sector. In all of our calculations,
we work in the high energy limit Q� m, v (the Higgs mass and VEV), such that all masses
can be dropped. However, we do keep the mass as an Infrared (IR) cutoff when we find
the Sudakov factors later on. Furthermore, we shall assume the collinear limit where the
transverse momentum is small compared with the energy scale of the hard process pT � Q.
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Figure 1: Factorization of the 3-vertex splitting.

2.1 The 3-Higgs Vertex

This section is largely a review of the standard procedure for calculating splitting functions
and the Sudakov factor. To derive the splitting function of a general cubic interaction, we
consider the processes shown in Fig. 1. We assume that the process in (a) is comprised of
the hard process in (b) and a soft splitting A → B + C. Particles A and B are assumed
to slightly off-shell with small transverse momenta. Then the differential splitting function
dPAB(z) is defined as the probability of finding particle B in particle A with an energy
fraction z of the energy of A at the lowest order in the coupling:

dPA→BC(z, p2
T ) =

α

2π
PA→BC(z)dzdp2

T , (2.1)

where pT is the transverse momentum and PAB(z) is the so-called kernel function. The
matrix elements of the two processes in Fig. 1 can be expressed in terms of their interaction
vertices as

MA+D→C+f = g2 VA→B+CVD+B→f

(2EB)(EB + EC − EA)
, (2.2a)

MB+D→f = gVB+D→f , (2.2b)

where Vij are the invariant matrix elements of the vertices with the factor (2Ek)
−1/2 removed

and g is the coupling constant. The matrix elements in Eq. (2.2) can be used to calculate
the cross-sections of the two processes

dσa =
g4

8EAED

|VA→B+C |2|VB+D→f |2

(2EB)2(EB + EC − EA)2
(2π)4δ4(KA +KD −KC −Kf )

d3~kC
(2π)32EC

∏
f

d3~pf
(2π)32Ef

,

(2.3a)

dσb =
g2

8EBED
|VB+D→f |2(2π)4δ4(KB +KD −Kf )

∏
f

d3~pf
(2π)32Ef

. (2.3b)

Inspecting eqs. (2.3a) and (2.3b), we can see that they are related in the following way

dσa =
EB
EA

g2|VA→B+C |2

(2EB)2(EB + EC − EA)2

d3~kC
(2π)32EC

dσb. (2.4)
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On the other hand, in the collinear limit where the transverse momenta of particles
B and C are small compared to the energy scale of the hard process, the two processes
factorize through the differential splitting function [27]

dσa ' dPA→B+C(z, t)× dσb. (2.5)

Comparing eqs. (2.4) and (2.5), we can immediately find a general expression for the
splitting function of any cubic interaction:

dPA→BC(z, t) =
1

S

EB
EA

g2|VA→B+C |2

(2EB)2(EB + EC − EA)2

d3~kC
(2π)32EC

, (2.6)

where S is a possible symmetry factor. The splitting function depends on a dimensionless
variable z, which expresses the fraction of the energy of the mother particle that is carried
away by the daughter particle (the other daughter particle carries the rest 1 − z), and a
dimensionful variable t that expresses the energy scale of the splitting. Common choices
of t are the transverse momentum of the daughter particles, the virtuality, or the energy-
weighted angle of the radiated particle relative to the mother particle θEA. In our analysis,
we shall use the transverse momentum and set t ≡ p2

T .

In the collinear limit |~pT |� Q, where Q is the energy scale of the mother particle, we
can parameterize the 4-momenta of A, B, and C to the leading order in the transverse
momentum as follows:

KA =
(
Q,0, Q

)
, (2.7a)

KB =
(
zQ+

p2
T

2zQ
, ~pT , zQ

)
, (2.7b)

KC =
(

(1− z)Q+
p2
T

2(1− z)Q
,−~pT , (1− z)Q

)
. (2.7c)

Notice that particles B and C have virtualities of O(p4
T ). Given this parameterization

of momenta, and integrating over the azimuthal angle, we can write the phase space factor
as

d3~kC
(2π)32EC

=
1

16π2

dzdp2
T

(1− z)
. (2.8)

