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ABSTRACT 
 
Bayesian inference is to find posterior probabilities, but since it is difficult to find analytical 
solutions, it is often the case that approximate solutions are found. The variational Bayesian 
method is a powerful method for finding an approximate solution. It is a variational method in 
a stochastic system. Variational methods have been developed for the deterministic system 
since ancient times, and are one of the most powerful foundations for numerical solutions of a 
wide range of problems defined by partial differential equations. A detailed comparison and 
explanation of the classical variational principle and the variational Bayesian method are 
given, and the basic application examples of the variational Bayesian method are also given. 
Programming codes written in C are also shown to aid the readers’ understanding. 
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1. INTRODUCTION  
 
Since the advent of deep learning, the neural network has brought a big innovation in the 
world. However, deep learning might be far from perfect, because of “the inference is a black 
box”, “unexpected answer due to the overfitting”, and “large scale of the network and long 
time learning”. The earliest answer to them should be given. Among them, the black box 
nature would be a fundamental problem. 
 
Bayesian inference performs inference similar to neural networks. Bayesian inference, like 
neural networks, learns and infers based on data, but it is more deductive and less data-
dependent than neural networks. The difference appears as a difference in the number of 
unknown variables. Neural networks have a much larger number of unknown variables. 
Although it can be said that the flexibility is high, overlearning is likely to occur and the basis 
of reasoning becomes incomprehensible. 
 

On the other hand, the learning of Bayesian inference is to find the likelihood function from 
the frequency distribution, and to find the posterior probability from the likelihood function and 
the prior distribution. Therefore, it can be said that the learning and reasoning of Bayesian 
inference are highly deductive. However, it is powerless when the relationship between cause 
and effect cannot be clearly mathematically modeled, such as when discriminating figures. 
Humans can easily discriminate figures and understand languages. However, it is extremely 
difficult to clearly mathematically model the process of judgment and understanding for these. 
Human judgment and understanding in this regard is a black box. 
 

Neural networks make learning decisions while remaining in the black box. In other words, 
neural networks are extremely flexible because they can be learned simply by giving input 
data and teacher data. In comparison, Bayesian inference requires some modeling, so it must 
be said that it is less flexible. From another point of view, it can be said that the mechanism of 



 

neural networks is closer to human learning and reasoning than to Bayesian reasoning. The 
price is that human learning, like neural network learning, takes a lot of time. 
 

Bayesian inference is to find posterior probabilities, but since it is difficult to find analytical 
solutions, it is often the case that approximate solutions are found. The variational Bayesian 
method is a powerful method for finding an approximate solution. The variational Bayesian 
method is a variational method in a stocastic system. Variational methods have been 
developed for the deterministic system since old times, and are one of the most powerful 
foundations for numerical solutions of a wide range of problems defined by partial differential 
equations. It is none other than the basis of the finite element method, which is one of the 
most influential numerical solutions that have made great progress in recent years. 
 

In this paper, we compare the variational principle of the deterministic case and the 
stocastistic case, and describe in detail the variational Bayesian method of the stocastistic 
case, which is comparable to the Ritz method of the deterministic case. 
 

Recently, the variational Bayesian method has been attracting attention in the field of 
information processing of the cerebrum, which is called the principle of minimum free energy, 
strictly speaking, the principle of minimum variational free energy [1-4]. Information 
processing in the brain is considered to be information processing that infers recognition from 
sensory information that is a stimulus from the outside world by sensory organs. Then, the 
idea is to regard it as a mathematical model for finding posterior probabilities by Bayesian 
inference. Friston introduces the variational Bayesian method into this reasoning process. 
Friston pointed out that the variational Bayesian method corresponds to Helmholz's principle 
of minimum free energy in thermodynamics, and that improving the accuracy of the sensory 
organs greatly contributes to improving the accuracy of inference. He calls it active reasoning. 
 

2. VARIATIONAL PRINCIPLE IN DETERMINISTIC SYSTEM 
 
The variational principle has long been used for deterministic systems. First, the variational 
principle of a deterministic system will be explained by taking the Dirichlet problem, which is 
a boundary value problem of partial differential equations well known in fluid mechanics, and 
the Dirichlet principle, which is an equivalent variational principle, as an example. 
 
The Dirichlet problem is defined as follows: 
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The Dirichlet principle is given by 
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Dirichlet's principle is obtained as follows: 
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This is proved by 
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The key to moving from a deterministic system to a stochastic system is what to think 
instead of Eq. (3). 
 
