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Abstract 

Due to variations in life occurrences, descriptions or interpretations and predictions with some level of 
accuracy has become challenging. In order to use models to solve these problems, statisticians have 
provided numerous number of probability distributions which can be used to describe one situation or the 
other. Rama shanker provided Shanker distribution which is not flexible enough to accommodate datasets 
with decreasing function. In order to add flexibility to Shankers’ distribution, the aim of this article is to 
suggest a new model developed by modifying shankers’ distribution. The new distribution will be called 
“Modified inverse Shanker distribution”.It has one special case, inverse Shanker distribution. Besides the 
basic properties of the distribution, the maximum likelihood technique of estimating the parameters of the 
distribution and some of the reliability measures are also discussed. We also illustrate the applicability of the 
proposed distribution using two real datasets. 

Keywords: Modified Shanker distribution, Exponentiated distribution, Inverse Shanker distribution, 
Generalized Shanker distribution, Inverse distributions. 

1 Introduction 

The modeling and analysis of lifetime data, for instance, datasets from medicine, engineering, insurance, 
actuarial science and so on, is considered a significant facet of statistical study, specifically, in the area of 
statistical modelling and distribution theory. Consequently, the construction of new distributions or 
modification of existing ones turns to be the most vital work if looked at, from a probabilistic point of view. 
However, recently attention have been given to this area by many researchers, see [1-4], and many more. 
The essence of developing new or modifying existing distributions is to get distributions that are more robust 
and flexible, unbiased, efficient and sufficient to capture the situation under study, and many researchers 
have been working on this. One of the proof, is the emergence of the Shanker distribution proposed by [5] for 
modelling real lifetime data-sets from various fields of knowledge as claimed by the author. One major defect 
of the shanker distribution is its inability to capture or model datasets with decreasing function in their hazard 
rate. That is, inverted hazard rate shape. Also, [6] suggested Inverse Lindley for modelling lifetime data. 
They provided the properties of the distribution and applied it to real data.To acquire more information on 
inverse distributions, researchers may read the following articles by [7-9]. Having looked at some existing 
distributions and their properties, the authors decide to suggest a more robust distribution that can compete 
with any other distribution, based on Shankerdistribution. Thus, the major objective of this study is to suggest 
a better distribution that can model some lifetime datasets that follows inverse Shanker distribution. 

 

1.2 Inverse Shanker distribution 

The one parameter inverse Shanker distribution was developed by applying the method of inverse 
transformation in [10]. Suppose X  is a nonnegative continuous random variable from Shanker distribution 
with probability density function (pdf),  f x  and cumulative density function (cdf),  F x ,  if  

 1
1Y h x
X

  , then the pdf of Y is given by; 
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With the method in (1.1), the inverse Shanker distribution has been derived. Thus, we obtained equations 
(1.2) and (1.3) 

Definition 1:  A random variable X  is said to have an Inverse Shanker distribution if the probability density 
function (pdf) and cumulative density function (cdf) are respectively given as 
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1.3 Modified Inverse Shanker Distribution 

In order to increase the flexibility of the new distribution while still maintaining few parameters, the authors 
decided to modify the inverse Shaker distribution using another method suggested by [11] as follows: 

Suppose ܺ is a random variable with a baseline cumulative density function, cdf 	(ݔ)ܨ, the new family of 
distributions with the form 

(ߚ,ݔ)ܨ = 	 ;ఉ[(ߚ,ݔ)ܩ] ݔ	 ∈ ܴ	; ߚ	 > 0                            (1.4) 

where for ߚ = 1, (1.4) reduces to the cdf of the baseline distribution. 

The corresponding probability density function, pdf is obtained by taking the first derivative of (1.4). 
Consequently, we have 

(ߚ,ݔ)݂ = ;(ߚ,ݔ)݂	ଵ	ఉି[(ߚ,ݔ)ܩ]ߚ	 ݔ	 ∈ ܴ	; ߚ	 > 0                                       (1.5) 

Substituting equations (1.2) and (1.3) into (1.5) and (1.4) respectively, we obtain the pdf and cdf of modified 
Shanker distribution given in equation (1.6) and (1.7). 
Definition 2: Let ܺ~(ߠ)ܵܫܯ, the probability density function of ܺ is given as follows 
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The corresponding cumulative density function is given by 
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Fig. 1: pdf and cdf plot of the modified inverse Shanker distribution 

Fig. 1 shows that the pdf and cdf of the modified inverse Shanker distribution can take varying 
shapes depending on the value of and   

2 Mathematical Characteristics of Modified Inverse Shanker Distribution 

In this section, some of the properties of modified inverse Shanker distribution is considered. 

2.1 Moments 

Moments enable one study vital features of a distribution such as mean, variance, skewness and kurtosis. 
The most significant aspect of a moment is the rth  moment which supports easy derivation of other 
moments. 