Plugging eqs. (2.7) and (2.8) in Eq. (2.6) and keeping only the leading term in p2
T ,

the splitting function simplifies to

dPA→BC
dzdp2

T

=
1

S

g2|V |2

16π2

z(1− z)

p4
T

. (2.9)

We are now ready to apply this to the Higgs trilinear splitting h∗ → hh. Here we work
in the normalization m2

h = 1
2
λv2, such that gV3H = 3

2
λv. Thus, we finally arrive at the 3H
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Figure 2: (Left): The cubic Higgs Sudakov factor as a function of the virtuality t. (Right):
The quartic Higgs Sudakov factor. The plots are on a log-log scale.

splitting function

dPh→hh(z, t) =
(3
√

2vλ

16π

)2 z(1− z)

t2
dzdt. (2.10)

This result is consistent with [35]. Notice here that unlike the splitting functions in
the QCD sector, which scales like ∼ dp2

T/p
2
T , the splitting function of the Higgs cubic

interaction scale like ∼ dp2
T/p

4
T . This type of splitting function dubbed ultra-collinear

in [35] is IR-dominated, with most of the contribution being near t ∼ m2. Also, integrating
these ultra-collinear splitting functions leads to power-law Sudakov factors instead of the
usual logarithms as we show below. Finding the Sudakov factor is now a matter of simple
integration. Assuming strong-ordering of the radiated particles, the Sudakov factor can be
expressed as

∆3V(t, t0) = exp

[
−
∑
BC

∫ t

t0

dt′
∫ 1

0

dz
dPA→B+C(z, t′)

dzdt′

]
, (2.11)

where the sum goes over all particles B,C to which A can decay. Plugging Eq. (2.10) and
using the Higgs mass as an IR cutoff, we obtain

∆3h(t, t0) = exp

[
− 3

(
vλ

16π

)2(
1

t0
− 1

t

)]
, (2.12)

where we set t0 = m2. As noted earlier, the Sudakov factor is dominated near t ∼ m2 and
becomes essentially constant for t� m2. As the Sudakov factor expresses the probability
of a particle not splitting, it is easy to see that increasing the energy scale will have a
limited effect on enhancing the splitting of the Higgs. This stems from the ultra-collinear
behavior of the splitting function which is a direct result of the dp2

T/p
4
T scaling of the

splitting function. The Sudakov factor of the trilinear Higgs interaction is shown on the
left-hand side of Fig. 2, where we can clearly see that the probability of Higgs splitting
remains low even at very high energies. To better understand the smallness of the splitting
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probability in the Higgs cubic interaction, we write Eq. (2.12) in a more transparent way:

∆3h(t, t0) = exp

[
− 3αH

8

(
1− m2

t

)]
, (2.13)

where we have define αH ≡ λ/16π2 ≈ 0.003. We can see that in the limit t → ∞,
∆3h(t, t0) → e−3αH/8 ' e−0.001 ' 1. Thus, we can see that the smallness of the splitting
probability is a direct result of the weakness of the Higgs trilinear interaction, coupled with
the ultra-collinear behavior of this interaction. This result seems to suggest that one should
not anticipate a large number of Higgses in pure Higgs events even at high energies, at least
for splittings produced through the trilinear interaction, since the probability of splitting
is always small.

2.2 The 4-Higgs Vertex

Now we are in a position to generalize the splitting function and the Sudakov factor to
quartic interactions. Previous studies tended to neglect quartic interactions and only focus
on cubic terms. We now consider the emission of two particles from the same vertex instead
of one. Considering the process in Fig. 3(a), we can define the quartic splitting function as
the probability of finding a pair of particles C and D in particle A with energy fractions x
and z of the energy of A at the lowest order of the coupling. The two particles could have
different transverse momenta ~pT , ~kT , and therefore the definition of the splitting function
generalizes to:

dPA→BCD(x, z, p2
T , k

2
T ) =

α

2π
PA→BCDdxdzdp

2
Tdk

2
T . (2.14)

Figure 3: Factorization of the 4-vertex splitting.