We describe the Ritz method, which is an important idea for applying the classical variational 
principle to numerical calculations. We approximate   in Eq. (2) is as follows: 
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Substituting Eq. (5a) into F defined in Eq. (2) yields: 
 
From this, we obtain a system of linear algebraic equations for the following unknown coefficients 

1,2, ,iA i N : 
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Swapping the subscripts i  and j  yields the following equation: 
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By solving this, an approximate solution of   can be obtained. 



 

 
Next, we describe the least squares method that spans both deterministic and stocastistic systems. 

Suppose the observation equation is given below 
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The least squares method yields 
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Since the exponential function is a monotonically increasing function, the magnitude 
relationship does not change even if the exponential of S  is taken. If you take a minus, the 

minimum becomes the maximum: 
 
In summary, the following relationship can be obtained: 
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This is nothing but the maximum likelihood method. 
 

3. VARIATIONAL PRINCIPLE IN STOCHASTIC SYSTEM: VARIATIONAL 
BAYESIAN PRINCIPLE 

 

3.1 Derivation of variational Bayesian principle 
 
The unknown variable in the stochastic case is the probability distribution, and whether the 

two probability distributions 1( )q   and 2 ( )q   are equal or not is measured by Kullback-

Leibler divergence (KLD) 
1 2( ( ) || ( ))KL q q   of 1( )q   and 2 ( )q  ： 

 

1

1 2 1

2

( )
( ( ) || ( )) ( ) ln

( )

q
KL q q q d

q


   


  .                                        (13) 

 
KLD has the following properties: 
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Appendix A shows the proof of Eq. (14). However, since it is not symmetric, it is not a 

distance. It is a scale that shows the difference between the probability distributions 1( )q   

and 2 ( )q  . 



 

 
The equation corresponding to Eq. (3) in the case of the deterministic is: 
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Considering the non-negativeness of KLD, KLD is minimized when ( ) ( | )q p   . However, 

even if Eq. (15) itself is used as the minimum value problem for finding ( | )p   , a 

meaningful answer cannot be found. Variational Bayesian Principle (VBP) can be obtained 
by rewriting Eq. (15). Firstly, we have 
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and rewrting further, we finally derive the functional F  of the the variational Bayesian 
principle: 
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At first glance, the unknown variable of the minimum value problem of F  seems to be only 
 , but   is also an unknown variable. Since both of the two terms on the right-hand side of 

Eq. (17) are non-negative (Appendix A), q  that minimizes F  is ( | )p   , but it can be seen 

that F  also has the effect of minimizing ( )p  . 

 
The variational Bayesian principle (VBP) is called the minimum principle of free energy in the 
fields of information processing in the brain. Strictly speaking, the free energy is the 
variational free energy (VFE). The principle of minimum free energy, which is proposed by 
Friston, concerns sensation and cognition. Since the sensation and the physical movement 
(action) are directly connected, the action causes a change in the sensation  , which 

improves the accuracy of reasoning. Improving the accuracy of reasoning through actions is 
called active reasoning. Active reasoning was demonstrated first by the principle of minimal 
free energy by Friston [1] clearly. 
 
For the reader's understanding, the model of information processing in the brain is shown in 
Fig. 1 and Fig. 2. In the following,   may be called sensation and   may be called 

recognition. 
 



 

 
Fig. 1. Information flow in environment and brain 

 
Fig. 2. Bayes theorem 

 
 

4. APPROXIMATION OF VARIATIONAL FREE ENERDY 
 
4.1 The simplest approximation (Estimation of the mean value of the posterior 

distribution) 
 
Replacing Bayesian inference with the Variational Bayesian Principle (VBP), and using 
Gaussian distribution approximation and the steepest descent method, can lead to 
calculations also feasible in the brain. For simplicity, we consider the case of one variable. 
First, we consider a Gaussian approximation of the likelihood function and prior distribution: 
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From this, in the VBP of Eq. (17), the joint distribution is approximated as follows: 
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An approximation of the posterior distribution ( | )p    can be obtained by approximating 

( )q   under the condition of minimum VBP. Therefore, let us assume q in the following form, 

which means a normal distribution with a mean   variance of 0: 

 

( ) ( )q      ,                                                              (20) 

 

where, ( )  is a Dirac delta function. The unknown variable is  . Substituting Eqs. (21) and 

(22) into Eq. (17) yields the following equation: 
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The term ln (0)  is a constant term and can be omitted. The integral for   is done in 

    . Also, [ ]F   is used to indicate that   is an unknown variable. Therefore, the 

minimum VBP should be simplified and the following minimum value problem should be 
solved: 
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What should not be forgotten here is that the effect of the action on improving the accuracy 
of the sensations is not forgotten. Eq. (22) includes effect of actions: 
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To solve Eq. (23) by the steepest descent method, it becomes: 
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Here, t  is a sequential step, t is a sequential unit, and k  is a sequential parameter. Since 

the algorithms of Eqs. (9.25) and (9.26) are simple, it is considered that they can be 
implemented in vivo. 
 

