
Integro-differential equations for a class of delayed renewal
risk processes with dependence

Abstract: The Gerber-Shiu discounted penalty function is considered for a class of delayed
renewal risk processes. In (Willmot 2004), special cases of the model include the stationary
renewal risk model and the situation where the time until the first claim is exponentially
distributed. In this paper, we consider a class of delayed and perturbed risk model with
dependence between interclaim arrivals and claim sizes. The integro-differential equations for
the Gerber-Shiu discounted penalty functions are derived.
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dependence events; Integro-differential equation

1 Introduction
As a valuable analytical tool for analyzing the ruin probability, the Gerber-Shiu function

is often used to predict and study the ruin risk that some insurance companies may cause
due to some serious economic claims. To this end, we apply some models to predict these
ruin probabilities and ruin time. For many years, a large number of scholars have studied
the compound Poisson risk model perturbed by a diffusion process. However these models all
assume that interval and claim amount are independent. [1] add diffusion to the dependent
risk model of [2] and study the ruin probabilities by using a potential measure. In addition,
[3] consider a compound Poisson risk model perturbed by a Brownian motion. Therefore, the
Gerber-Shiu function in the delayed renewal model has also been extended. For instance, [4]
considered a case where the first inter-claim time is supposed to follow a different density rather
than the common density of the subsequent inter-claims times. Most recently, [5] consider the
risk model perturbed by a diffusion process with a time delay in the arrival of the first two
claims and take into account dependence between claim sizes and the inter-claims times. This
paper is based on [5] and applies the dependent risk model of [2]. Then the integro-differential
equations of the Gerber-Shiu discounted penalty functions are given.

The paper is structured as follows: in Section 2, we describe the risk model. In Section
3, we derive dependence structure and obtain Lundberg-type equation. In Section 4, we derive
the integro-differential Equations that satisfy the Gerber–Shiu functions. Then the concluding
remarks drive in Section 5.

1



2 Risk model
We consider the following compound Poisson risk model that is perturbed by a Brownian

motion

U(t) = u+ ct− S(t) + σB(t), (2.1)
where u ≥ 0 is the initial surplus and c > 0 is the premium rate. The aggregate claims
S(t) =

∑N(t)
i=1 Xi is a compound Poisson process�where {N(t), t ≥ 0} is a Poisson process de-

noting the number of claims up to time t, B(t) independent of the aggregate claims process is
a standard Brownian motion starting from zero, and σ > 0 is the diffusion volatility.
• {Xi, i ≥ 1} is a sequence of strictly positive random variables representing the individual
claim sizes. {Xi}∞i=1 are independent, {Xi}∞i=3 are independent and distributed as the generic
X;
• The interclaim times {Wi, i ≥ 1} is a sequence of exponential random variables. We denote
by Wi the time between the (i−1)th and the ith claim for i = 2, 3, · · · W1 and W2 are exponen-
tially distributed with parameter λ1 and λ2 respectively; {Wi}∞i=3 are exponentially distributed
with parameters λ;
• Xi and Wi are dependent with βi which βi i.e. the common exponentially decreasing rate;
• We assume that the bivariate random vectors (Wj, Xj) for j ∈ N+ are mutually independent
but that the r.v.’s Wj and Xj are no longer independent;
• We assume the time arrival of the first claim W1 has density function given by

fW1(t) = qλ1e
−λ1t + (1− q)

e−λ1t
∫∞
t
fW2(y)dy∫∞

0
e−λ1yF̄W2(y)dy

= qfV1(t) + (1− q)fV2(t), (2.2)

where 0 ≤ q ≤ 1, λ1 > 0, and the inter-occurrence time from the second claim W2 has the
density function fW2 with survival function F̄W2 . When q = 0, fW1 is a generalized equilibrium
distribution, and when q = 1, W1 is exponentially distributed, which is an intriguing choice for
the time until the first claim occurs. The time from the second claim W2 has density function
given by fW2(t) = λ2e

−λ2t, and the subsequent claims inter-occurrence times {Wi}∞i=3 are expo-
nentially distributed with parameter λ, Wi, i = 1, 2, 3, · · · are independent. Since we assume
that W2 is exponentially distributed with parameter λ2, the distribution of V2 which defined in
Equation (2.2) becomes

fV2(t) = (λ1 + λ2)e
−(λ1+λ2)t, t ≥ 0;

• We consider a dependence structure between the claim amount and the interclaim time r.v.’s
Xk and Wk that is mathematically tractable. We suppose the density of Xk|Wk to be defined
as a special mixture of two arbitrary density function f1 and f2 (with respective means (θ1 and
θ2),i.e.

fXk|Wk
(x) = e−βkWkf1(x) + (1− e−βkWk)f2(x), x ≥ 0, k = 1, 2, · · · (2.3)

from (2.3), the weight assigned to the c.d.f. F1 is an exponentially decreasing function (at rate
βk) of the time elapsed since the last claim Wk. The resulting marginal distribution of Xk is

fXk
(x) =

λk
λk + βk

f1(x) +
βk

λk + βk
f2(x), k = 1, 2, · · · (2.4)
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for βi = β, i = 3, 4, · · ·