Similarly to the case of the cubic interaction, we assume that the process in Fig. 3(a)
is comprised of the hard process in (b) and the soft splitting A→ B +C +D. The matrix
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elements of the two processes can be written as

ME+A→C+D+f = g2 VA→B+C+DVB+E→f

(2EB)(EB + EC + ED − EA)
, (2.15a)

ME+B→f = gVE+B→f , (2.15b)

and their respective cross-sections are thus given by

dσa =
g4

8EAEE

|VA→B+C+D|2|VB+E→f |2

(2EB)2(EB + EC + ED − EA)2

× (2π)4δ(4)(KA +KE −KC −KD −Kf )
d3~kC

(2π)32EC

d3~kD
(2π)32ED

∏
f

d3~pf
(2π)32Ef

, (2.16a)

dσb =
g2

8EBEE
|VB+E→f |2(2π)4δ(4)(KB +KC −Kf )

∏
f

d3~pf
(2π)32Ef

. (2.16b)

Inspecting eqs. (2.16a) and (2.16b), and assuming that in the collinear limit pT , kT �
Q, the two process factorize in a way similar to the cubic case in Eq. (2.5), and it is not
hard to see that the quartic splitting function is given by the following general formula

dPA→BCD(x, z, p2
T , k

2
T ) =

1

S

EB
EA

g2|VA→B+C+D|2

(2EB)2(EB + EC + ED − EA)2

d3~kC
(2π)32EC

d3~kD
(2π)32ED

.

(2.17)

This equation is similar to the cubic case, except now it has two energy fractions x
and z (with x+ z = 1) and two energy scales ~pT , ~kT . The 4-momenta of the particles can
be parameterized as

KA =
(
Q,0, Q

)
, (2.18a)

KD =
(
xQ+

p2
T

2xQ
, ~pT , xQ

)
, (2.18b)

KC =
(
zQ+

k2
T

2zQ
,~kT , zQ

)
, (2.18c)

KB =
(

(1− x− z)Q+
(~pT + ~kT )2

2(1− x− z)Q
,−~pT − ~kT , (1− x− z)Q

)
. (2.18d)

Notice that ~pT and ~kT could have different directions and that the azimuthal angle φ
between them needn’t be small even in the collinear limit. In fact, φ could have any value
between 0 and 2π. This is because the orientations of the emitted particles are independent
of the angles θi between their individual directions and that of the mother particle A, which
are small in the collinear limit. Thus, the azimuthal dependence can be integrated in one
of the phase space factors, but not in both

d3~kC
(2π)32EC

=
dxdp2

T

16π2x
, (2.19a)
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d3~kD
(2π)32ED

=
dzdφdk2

T

32π3z
. (2.19b)

Putting all pieces together, and keeping only the leading terms in the transverse mo-
menta, Eq. (2.17) simplifies to the following general formula

dPA→BCD
dxdzdφdp2

Tdk
2
T

=
1

2πS

( g|V |
16π2

)2 xz(1− x− z)

[z(1− z)p2
T + x(1− x)k2

T + 2xz pT kT cosφ]2
, (2.20)

where S is a possible symmetry factor. To apply this to the Higgs quartic interaction, we
insert g|V4H |= 3

2
λ (in the normalization adopted above) and set S = 3, we obtain

dPh→hhh
dxdzdφdp2

Tdk
2
T

=
( √

3λ

32
√

2ππ2

)2 xz(1− x− z)

[z(1− z)p2
T + x(1− x)k2

T + 2xz pT kT cosφ]2
. (2.21)

Before we use the splitting function to find the Sudakov factor, there is a subtlety that
we need to address: In cubic splittings, there is a single well-defined energy scale p2

T ≡ t,
however, for quartic splitting we have two energy scales p2

T , (k
2
T ) ≡ t′, (t′′). Therefore, we

first need to generalize Eq. (2.11) to the case of quartic interactions. We write

∆4V (t0, t) = exp

[
−
∑
BCD

∫ 1

0

dz

∫ 1−z

0

dx

∫ 2π

0

dφ

∫ t

t0

dt′
∫ t′

t0

dt′′
dP

dxdzdφdt′dt′′

]
, (2.22)

where the sum should go over all quartic splittings that the mother particleA could undergo.
Now we are in a position to use Eq. (2.21) to find the Sudakov factor for the Higgs quartic
interaction. The integrals over the energy scales can be done exactly giving the familiar
logarithmic factor, while the remaining integrals contain a complicated function of the
energy fractions and the azimuthal angle and can be done numerically. The final quartic
Higgs Sudakov factor reads