4.2 A second simplest approximation (estimation of mean value   and 

variance   of posterior distribution ... with the assumption of a sharp 

peak in joint distribution) 
 

We consider the Gaussian approximation for the likelihood function ( | )p    and the prior 

distribution ( )p   are given by Eq. (18), so the joint distribution remains ( | )p    in Eq. (19). 

And ( )q  , which is an approximation of the posterior distribution ( | )p   , is replaced by Eq. 

(26) with mean   and variance  . Let us consider the case of approximation by the 

Gaussian distribution [2]. That is, 
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This time,   and   are unknown variables. 

 
Substituting Eqs. (25) and (26) for the functional F  of the VBP gives the following equation: 
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( , )E    is called energy. In the following discussion, the last constant on the right side is 

omitted. 
 

Now, for the sake of simple results, assume that ( , )E    has a sharp peak at   : 

 
2

2

2

1
( , ) ( , ) ( ) ( )

2

E E
E E

   

       
  

   
          

.                        (29) 

 
Approximating the last term on the right-hand side of Eq. (27) using Eq. (26), we obtain 
 

2 2
2

2 2

1 1
( ) ( , ) ( , ) ( )( ) ( , )

2 2

E E
q E d E q d E

   

            
 

 

    
        

    
.      (30) 

 
Substituting Eq. (30) into Eq. (27) yields the following equation: 
 

2 2

2 2

1 1 1
[ , ] ln 2 ( , ) ( , ) ln(2 ) 1

2 2 2

E E
F E E

   

         
 

 

     
            
      

.  (31) 

 

To minimize F , the derivative of F  by   should also be 0, so let *  be   that satisfies this 

condition, then *  is: 
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*

E E
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
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

 

     
       
      

.                                    (32) 

 
Substituting Eq. (9.34) into Eq. (9.33) yields the following equation: 
 



 

1
( , ) ln(2 *)

2
F E     .                                                    (33) 

 
In the calculation of the mean  , the second term on the right side can be omitted in the 

calculation of Eq. (33): 
 

[ ] ( , )F E   .                                                           (34) 

 

After all, the mean of ( )q  , which is an approximation of the posterior distribution ( | )p   , 

can be calculated by minimizing Eq. (34), and the variance can be calculated by Eq. (32). 
 

4.3 The most accurate approximation (Estimation of mean value   and 

variance   of posterior distribution ... no assumption of sharp peak in 

joint distribution) 
 

Without assuming the assumption of Eq. (29) that the joint distribution ( , )p    has a sharp 

peak, we consider the functional  F  of  the VBP without introducing any approximation other 
than the Gaussian approximation: 
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         (35) 

 
If we consider the minimum value problem by the steepest descent method, the mean   

and variance   of the posterior distribution ( | )p    are the solutions to the following 

problem: 
 

( , )

( , ) arg min ( , )F
 

    .                                                （36） 

 
Specifically, it becomes the following equation: 
 

( , ) ( , ) ,t t t t

t

F F
k t     

 
 

  
  

  
.                                     （37） 

 

As can be seen from Eq. (35), F    and F    appear to be too complex to be 

implemented in vivo. 
 
Now, we consider a calculation that uses the VBP itself given by Eq. (35) from a 

mathematical interest. In preparation for that, the posterior distribution ( | )p    is derived 

from the joint distribution ( , )p   : 
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 
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.                        (19) 

 

Integrating ( , )p    with   gives the following equation: 
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.          (38) 

 

Using this, ( | )p    can be found as follows: 
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 
  
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.                         (39) 

In the case of linear, that is, ( )g   , Eqs. (38) and (39) are as follows: 
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.       (41) 

 

This is the correct answer for posterior probability ( | )p    when the joint probability is given 

by Eq. (25) and ( )g   . The mean   and variance   are given by: 

 

,
   

   

 
 
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 

   
.                                           (42) 

 

Next, consider a method for calculating ( | )p    numerically from Eq. (35). first, we use 
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and simplify Eq. (35): 
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.                   (44) 

 

From Eq. (44), 0M F      and 0Z F      are given by the following equation using 

numerical differentiation: 
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Using Newton-Raphson's method to solve Eq. (45) gives a two-dimensional simultaneous 

algebraic equation for d  and d : 
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Z Z
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 
.                                                (46b) 

 
The derivative of M  and Z  is also calculated by numerical differentiation. Solving this, we 

can find d and d : 
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.                            (47) 

 
Therefore, the convergence value of the iterative calculation that updates   and   

according to the following equation is the solution: 
 

,new old new oldd d                                                   (48) 

 
By substituting this into Eq. (37), the functional F of  the VBP can also be obtained. 
 