Let τ = inft≥0{t, U(t) < 0} be the time of ruin with τ = ∞ if U(t) ≥ 0 for all t ≥ 0 (i.e.
ruin does not occur). We denote the claim arrival times {Tj, j ∈ N+} by Tj = W1+W2+· · ·+Wj.
The deficit at ruin and the surplus just prior to ruin are respectively denoted by |Uτ | and Uτ−.
The Gerber-Shiu function m∗(u) is defined as

m∗(u) = E[e−δτω(U(τ−), |U(τ)|)I(τ <∞)|U(0) = u], (2.5)
where δ ≥ 0 is the force of interest, I(·) is the indicator function, ω(x1, x2) is a nonnegative
function of the surplus before ruin U(τ−) and the deficit at ruin |U(τ)|. By observing the sam-
ple paths of U(t), we know that ruin can be caused either by the oscillation of the Brownian
motion or a downward jump. We decompose the Gerber-Shiu function as follows

m∗(u) = ϕ∗
d(u) + ψ∗

d(u), (2.6)
where

ϕ∗
d(u) = E[e−δτω(U(τ−), |U(τ)|)I(τ <∞, U(τ) < 0)|U(0) = u],

is the Gerber-Shiu function when ruin is caused by a claim, and

ψ∗
d(u) = E[e−δτω(U(τ−), |U(τ)|)I(τ <∞, U(τ) = 0)|U(0) = u]

= ω(0, 0)E[e−δτI(τ <∞, U(τ) = 0)|U(0) = u],

is the Gerber-Shiu function when ruin is caused by oscillation. We assume that ω(0, 0) = 1.
To guarantee that ruin is not a certain event, we assume that the following net profit condition
holds

E[cW −X] > 0, (2.7)
then (2.7) is equivalent to

c

λk
− λkθ1 + βkθ2

βk + λk
> 0, (2.8)

it is clear that the increments (Xj − cWj), j ∈ N+ of the surplus process are still independent.

A special setting of δ = 0 and ω ≡ 1 bring ϕ∗
d(u) and ψ∗

d(u) to the ruin probabilities ϕ∗
w(u)

and ψ∗
w(u).

3 Lundberg-type equation
We analyze the roots of a Lundberg-type equation associated with the risk process.

Let U0 = 0, and for n ∈ N+, denote by Un the surplus immediately after the nth claim, i.e.
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Un = u+
n∑

i=1

(cWi −Xi) + σB

(
n∑

i=1

Wi

)

= u+
n∑

i=1

(cWi −Xi + σB(Wi)) .

We seek for a number s such that the process

{e−δTn+sUn}∞n=1,

is a martingale. Here the martingale condition which is called the Lundberg-type equation is

L(s) = E[e−δWn+1+s(cWn+1+σBWn+1
−Xn+1)] = 1. (3.1)

By (2.5), we can calculate L(s) as

L(s) = E{E(e−δW+s(cW+σBw−X))|(W,X)}

=

∫ +∞

0

∫ +∞

0

fW,X(x, t)E(e
−δt+s(ct+σBt−x)|W = t,X = x)dxdt

=
λf̃1(s)

λ+ β + δ − sc− σ2s2

2

+
λf̃2(s)

λ+ δ − sc− σ2s2

2

− λf̃2(s)

λ+ β + δ − sc− σ2s2

2

= −2λ(f̃1(s)− f̃2(s))

σ2A1(s)
− 2λf̃2(s)

σ2A2(s)
,

where

A1(s) = s2 +
2c

σ2
− 2(λ+ δ + β)

σ2
,

A2(s) = s2 +
2c

σ2
− 2(λ+ δ)

σ2
.

Where f̃1(s) and f̃2(s) are the Laplace transforms of f1(s) and f2(s), i.e. f̃i(s) =
∫∞
0
e−sxfi(x)dx,

(i=1,2). Then the Lundberg-type equation (2.1) reduces to

L(s) =
λ(λ+ δ − sc− σ2s2

2
)f̃1(s) + λβf̃2(s)

(λ+ β + δ − sc− σ2s2

2
)(λ+ δ − sc− σ2s2

2
)
. (3.2)

When δ > 0, (3.2) has exactly two roots, say ρ1(δ), ρ2(δ) with Re(ρi(δ)) > 0 for i = 1, 2.
And when δ = 0, (3.2) has exactly one root, say ρ1(0), with Re(ρ1(0)) > 0 and the second root
ρ2(0) = 0.
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4 Integro-differential equations
In this section, we derive the integro-differential Equations satisfied by the Gerber–Shiu

functions when ruin is caused by claims and by oscillations respectively. For these two kinds
of delayed and perturbed risk model, we will discuss separately. The first-order delayed and
perturbed risk model (Type I), a model such that after the first claim the process becomes
ordinary. In this case,the occurrence time of the first claim is exponentially distributed with
parameterλ1, and the process becomes ordinary with claim inter-occurrence time following
exponential distribution with parameter λ. And the second-order delayed and perturbed risk
model(Type II) that the time occurrence of the first claim follows the distribution of Equation
(2.2) and the time until the second claim is exponentially distributed with parameter λ2.