∆4H(t, t0) = exp

[
− 3b

8π
α2
H log(t/t0)

]
, (2.23)

where the numerical factor b ' 1.57 comes from integrating over x, z and φ. Comparing the
Sudakov factor of the Higgs cubic splitting with that of the quartic splitting, a couple of
remarks are in order: (1) The Higgs quartic splitting exhibits the usual logarithmic scaling
instead of the power-law scaling that we found in the cubic Higgs case. This logarithmic
scaling is a result of the additional integral over the extra energy scale, and (2) the Sudakov
factor of the quartic interaction contains an extra phase space factor of 1/16π2 which leads
to a significant suppression relative to the cubic Sudakov factor. We plot the Higgs quartic
Sudakov factor on the right-hand-side of Fig. 2 where we can see that relative to the cubic
Higgs case, the probability of quartic splittings is much smaller due to the extra phase
space factor. We will discuss this suppression in more detail in the next section.
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3 Higgs Generating Functionals and Jet Observables

Having defined the splitting functions and Sudakov factors for the Higgs cubic and quartic
interactions, we would like to treat the Higgses as jets and define several IR-safe jet observ-
ables that can be used to investigate the production of multi-Higgses at high energy. To this
end, we shall apply the method of generating functionals used for studying QCD jets [28,29]
to the Higgs sector. The method of the generating functionals simply aims at constructing
an n-particle functional in an arbitrary parameter u, whose repeated differentiation with
respect to u yields the cross-sections of the n-particles as the coefficients of the expansion.
Thus, the generating functional can be constructed by summing all tree-level cross-sections
weighted by an appropriate power of u. In the following, we follow a construction more
suitable for our purposes presented in [30] (see also [31]). When we divide the contributions
by the total cross-section, then the repeated differentiation yields the exclusive multiplicity
distribution Pn = σn

σtot
. Thus, the generating functional is constructed as follows:

Φ =
∞∑
n=1

unPn−1 where Pn−1 =
σn−1

σtot

=
1

n!

dn

dun
Φ

∣∣∣∣∣
u=0

. (3.1)

Note here that Pn−1 describes n − 1 radiated jets, i.e. n = 1 corresponds to the
original particle not splitting. We can see that Pn−1 expresses the relative contribution of
each additional radiated particle to the total cross-section. Another important observable
that can be extracted from the generating functional that is relevant for our purposes is
the average jet multiplicity, which describes the average number of radiated particles at a
given energy scale

n̄ =
dΦ

du

∣∣∣∣∣
u=1

=
∞∑
n=1

nun−1σn−1

σtot

∣∣∣∣∣
u=1

= 1 +
1

σtot

∞∑
n=1

(n− 1)σn−1. (3.2)

The generating functional method can also be used to study the jet scaling pattern,
which simply expresses the relative suppression associated with each additional radiated
particle. The jet scaling pattern can be expressed as the ratios of the successive exclusive
jet cross-sections

R(n+1)/n ≡
σn+1

σn
=
Pn+1

Pn
. (3.3)

The scaling pattern was investigated for the case of QCD jets in [30,32]. In QCD jets,
there are two main limiting cases that describe the jet scaling pattern. If the ratio of the
successive cross-sections is constant, then the pattern is referred to as a staircase pattern.
On the other hand, the pattern is called Poisson if it follows a Poisson distribution:

Pn =
n̄ne−n̄

n!
=⇒ R(n+1)/n =

n̄

n+ 1
. (3.4)

Below, we derive these observables for the Higgs cubic and quartic interactions and
use them to investigate the production of multi-Higgses at high energies.
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3.1 The Higgs Cubic Interaction

To derive the generating functional, we will follow the method presented in [31]. The
DGLAP equation describes the evolution of parton densities in QCD. Thus, they can be
used to describe parton splittings i → jk where each jet is described by the generating
functional instead of the parton density. We can thus write the general formula describing
the evolution of the generating functionals as

Φi(t) = ∆i(t, t0)Φi(t0) +

∫ t

t0

dt′∆i(t, t
′)
∑
i→jk

∫ 1

0

dz
dP
dzdt′

Φj(z
2t′)Φk((1− z)2t′). (3.5)