The calculation code in C language is shown in Appendix B. Numerical calculations were 
actually performed, and the result by Eq. (41) and the result by the minimum VBP were 
compared. The following equation was assumed in the calculation: 
 

( )g   .                                                            (49) 

 
The parameter values used in the calculation are shown below: 
 



 

1, 1.5, 2.5, 0.000001d d          .                            (50) 

 
In Fig. 3, the initial values of   and   are set only for the minimum value of  , and   is 

sequentially increased while the previous convergence value is used as the initial value of 
the next calculation. For the initial value at the start, refer to Eq. (42). Figures 3 and 4 show a 
comparison between the correct answer given in Eqs. (42) and (41) and the approximate 
solution by solving Eq. (45) numerically, and sufficient accuracy is obtained. 
 
 

 
Fig. 3. Mean and variance of ( | )p    

 

 
Fig. 4. Posterior probability ( | )p    at 0   

 

5. CONCLUSION 
 
The variational Bayesian method is a variational principle in a stocastistic system. Using the 
variational Bayesian method, it is possible to obtain an approximation of unknown 
parameters contained in posterior probabilities, similar to the Ritz method in the classical 
variational principle applied to a deterministic system. 
 
In this paper, we gave a detailed explanation of the classical variational principle and the 
variational Bayesian method, and the basic application examples of the variational Bayesian 
method. 
 
C language code is also included to deepen the reader's understanding. Numerical 
calculations would be very useful, when the stochastic system is nonlinear. 
 
Recently, the variational Bayesian method has been attracting attention in the field of 
information processing in the cerebrum, which is called the principle of minimum free energy. 
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APPENDIX A. NON=NEGATIVITY OF KULLBACL-LEIBLER DIBERGENCE 
 
The natural logarithm has the following properties: 
 

ln 1x x  .                                                           (A.1) 

 

If the probability distribution is continuous, then if   is the set of all   where ( )q   is not 

zero, then the following equation holds: 
 

ln 1 1 0
p p

q d q d pd qd pd
q q

    
    

 
               

 
.                  (A.2) 

 
Therefore, we obtain: 
 

ln lnq pd q qd 
 

    .                                                  (A.3) 

 
Even if 0 is added to both sides, the magnitude relationship does not change, so the 
following equation holds: 
 

ln lnq pd q qd 
 

 
  .                                                 (A.4)  

 
Therefore, in the case of continuous probabilities, the non-negativeness of Kullback-Leibler 
divergence is derived: 
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ln 0 ln 0
p q

q d q d
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 
 

 
    .                                        (A.5) 

 

If the probability distribution is discrete, let I  be the set of all i  whose 
iq  is not zero. 
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.                      (A.6) 

 
Therefore, we obtain: 
 

ln lni i i i
i I i I

q p q q
 

    .                                             (A.7) 

 
Even if 0 is added to both sides, the magnitude relationship does not change, so the 
following equation holds: 
 

1 1

ln ln
n n

i i i i
i i

q p q q
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  .                                             (A.8) 

 
Therefore, in the case of discrete probabilities, the non-negativeness of Kullback-Leibler 
divergence is also derived: 
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APPENDIX B. C-LANGUAGE CODE FOR NUMERICAL CALCULATION OF 
POSTERIOR PROBABILITY USING VARIATIONAL BAYESIAN 
METHOD 

 

(1) Code file: PostProbNCalByVFE.c 
 
// -------------------------------------------------------------------------------------  // 
//                                                                                       // 
// File Name: PostProbNCal.c                                       2022.04.25-2022.04.28 // 
// File Name: PostProbNCalByVFE.c                                  2022.04.28-2022.05.08 // 
//                                                                                       // 
//    Numerical Cal. of Posteriro Prob.                                                  // 
//                                                                                       // 
// -------------------------------------------------------------------------------------  // 
 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <math.h> 

 

#define PI     3.14159265358979323846    // 円周率の定義 

 

// ----- function -------------------------------------------------------- // 

 



 

void main(); 

void pushKey(); 

 

double F(double, double, int);                   // F(myu,zeta) 

double M(double, double, int);                   // M(myu,zeta) 

double Z(double, double, int);                   // Z(myu,zeta) 