Definition 3: Let X  be a random variable that follows modified inverse Shanker distribution with parameters 
 ,  . Then, the rth moment is given as 
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The rth moment of a distribution is given by  
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A binomial expansion approach can be used to show that: 
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Consequently, equation (1.9) reduces to 
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The first four crude moments also known as moment about origin, for 1, 2,3and 4j   are as follows 
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2.2 Moment generating function 

Apart from moments, some of the remarkable features such as the crude moments, mean, variance and so 
on, of a statistical distribution can as well be derived from its moment generating function (mgf).  

Definition 4: Given a random variable X , such that   ~ ,X MIS   , the moment generating function is 
given by 
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Let X  denote a random variable having the modified inverse Shanker distribution (MIS) with parameters 
and  , then its moment generating function (mgf) is 
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Using Tailor’s series 
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Substituting (1.16) into (1.15) gives 
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2.3 Order Statistics of Modified Inverse Shanker Distribution 

Suppose 1 2, ..., nX X X  are random samples of size n from a continuous distribution with pdf and cdf,  f x

and  F x respectively. If these random variables are arranged in ascending order, they are referred to as 

order statistics. The smallest of the 'sX  is denoted by  1X , the second smallest is denoted by  2 ,...,X   

and the largest is denoted by  nX . That is, the order statistics is such that 1 2 3 ... nx x x x    , the pdf of 

the th order statistics defined by [12] 
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substituting (1.6) and (1.7) into (1.18) gives 
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Using Binomial series expansion on equation (1.19) gives the pdf of the order statistics of the modified 
inverse Shanker distribution 
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However, the cdf of pth  order statistics of the modified inverse Shanker distribution is given by 
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Substituting (1.7) in (1.21), complex algebra shows that the cdf of the pth  
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2.4 Renyi Entropy 

The entropy of a random variable, say X  is a measure of its variation of uncertainty. One of the common 
entropy measure is introduced by [13]. If X  is a continuous random variable having probability density 
function  g  , the R݁́nyi entropy of a random variable X from a continuous distribution is given by 
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3 Measures of Reliability 

In this study, three measures of reliability, the survival function, hazard rate and reverse hazard rate are 
considered. 

Definition 5: Let X  be a positive random variable from modified inverse Shanker distribution with probability 
density function  f x  and cumulative distribution function  F x . Thus, the survival function and hazard rate 
are respectively given by 
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Survival function  s x  is monotone decreasing over the interval 0, ,  
0

1
x
lim s x


 , implies a proper 

functioning system, while    0
x
lim s


  , means that the no system remains working forever.  

Also, the reversed hazard rate  x  is given by 
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Substituting for  f x and  F x , we obtain the reverse hazard function of modified inverse Shanker 
distribution. Thus, 
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Figures 2 and 3 show the plot of the survival function and hazard rate of the modified inverse Shanker 
distribution using different values of and   



 

 

 
Fig. 2: Survival function of MIS distribution 

 
Fig. 3: Hazard rate function of MIS distribution 

4 Maximum Likelihood Estimation of parameters of MIS distribution 

Let  1 2 3, , ,..., nx x x x  be an independent identically distributed random samples of size n with probability 
density function given in (1.6). Then, the likelihood function L  of modified inverse Shanker distribution is 
given by 
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The log – likelihood function is given by is 
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Differentiating (1.30) once with respect to and  , we arrived at the following 
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The maximum likelihood estimates of the parameters and  are obtained by solving the nonlinear equations 
(1.31) and (1.32) numerically, and evaluating at  
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The interval estimation of any of the parameters of the MIS distribution is possible when the necessary 
standard error estimate is known. As ݊ → ∞, the maximum likelihood εො = ൫ߚመ 	෠൯ of εߠ, = 	  is (ߠ,ߚ)
asymptotically normally distributed with mean Θ and variance – covariance matrix. 
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Therefore, an appropriate 100 (1 – ߙ)% confidence intervals for	ߚ	݀݊ܽ	ߠ are defined as follows: 
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మඥ௩ොభభ

ොߙ  ,  ± 	 ഀݖ
మඥ௩ොమమ
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                          (1.33) 
    

To obtain the parameter estimates and their corresponding standard error, R package shall be used. 

 



 

 

4.1 Applications of Modified Inverse Shanker distribution on real data sets 
In this section, the suggested distribution has been applied on two real datasets and compared with two 
parameters Quasi Shanker distribution (QSD), one parameter Shanker distribution (SD), Power Shanker 
distribution (PSD) and Length Biased Weighted Shanker Distribution (LBWS).Goodness of fit of the 
distributions has been carried out by means of Akaike information criteria (AIC), Bayesian Informationand 
criteria (BIC) values respectively. The values are computed for each distribution and also compared. The 
best goodness of fit of the distribution is judged base on the one with minimum value of AIC and BIC. 
Comparison of distributions are shown in table 1 and 2 for the first and second datasets respectively. It 
shows the calculated values of AIC and BIC, log-likelihood, Anderson-Darling statistic and the p-values of 
the distribution. Also, Table 3 and 4 show calculated 95% confidence intervals for the parameters of the 
distributions. 