Given the splitting function and the Sudakov factor that describe a certain splitting,
the generalization to any sector will be straightforward. Using the results found earlier, we
find the generating functional of the cubic Higgs interaction

Φ3h(t) = u
[
∆3h(t, t0)

]1−u
. (3.6)

The detailed derivation is presented in Appendix A. Eq. (3.6) can be used in eqs (3.1),
(3.2) and (3.3) to find the exclusive multiplicity distribution, average jet multiplicity and
jet scaling pattern respectively

Pn−1 = ∆3h(t, t0)
|log ∆3h(t, t0)|n−1

(n− 1)!
, (3.7a)

n̄ = 1− log ∆3h(t, t0), (3.7b)

R(n+1)/n =
|log ∆3h(t, t0)|

n+ 1
. (3.7c)

Before we study these observables, we point out a few remarks: (1) Since ∆3h(t, t0) ≤ 1,
we can see from Eq. (3.7b) that n̄ ≥ 1,2 with the average jet multiplicity being equal to
unity only when t = t0. This simply means that t = t0 corresponds to the original Higgs
not splitting, while the number of radiated Higgses is enhanced with increasing the energy
scale, and (2) from Eq. (3.7c), we can see that the cubic Higgs splitting follows a Poisson
pattern.

The cubic Higgs average jet multiplicity is shown on the left side of Fig. 4. The plot
clearly shows that even at very high energy scales, the average number of Higgses is very
close to one, i.e. the average number of radiated Higgses is always small, and that most
Higgs events will not undergo any splitting (at least through the trilinear interaction). This
picture is in stark contrast with the conclusion that a high multiplicity of Higgses would be
produced at high energies due to the factorial growth in the amplitude, as highlighted in the

2Notice that in Eq. (3.4), n̄ refers to the average number of radiated particles, while in Eq. (3.7b) it
refers to the total number of jets, including the original one.
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Figure 4: (Left): The cubic Higgs average jet multiplicity with the energy scale. (Right):
The cubic Higgs jet scaling pattern given in Eq. (3.7c), with n = 1 (blue), n = 2 (gray),
n = 3 (red), n = 4 (green), n = 5 (magenta). The plot clearly shows a Poisson scaling
pattern (see Eq. (3.4)). Both plots are on a log-log scale.

introduction. We are thus led to believe that the Higgs sector should remain well-behaved
at high energies, and that concluding that new physics should emerge in the Higgs sector
at high energy as a result of the supposed factorial growth of the amplitude is probably
the wrong conclusion to draw. To put this in more concrete terms, we argue that at high
energies, the multi-Higgs production in pure Higgs events should remain perturbative and
well-described by the SM; and that the factorial growth in the amplitudes of multiple
Higgses produced at or near threshold is probably an artifact of applying perturbation
theory where it is not valid, and of assuming the double-scaling limit in Eq. (1.3). Thus, it
should not be interpreted as a sign of new physics and should not appear in real processes
in colliders.

We should point out, however, that our results are approximate as we are only resum-
ming a subset of the possible n! Feynman diagrams through the Sudakov factor. Therefore,
one might argue that other topologies might drastically enhance the Higgs production. For
instance, it was argued in [17] that the leading contribution to the amplitude stems from
the interference terms among the different Feynman diagrams, which contribute an addi-
tional n! to the amplitude, however, the exponential growth in the amplitude implicitly
assumes that the number of particles that are produced is already large, which is proba-
bly not the case. In spite of our approximate treatment, we should emphasize that the
differential probability of splitting, as represented by the splitting function, is independent
of the topology of the Feynman diagram, and since the probability of splitting is always
small, other topologies should not exhibit drastically different behavior. Another approxi-
mation in our calculation is the assumption of the collinear limit, which could impact our
results. Nonetheless, this assumption is quite justified in the high energy limit wherein we
are interested. Therefore, we conclude that the Higgs sector should remain under control
at high energy.

We should also point out that we are working in the leading order of λ and we are

12



neglecting its RGE running, however, as λ becomes smaller at higher energies (see for
instance Figure 1 in [23]), then the probability of splitting will become even lower, thereby
making the average jet multiplicity even lower than what we find in our calculation with
the running neglected. This gives further reasons to believe that the number of Higgses
produced at high energies should not become large.