 

double DMmyu(double, double, int);               // DM/Dmyu(myu,zeta,m) 

double DMzeta(double, double, int);              // DM/Dzeta(myu,zeta,m) 

double DZmyu(double, double, int);               // DZ/Dmyu(myu,zeta,m) 

double DZzeta(double, double, int);              // DZ/Dzeta(myu,zeta,m) 

 

// ----- 変数 ----------------------------------------------------- // 

 

char title_memo[5000]; 

 

int Ntht;                         // number of divisiob of theta 

int Nphi;                         // number of divisiob of phi 

 

int ITR;                          // number of iteration in Newton-Raphson method 

 

double Tht;                       // -Tht <= tht <= Tht 

double tht[2001];                 // theta 

double dtht;                      // dtheta 

double Phi;                       // -Phi <= tht <= Phi 

double phi[101];                  // phi 

double dphi;                      // dphi 

 

double myu;                       // mean of probability q(tht) 

double zeta;                      // variance of probability q(tht) 

double myu_ini;                   // initial value of myu 

double zeta_ini;                  // initial value of zeta 

double dmyu;                      // dmyu 

double dzeta;                     // dzeta 

double myub;                      // myyu_bar 

double Sphi;                      // variance of liklihood functio p(phi|tht) 

double Stht;                      // variance of prior probability p(tht) 

double delm;                      // delm 

double delz;                      // delz 

double alp;                       // parameter for iteration 

 

double myuRec[101];               // mean of p(tht|phi); 

double zetaRec[101];              // variance of p(tht|phi); 

 

double p_phiBtht[20001][101];      // p(tht|phi): liklihood function 

double p_tht[20001];               // p(tht)    : prior probability 

double p_tht_phi[2001][101];      // p(tht,phi): joint probability 



 

double p_phi[2001];               // p(phi)    : marginal distribution 

double p_thtBphi[2001][101];      // p(tht|phi): posterior probability 

 

double p_thtBphi_VFE[2001][101];  // p(tht|phi): posterior probability by VFE 

  

FILE *fp_inp;                     // file pointer of input file 

FILE *fp_out;                     // file pointer of output file 

 

char InputDataFile[80];           // input file name 

char OutputDataFile[80];          // output file name 

 

char buf[5000];                   // buffer 

 

int prt_ctrl;                     // print control; if prt_ctrl = 1, then print 

 

// ---------------------------------------------------------------- // 

 

void main() 

{ 

    int i, m, itr; 

    double sum; 

 

    //// open input file for parameters 

    sprintf(InputDataFile, "PostProbNCalByVFE_inp.dat"); 

 

    if ((fp_inp = fopen(InputDataFile, "r")) == NULL) { 

        printf("Failed in Reading Input Data File! ... %s\n", InputDataFile); 

        exit(1); 

    } 

 

    //// open output file 

    sprintf(OutputDataFile, "PostProbNCalByVFE_out.csv"); 

 

    if ((fp_out = fopen(OutputDataFile, "w")) == NULL) { 

        printf("Failed in Reading Output Data File! ... %s\n", OutputDataFile); 

        exit(1); 

    } 

 

    //// input from file 

    fscanf(fp_inp, "%s", title_memo); 

 

    fscanf(fp_inp, "%s %d", buf, &Ntht); 

    fscanf(fp_inp, "%s %d", buf, &Nphi); 

 

    fscanf(fp_inp, "%s %d", buf, &ITR); 

 

    fscanf(fp_inp, "%s %lf", buf, &Tht); 



 

    fscanf(fp_inp, "%s %lf", buf, &Phi); 

 

    fscanf(fp_inp, "%s %lf", buf, &myub); 

    fscanf(fp_inp, "%s %lf", buf, &Sphi); 

    fscanf(fp_inp, "%s %lf", buf, &Stht); 

 

    fscanf(fp_inp, "%s %lf", buf, &myu_ini); 

    fscanf(fp_inp, "%s %lf", buf, &zeta_ini); 

 

    fscanf(fp_inp, "%s %lf", buf, &delm); 

    fscanf(fp_inp, "%s %lf", buf, &delz); 

    fscanf(fp_inp, "%s %lf", buf, &alp); 

 

    fscanf(fp_inp, "%s %d", buf, &prt_ctrl); 

    fclose(fp_inp); 

 

    //// output to display 

    printf("memo: %s\n", title_memo); 

 

    printf("Ntht  = %d\n", Ntht); 

    printf("Nphi  = %d\n", Nphi); 