 
Data set 1: This data set given by [15] represents the failure times of the air conditioning system of an 
airplane. 
23, 261 ,87 ,7, 120, 14 ,62, 47 ,225, 71 ,246 ,21, 42 ,20, 5, 12, 120 ,11, 3, 14, 71 ,11, 14, 11, 16, 90, 1, 16 
,52, 95 
 
Data set 2: The data-sets represent the survival times of two groups of patients suffering from Head and 
Neck cancer disease. The patients were treated using a combined radiotherapy and chemotherapy. These 
real life data-sets were previously analyzed by [15] and are presented below: 

12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36,63.47, 68.46, 78.26, 74.47, 81.43, 84, 92, 
94, 110, 112, 119, 127,130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281,319, 339, 432, 469, 
519, 633, 725, 817, 1776 
 

Table 1: MLEs, S.E, LL, AIC, BIC and AICc (1st dataset) 

Model Parameters  S.E LL AIC BIC AD p 

  
 

     

MIS β = 0.6494092 0.1506 
-157.19 318.3941 321.1965 1.3512 0.2163 

θ = 8.2431982 2.2641 

  
 

       

QSD        α= 0.00001446231 0.0029 
-162.87 329.7443 332.5467 5.1448 0.002502 

       θ = 0.03357515 0.0052 
SD θ = 0.03357872 0.0043 -162.87 327.7443 329.1455 ∞ 2.00E-05 

  
 

       

LBWS θ = 0.05036684 0.0053 -178.23 358.4545 359.8557 13.609 2.00E-05 

 

 

Table 2: MLEs, S.E, LL, AIC, BIC and AICc (2nd dataset) 
Model Parameters  S.E LL AIC BIC AD p 

  
 

     

EIS 
β =1.167573 0.2431443 -279.3058 562.6116 566.18 0.50446 0.7413 

θ=84.870922 16.503699       



 

 

          
PSD α=0.6680546 0.0692831 -279.9994 563.9989 567.5673 0.55803 0.6876 
  θ=0.0610248 0.0244364       
SD θ = 0.00898583 0.0009458 -289.7547 581.5093 583.2935 ∞ 1.36E-05 
  

 
       

LBWS θ = 0.0134245 0.0011619 -304.9733 611.9466 613.7308 11.079 1.42E-05 

 

 

Table 3: MLEs of the parameters EIS distribution and their C.I (1st dataset) 

Model parameter S.E 95% Confidence Interval   

      Lower Limit Upper Limit 

EIS 
β = 0.6494 0.1506 0.3542 0.9446 

θ = 8.2432 2.2641 3.8056 12.6808 

   

QSD 
α=0.00001446 0.002865 -0.0056001 0.005629 
θ = 0.0335752 0.005188305 0.02341 0.04374 

  
SD θ = 0.0335787 0.00432867 0.02509 0.04206 

    
LBWS θ = 0.0503668 0.00530472 0.03997 0.06076 

 

 

Table 4: MLEs of the parameters EIS distribution and their C.I (2nd dataset) 

Model parameter S.E 95% Confidence Interval 

      Lower Limit Upper Limit 

EIS 
β =1.167573 0.2431443 0.691 1.6441 
θ=84.870922 16.5036994 52.5237 117.2182 

       
PSD α=0.6680546 0.0692831 0.5323 0.8038 

  θ=0.0610248 0.02443642 0.0131 0.1089 
SD θ = 0.00898583 0.00094582 0.0071 0.01084 
  

 
    

LBWS θ = 0.01342449 0.00116189 0.0111 0.0157 
          

 
In table 1 and 2, the values of AIC and BIC of MIS distribution are least when compared to the other 
distributions, thus, considered to have provided a better fit. However, a look at the 95% confidence intervals 
show that all the parameter estimates for the distributions lie within95%confidence interval. A test of 



 

 

goodness of fit for the proposed distribution using Anderson-darling (AD) showed that modified Inverse 
Shaker distribution has a good fit. 

5 Conclusion 

Efforts are made every day by statisticians to provide a model that can be used to fit or describe a situation 
under study. All these efforts emanate from the fact that the quality of the empirical results obtained by 
applying many parametric approachesof analysis significantly relyon how sound, a chosen distribution fits 
the data under consideration. In this study, we have introduced and studied the properties of a new 
distribution called the modified inverse Shanker distribution. Specifically, we have derived the rth moments, 
first four raw moments, moment generating function, the pdf and cdf of the order statistics respectively. 
Using a numerical illustration, the distribution is found to provide a better fit than the competing distributions. 
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