We must, however, emphasize that our results do not represent a solution to the
technical problem of the factorial growth in scalar amplitudes in the high multiplicity
limit. What we argue here is that this behavior (at least for the Higgs sector), is not a
sign of new physics, but rather a limitation of perturbation theory itself and of assuming
the double-scaling limit and that for all practical purposes we should trust the predictions
of the SM at high energies (at least energies relevant for colliders). Our results are in line
with the argument recently presented in [33], where they presented an entirely different,
semi-classical non-perturbative treatment for the production of a large number of scalars
in the processes 2 → n and n → n in a non-broken φ4 theory. Their results also suggest
that using perturbation theory in the regime n & λ−1 is erroneous and that the growth in
amplitude is weaker than n!. Furthermore, our results are also reminiscent of the results
in [34], where it is argued that: 1) The formula for Higgsplosion has limited applicability
and that it is inconsistent with the unitarity of the SM, and 2) it is not possible to resum
the contribution from Higgsplosion in the imaginary part of the Higgs boson propagator,
therefore a solution to the hierarchy problem cannot be furnished with this mechanism. We
will show below that including the Higgs quartic interaction will not alter this conclusion.

To conclude this subsection, we show the jet scaling pattern for the cubic Higgs inter-
action on the right side of Fig. 4, where we see that the Poisson pattern is manifest.

3.2 The Higgs Quartic Interaction

Here we perform the same analysis for the quartic Higgs sector. The generalization of
the DGLAP equation for generating functionals to the quartic Higgs interaction is fairly
straightforward, and the calculation of the generating functional follows the same logic as
that for the 3H case. The 4H generating functional is given by

Φ4h(t) = u
[
∆4h(t, t0)

]1−u2
. (3.8)

The 4H generating functional is very similar to the 3H one, with the only difference
being in the power of 1 − u2 instead of 1 − u. This is because, in a quartic splitting, two
particles are radiated from the same vertex instead of one. The jet observables can be
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Figure 5: (Left): The quartic Higgs average jet multiplicity with the energy scale. (Right):
The quartic Higgs jet scaling pattern given in Eq. (3.9c), with n = 1 (blue), n = 2 (gray),
n = 3 (red), n = 4 (green), n = 5 (magenta). The plot clearly shows a Poisson scaling
pattern (see Eq. (3.4)). Both plots are on a log-log scale

easily found

Pn−2 =

n!!
n!

∆4h(t, t0)
[
− 2 log ∆4h(t, t0)

]n−1
2

; n = odd,

0 ; n = even,
(3.9a)

n̄ = 1− 2 log ∆4h(t, t0), (3.9b)

R(n+2)/n =
Pn+2

Pn
=
|2 log ∆4h(t, t0)|

n+ 1
;n = odd, (3.9c)

and here we see that the jet observables are only defined for an odd number of jets corre-
sponding to an even number of radiated Higgses (2 per splitting) in addition to the original
hard Higgs. Here too we find that n̄jet ≥ 1 and that the scaling pattern is of Poisson type.

We plot the average jet multiplicity and the jet scaling pattern for the quartic Higgs
interaction in Fig. 5. Here too we see that the average number of radiated Higgses is
minuscule, thereby confirming our earlier conclusion of a good UV behavior of pure Higgs
events. Comparing the average jet multiplicities through the cubic and quartic interactions,
we find that the cubic interaction dominates. This is hardly surprising as the quartic
splitting function has an extra phase space factor of 1/16π2 that exponentiates in the
Sudakov factor, thus providing significant suppression, as mentioned in the previous section.