 

    printf("ITR  = %d\n", ITR); 

 

    printf("Tht   = %12.6f\n", Tht); 

    printf("Phi   = %12.6f\n", Phi); 

 

    printf("myub  = %12.6f\n", myub); 

    printf("Sphi  = %12.6f\n", Sphi); 

    printf("Stht  = %12.6f\n", Stht); 

 

    printf("myu_ini  = %12.6f\n", myu_ini); 

    printf("zeta_ini = %12.6f\n", zeta_ini); 

 

    printf("delm     = %12.6f\n", delm); 

    printf("delz     = %12.6f\n", delz); 

    printf("alp      = %12.6f\n", alp); 

 

    printf("prt_ctrl = %d\n", prt_ctrl); 

    printf("\n"); 

 

    //// output to file 

    fprintf(fp_out, "memo: %s\n", title_memo); 

    fprintf(fp_out, "\n"); 

 

    fprintf(fp_out, "Ntht =, %d\n", Ntht); 

    fprintf(fp_out, "Nphi =, %d\n", Nphi); 



 

 

    fprintf(fp_out, "ITR =, %d\n", ITR); 

 

    fprintf(fp_out, "Tht =, %12.6f\n", Tht); 

    fprintf(fp_out, "Phi =, %12.6f\n", Phi); 

 

    fprintf(fp_out, "myub =, %12.6f\n", myub); 

    fprintf(fp_out, "Sphi =, %12.6f\n", Sphi); 

    fprintf(fp_out, "Stht =, %12.6f\n", Stht); 

 

    fprintf(fp_out, "myu_ini =, %12.6f\n", myu_ini); 

    fprintf(fp_out, "zeta_ini =, %12.6f\n", zeta_ini); 

 

    fprintf(fp_out, "delm =, %12.6f\n", delm); 

    fprintf(fp_out, "delz =, %12.6f\n", delz); 

    fprintf(fp_out, "alp =, %12.6f\n", alp); 

 

    fprintf(fp_out, "prt_ctrl =, %d\n", prt_ctrl); 

    fprintf(fp_out, "\n"); 

 

    pushKey(); 

 

 

    ///////////////////////////// 

    //                         // 

    //   Analytical Solution   // 

    //                         // 

    ///////////////////////////// 

 

    dtht = 2.0*Tht/(Ntht+0.0); 

    for (i = 0; i < Ntht; i++) 

        tht[i] = -Tht+(i+0.5)*dtht; 

 

    dphi = 2.0*Phi/(Nphi+0.0); 

    for (m = 0; m < Nphi; m++) 

        phi[m] = -Phi+(m+0.5)*dphi; 

 

 

    // p(phi|tht): liklihood function 

    for (m = 0; m < Nphi; m++) 

        for (i = 0; i < Ntht; i++) 

            p_phiBtht[i][m] = 1.0/sqrt(2.0*PI*Sphi)*exp(-(phi[m]-tht[i])*(phi[m]-

tht[i])/2.0/Sphi); 

 

 

    fprintf(fp_out, "**********\n"); 

    i = Ntht/2; 



 

    fprintf(fp_out, "i, m, tht[Ntht/2], phi[m], p_phiBtht[Ntht/2][m]\n"); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "%d, %d, %lf, %lf, %lf\n",  

                i, m, tht[i], phi[m], p_phiBtht[i][m]); 

    fprintf(fp_out, "\n"); 

 

 

 

    fprintf(fp_out, "p(phi|tht):, liklihood function\n"); 

    fprintf(fp_out, "phi, "); 

    for (i = 0; i < Ntht; i++) 

        fprintf(fp_out, "tht=%6.3f, ", tht[i]); 

    fprintf(fp_out, "\n"); 

    for (m = 0; m < Nphi; m++) { 

        fprintf(fp_out, "%lf, ", phi[m]); 

        for (i = 0; i < Ntht; i++) 

            fprintf(fp_out, "%lf, ",  p_phiBtht[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(tht): prior probability 

    fprintf(fp_out, "p(tht):, prior probability\n"); 

    fprintf(fp_out, " i, tht, p_tht\n"); 

    for (i = 0; i < Ntht; i++) { 

        p_tht[i] = 1.0/sqrt(2.0*PI*Stht)*exp(-(tht[i]-myub)*(tht[i]-

myub)/2.0/Stht); 

        fprintf(fp_out, "%d, %lf, %lf\n", i, tht[i], p_tht[i]); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(tht,phi): joint probability 

    for (i = 0; i < Ntht; i++) 

        for (m = 0; m < Nphi; m++) 

            p_tht_phi[i][m] = 1.0/sqrt(2.0*PI*Stht)*1.0/sqrt(2.0*PI*Sphi) 