To compare the average jet multiplicities more rigorously, we recall, that the number
of splittings ns = n̄jet− 1. Thus, we can define the splitting fraction for a certain vertex as

βhi =
nsi

ns3h + ns4h
. (3.10)

We plot the splitting fraction in Fig. 6. The plot shows that the cubic Higgs splitting
dominates over the quartic one. However, we can also see that the relative contribution of
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Figure 6: Splitting fractions of the Higgs cubic (red) and quartic (blue) interactions. Notice
that β3h+β4h = 1. The plot shows that for moderate energies the cubic splitting dominates
over the quartic one, while the quartic only begins to dominate at energies & 8×10134 GeV
(not shown on the plot), see Eq. (3.11). The plot is on a log-log scale.

the quartic splitting grows with energy. To estimate the energy scale at which the quartic
splitting begins to dominate, we can compare the quartic Sudakov factor (Eq. (2.23)) with
the cubic one (Eq. (2.13)). For t0 = m2, one finds that the quartic scale begins to dominate
at an energy scale of:

Q ' m exp
(4π3v2

b m2

)
= m exp

( π

2 b αH

)
' 8× 10134 GeV! (3.11)

thus, for all practical purposes, we can completely neglect the Higgs quartic splittings.

4 Primary vs. Secondary Emissions

So far, we have only considered primary emissions and neglected secondary ones. What
we mean by primary emissions are the emissions characterized by the hard Higgs radiating
successive soft Higgses. On the other hand, secondary emissions refer to the ones where the
soft Higgses themselves radiate other soft Higgses (see Fig. 7). For the case of QCD jets,
primary emissions dominate at high energy, while at low energy it is the secondary emissions
that dominate [30]. In the Higgs sector, we would like to estimate how much uncertainty
is associated with neglecting secondary emissions. To estimate the contribution of primary
and secondary emissions in pure Higgs splittings, we can calculate their cross-sections as
follows:

σP(Q2, Q2
0) = CP

∫ Q2

Q2
0

dtΓ(Q2, t)∆h(t, t0)

∫ Q2

Q2
0

dt′Γ(Q2, t′)∆h(t
′, t0), (4.1a)
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Figure 7: Primary emission (left) vs. secondary emission (right).

σS(Q2, Q2
0) = CS

∫ Q2

Q2
0

dtΓ(Q2, t)∆h(t, t0)

∫ t

Q2
0

dt′Γ(t, t′)∆h(t
′, t0), (4.1b)

where CP , CS are prefactors of roughly the same order that depend on the hard process,
Q is the scale of the hard process, Q0 is the scale of the daughter particle, and Γ(Q2, t) is
obtained by integrating the splitting functions over the energy fractions x and z. Notice
that the two equations only differ in the upper limit of the second integral. Plugging the
Sudakov factors found earlier and the integrated splitting functions Γ(Q2, t) in Eqs. (4.1a)
and (4.1b), one can show that for both the cubic and the quartic Higgs interactions we
have

σS(Q2, t0)

σP(Q2, t0)
=

CS

2CP
. (4.2)

This implies that both primary and secondary emissions have roughly similar mag-
nitudes. This is hardly surprising as our results seem to suggest that pure Higgs events
will mostly undergo a single splitting, thus primary and secondary emissions become in-
distinguishable, as all emitted Higgses (including the one along the ”hard” line) are soft.
This high-level comparison seems to suggest that there is an O(1) correction to our earlier
results. On the other hand, it also seems to suggest that other splitting topologies should
not be drastically different from the ones resummed through the Sudakov factor, which
provides further evidence that the probability of splitting is independent of the topology
of the process, and that the Higgs sector should still have good behavior at high energies.
Therefore, our conclusions remain valid.

5 Discusson, Conclusions and Outlook

In this paper, we tackled the issue of multi-Higgs production at high energies. It is com-
monly suggested in the literature that due to the factorial growth in the amplitudes of
n-Higgs production (An ∼ n!), the number of Higgses produced at high energy should be
large, leading to a breakdown in perturbation theory and violation of unitarity, thereby
signaling the emergence of new physics at these energy scales. Here we approached this
issue from a different angle. We developed a phenomenological approach by defining the
splitting functions and the Sudakov factors for the Higgs cubic and quartic interactions.
Then we generalized the method of generating functionals employed in the QCD sector to
pure Higgs events, and we defined several Higgs jet observables and used them to show
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that the pure Higgs sector should exhibit good UV behavior. We found that on average,
the number of Higgses produced at high energy should remain low. This good UV behavior
is mainly a result of the weak couplings of the Higgs cubic and quartic interactions which
render the probability of the Higgs splitting to other Higgses low even at high energy.