                              *exp(-(phi[m]-tht[i])*(phi[m]-tht[i])/2.0/Sphi 

                                   -(tht[i]-myub)*(tht[i]-myub)/2.0/Stht); 

 

    fprintf(fp_out, "p(thtCphi):, joint probability\n"); 

    fprintf(fp_out, "tht, "); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "phi=%6.3f, ", phi[m]); 

    fprintf(fp_out, "\n"); 

    for (i = 0; i < Ntht; i++) { 

        fprintf(fp_out, "%lf, ", tht[i]); 

        for (m = 0; m < Nphi; m++) 

            fprintf(fp_out, "%lf, ",  p_tht_phi[i][m]); 



 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(phi): marginal distribution 

    fprintf(fp_out, "p(phi):, marginal probability\n"); 

    fprintf(fp_out, "m, phi, p(phi)\n"); 

    for (m = 0; m < Nphi; m++) { 

        p_phi[m] = 1.0/sqrt(2.0*PI*(Stht+Sphi))*exp(-(phi[m]-myub)*(phi[m]-myub) 

                                  /2.0/(Stht+Sphi)); 

        fprintf(fp_out, "%d, %lf, %lf\n", m, phi[m], p_phi[m]); 

    } 

    fprintf(fp_out, "\n"); 

 

    // p(tht|phi): posterior probability...analytical 

    for (i = 0; i < Ntht; i++) 

        for (m = 0; m < Nphi; m++) 

            p_thtBphi[i][m] = p_tht_phi[i][m]/p_phi[m]; 

 

    fprintf(fp_out, "p(tht|phi):, posterior probabilityy...analytical\n"); 

    fprintf(fp_out, "tht, "); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "phi=%6.3f, ", phi[m]); 

    fprintf(fp_out, "\n"); 

    for (i = 0; i < Ntht; i++) { 

        fprintf(fp_out, "%lf, ", tht[i]); 

        for (m = 0; m < Nphi; m++) 

            fprintf(fp_out, "%lf, ",  p_thtBphi[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    fprintf(fp_out, "p(tht|phi):, posterior probabilityy...analytical\n"); 

    fprintf(fp_out, "phi, "); 

    for (i = 0; i < Ntht; i++) 

        fprintf(fp_out, "tht=%6.3f, ", tht[i]); 

    fprintf(fp_out, "\n"); 

    for (m = 0; m < Nphi; m++) { 

        fprintf(fp_out, "%lf, ", phi[m]); 

        for (i = 0; i < Ntht; i++) 

            fprintf(fp_out, "%lf, ",  p_thtBphi[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

    ////////////////////////////////// 

    //                              // 



 

    // Numerical Solution by        // 

    // Variational Basian Principle // 

    //                              // 

    ////////////////////////////////// 

 

    // Newton Raphson 

 

    myu = myu_ini; 

    zeta = zeta_ini; 

 

    for (m = 0; m < Nphi; m++) { 

        if (prt_ctrl == 1) { 

            fprintf(fp_out, "m =, %d, phi =, %lf\n", m, phi[m]); 

            fprintf(fp_out, "itr, dmyu, dzeta, myu, zeta, F\n"); 

            fprintf(fp_out, "%d, %lf, %lf, %lf, %lf\n", 0, 0.0, 0.0, myu, zeta); 

        } 

        for (itr = 1; itr <= ITR; itr++) { 

            dmyu = -(M(myu,zeta,m)*DZzeta(myu,zeta,m) - 

Z(myu,zeta,m)*DMzeta(myu,zeta,m)) 

                    /(DMmyu(myu,zeta,m)*DZzeta(myu,zeta,m) 

                      - DZmyu(myu,zeta,m)*DMzeta(myu,zeta,m)); 

            dzeta = -(DMmyu(myu,zeta,m)*Z(myu,zeta,m) - 

DZmyu(myu,zeta,m)*M(myu,zeta,m)) 

                    /(DMmyu(myu,zeta,m)*DZzeta(myu,zeta,m) 

                      - DZmyu(myu,zeta,m)*DMzeta(myu,zeta,m)); 

 

            myu += alp*dmyu; 

            zeta += alp*dzeta; 

 

            if (prt_ctrl == 1) 

                fprintf(fp_out, "%d, %lf, %lf, %lf, %lf, %lf\n", 

                        itr, dmyu, dzeta, myu, zeta, F(myu,zeta,m)); 

        } 

        if (prt_ctrl == 1) 

            fprintf(fp_out, "\n"); 

 

        myuRec[m] = myu; 

        zetaRec[m] = zeta; 

    } 

 

    fprintf(fp_out, "mean and variance of p(tht|phi)\n"); 

    fprintf(fp_out, "m, phi,myuRec, my_ex, zetaRec, zeta_ex\n"); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "%d, %lf, %lf, %lf, %lf, %lf\n", 

                m, phi[m], myuRec[m], (Sphi*myub+Stht*phi[m])/(Stht+Sphi), 

                zetaRec[m], Sphi*Stht/(Stht+Sphi)); 

    fprintf(fp_out, "\n"); 



 

 

    // p(tht|phi) by VFE) 

    for (i = 0; i < Ntht; i++) 

        for (m = 0; m < Nphi; m++) 

            p_thtBphi_VFE[i][m] = 1.0/sqrt(2.0*PI*zetaRec[m])*exp(-(tht[i]-

myuRec[m]) 

                                  *(tht[i]-myuRec[m])/2.0/zetaRec[m]); 

 

    fprintf(fp_out, "p(tht|phi):, posterior probability by VFE...numerical\n"); 

    fprintf(fp_out, "tht, "); 

    for (m = 0; m < Nphi; m++) 

        fprintf(fp_out, "phi=%6.3f, ", phi[m]); 

    fprintf(fp_out, "\n"); 

    for (i = 0; i < Ntht; i++) { 

        fprintf(fp_out, "%lf, ", tht[i]); 

        for (m = 0; m < Nphi; m++) 

            fprintf(fp_out, "%lf, ",  p_thtBphi_VFE[i][m]); 

        fprintf(fp_out, "\n"); 

    } 

    fprintf(fp_out, "\n"); 

 

 

    fclose(fp_out); 

 

    pushKey(); 

} 

 

// ---------------------------------------------------------------- // 

 

 void pushKey() 

{ 

    printf("\n      Push Return Key! "); 

    getchar(); 

    getchar(); 

} 

 

// ---------------------------------------------------------------- // 

 

double F(double myu, double zeta, int m) 

{ 

    int i; 

    double sum; 

 

    sum = 0.0; 

    for (i = 0; i < Ntht; i++) 

        sum += exp(-(tht[i]-myu)*(tht[i]-myu)/2.0/zeta)*(phi[m]-tht[i]) 

                    *(phi[m]-tht[i])/2.0/Sphi; 



 

    sum *= dtht; 

    sum *= 1.0/sqrt(2.0*PI*zeta); 

 

    return (-0.5*log(zeta)+0.5*log(Sphi*Stht)+0.5*log(2.0*PI) 

           +(myu-myub)*(myu-myub)/2.0/Stht) 

           + zeta*(-1.0/2.0/zeta+1.0/2.0/Stht) + sum; 

} 

 

// ---------------------------------------------------------------- // 

 

double M(double myu, double zeta, int m) 

{ 

    return (F(myu+delm,zeta,m)-F(myu,zeta,m))/delm; 

} 

 

// ---------------------------------------------------------------- // 

 

double Z(double myu, double zeta, int m) 

{ 

    return (F(myu,zeta+delz,m)-F(myu,zeta,m))/delz; 

} 

 

// ---------------------------------------------------------------- // 

 

double DMmyu(double myu, double zeta, int m) 

{ 

    return (M(myu+delm,zeta,m)-M(myu,zeta,m))/delm; 

} 

 

// ---------------------------------------------------------------- // 

 

double DMzeta(double myu, double zeta, int m) 

{ 

    return (M(myu,zeta+delz,m)-M(myu,zeta,m))/delz; 

} 

 

// ---------------------------------------------------------------- // 

 

double DZmyu(double myu, double zeta, int m) 

{ 

    return (Z(myu+delm,zeta,m)-Z(myu,zeta,m))/delm; 

} 

 

// ---------------------------------------------------------------- // 

 

double DZzeta(double myu, double zeta, int m) 

{ 



 

    return (Z(myu,zeta+delz,m)-Z(myu,zeta,m))/delz; 

} 

 

// ---------------------------------------------------------------- // 

 

 

(2) Input file: PostProbNCalByVFE_inp.dat 
 

2022.05.08 

 

Ntht            101 

Nphi            41 

 

ITR             20 

 

Tht             5.0 

Phi             4.0 

 

myub            0.0 

Sphi            1.5 

Stht            2.5 

 

myu_ini        -2.5 

zeta_ini        1.0 

 

delm            0.000001 

delz            0.000001 

alp             0.25 

 

prt_ctrl       0 
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