Our results are in stark contrast with the results found for multi-Higgs production at
or near threshold at high energies, such as the Higgsplosion proposal. We conjecture that
the breakdown of perturbation theory and the violation of unitarity one finds in such a case
are probably artifacts of applying perturbation theory where it is not valid, and of assuming
the double-scaling limit (which implicitly assumes a large n ab initio) rather than a sign of
new physics. We showed that although our treatment is approximate, as we are resumming
a subset of the total n! Feynman diagrams and we are working in the collinear limit, it
nonetheless suggests that the Higgs sector at high energies should remain under control
and well-described by the SM predictions. We argue that including other topologies would
not drastically alter our conclusions as the splitting functions are independent of these
topologies, and the probability of splitting remains low at high energies.

We showed that for all energy scales of interest, the Higgs cubic splitting is dominant
and that the quartic one is negligible. This is due to the extra phase space suppression in
the quartic case relative to the cubic one. We also showed that secondary Higgs emissions
are comparable to the primary ones but do not significantly affect our results. We also
studied the Higgs scaling pattern and found that pure Higgs splittings follow a Poisson
pattern.

The observables developed in this paper can be helpful in studying the Higgs produc-
tion at high energies, and the formalism developed in this paper can be readily applied to
the rest of the EW sector. Recently, Chen et. al. [35] calculated the splitting functions
for all cubic interactions in the EW sector. Thus, the generating functional method can
be used to define the jet observables for the rest of the EW sector. EW jets and EW
corrections will become more important as the energy scale of colliders increases, especially
for the 100-TeV FCC. We intend to extend our analysis to the rest of the EW sector in
future work.
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A Derivation of the Cubic Higgs Generating Funcional

Starting with Eq. (3.5), and using the cubic Higgs splitting function given in Eq. (2.10),
the generating functional is given by:

Φ(t) = ∆(t, t0)Φ(t0) +

(
3
√

2vλ

16π

)2 ∫ t

t0

dt′

t′2
∆(t, t′)

∫ 1

0

dzz(1− z)Φ(z2t′)Φ((1− z)2t′). (A.1)

We can see from the Sudakov factor of the cubic Higgs in Eq. (2.12) that at high energy,
it becomes almost constant. Thus, we can neglect the z-dependence of the generating
functionals and pull them out of the z-integral. This leaves

∫ 1

0
dzz(1 − z) = 1/6. In

addition, notice ∆(t, t′) = ∆(t, t0)/∆(t′, t0). Thus, Eq. (A.1) simplies to

Φ(t) ' ∆(t, t0)Φ(t0) +

(√
3vλ

16π

)2

∆(t, t0)

∫ t

t0

dt′

t′2
Φ2(t′)

∆(t′, t0)
. (A.2)

Differentiating both sides w.r.t. t and then dividing by Φ(t), we obtain a simple
differential equation for the generating functional

dΦ(t)

Φ(t)
=
d∆(t, t0)

∆(t, t0)
+

(√
3vλ

16π

)2

Φ(t)

t2
dt. (A.3)

Integrating both sides from t0 to t and noting that ∆(t0, t0) = 1, we obtain the following
expression for the generating functional

Φ(t) = Φ(t0)∆(t, t0)exp

[(√3vλ

16π

)2
∫ t

t0

dt′

t′2
Φ(t′)

]
. (A.4)

By definition, the generating functional evaluated at t0 describes jets that have no
opportunity of splitting, thus Φ(t0) ≡ u. Given Eq. (2.12), we can write Eq. (A.4) as

Φ(t) = u exp

[(√3vλ

16π

)2
∫ t

t0

dt′

t′2

(
Φ(t′)− 1

)]
. (A.5)

Since
∫ t
t0

dt′

t′2
is dominated near t′ ∼ t0, we can approximate Φ(t′) ≈ Φ(t0) = u. Thus,

we can further simpify Eq. (A.5)

Φ(t) = u exp

[
− (1− u)

(√3vλ

16π

)2
∫ t

t0

dt′

t′2

]

= u

{
exp

[
−
(√3vλ

16π

)2
∫ t

t0

dt′

t′2

]}1−u

= u
[
∆(t, t0)

]1−u
. (A.6)
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