Now we introduce some preliminary results. Let Z(t) = −ct−σB(t), which is a Brownian
motion starting from zero with drift −c and variance σ2, note ¯Z(t) = sup{0 ≥ s ≥ t}Z(s). The
first hitting time of the value u > 0 is defined by τu = inf{t ≥ 0 : Z(t) = u}. For δ ≥ 0, by
[13], we have

E[e−δτu ] = e−ηu, (4.1)

when η = c
σ2 +

»
2δ
σ2 +

c2

σ4 .
By [14],

E[e−sZeq ] =

∫ ∞

0

E[e−sZt ]feq(t)dt =
q

q − cs− σ2s2

2

,

and eq is the qth unit column vector.
The roots of q − cs− σ2s2

2
are −v1 and v2 which are

v1 =
c
σ2 +

»
2q
σ2 +

c2

σ4 , v2 = − c
σ2 +

»
2q
σ2 +

c2

σ4 .

We define the following potential measure for δ ≥ 0,

P(u, dy, dx) = E[e−δW I( ¯Z(W ) < u,Z(W ) ∈ dy,X ∈ dx)], u > 0, u > y, (4.2)
which can be obtained by the following Lemma in applied probability.

By Lemma 2 of [15], for 0 ≤ y < u, the measure P (u, dy, dx) has a density given by

P(u, y, x) =
λ2η1η2

(λ2 + δ + β2)(η1 + η2)
(e−η1y − e−(η1+η2)u+η2y)(f1(x)− f2(x))

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)
(e−ω1y − e−(ω1+ω2)u+ω2y)f2(x), (4.3)

for 0 ≤ y < u, and
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P(u, y, x) =
λ2η1η2

(λ2 + δ + β2)(η1 + η2)
(eη2y − e−(η1+η2)u+η2y)(f1(x)− f2(x))

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)
(eω2y − e−(ω1+ω2)u+ω2y)f2(x), (4.4)

for y < 0, where
η1 =

c
σ2 +

»
2(λ2+δ+β2)

σ2 + c2

σ4 , η2 = − c
σ2 +

»
2(λ2+δ+β2)

σ2 + c2

σ4 ,
ω1 =

c
σ2 +

»
2(λ2+δ)

σ2 + c2

σ4 , ω2 = − c
σ2 +

»
2(λ2+δ)

σ2 + c2

σ4 .

Setting D := d
du
(·),D2 := d2

du2 (·), I the identity operator, we define the following differen-
tiation operators:

P1(D) = D2 +
2c

σ2
D − 2(λ2 + δ + β2)

σ2
I = (D + η1I)(D − η2I),

P2(D) = D2 +
2c

σ2
D − 2(λ2 + δ)

σ2
I = (D + ω1I)(D − ω2I),

A1(D) = limλ2→λP1(D)A2(D) = limλ2→λP2(D).

Theorem 1. Under the assumptions of the first-order delayed and perturbed risk model
(Type I) defined in Equation (2.1), the Gerber–Shiu function ϕd when the ruin is caused by
claims satisfies the following integro-differential equation.

P1(D)P2(D)ϕd(u) = −2λ2
σ2

P2(D)(σω,1(u)− σω,2(u))−
2λ2
σ2

P1(D)σω,2(u), (4.5)

with the boundary conditions

ϕd(0) = 0, (4.6)

ϕ
′′

d(0) +
2c

σ2
ϕ

′

d(0) = −2λ2
σ2

ω1(0), (4.7)

where

σω,1(u) =

∫ u

0

ϕ(u− x)f1(x)dx+ ω1(u); σω,2(u) =

∫ u

0

ϕ(u− x)f2(x)dx+ ω2(u);

ω1(u) =

∫ ∞

u

ω(u, x− u)f1(x)dx;ω2(u) =

∫ ∞

u

ω(u, x− u)f2(x)dx.

The ordinary Gerber-Shiu function ϕ which satisfies

A1(D)A2(D)ϕ(u) = −2λ

σ2
A2(D)(σω,1(u)− σ2(u))−

2λ

σ2
A1(D)σω,2(u).

Proof. By conditioning on the time and amount of the first claim and recalling the defi-
nition of p(u, y, x), we have
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ϕd(u) =

∫ ∞

0

∫ u

−∞

∫ u−y

0

e−δtPr(Z̄(t) < u,Z(t) ∈ dy)ϕ(u− y − x)fX2,W2(x, t)dxdt

+

∫ ∞

0

∫ u

−∞

∫ ∞

u−y

e−δtPr(Z̄(t) < u,Z(t) ∈ dy)ω(u− y, x− (u− y))fX2,W2(x, t)dxdt,

(4.8)

by (4.3)�(4.4), we can rewrite (4.9)as

ϕd(u) =
λ2η1η2

(λ2 + δ + β2)(η1 + η2)

∫ u

0

(e−η1y − e−(η1+η2)u+η2y)(σω,1(u− y)− σω,2(u− y))dy

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)

∫ u

0

(e−ω1y − e−(ω1+ω2)u+ω2y)σω,2(u− y)dy

+
λ2η1η2

(λ2 + δ + β2)(η1 + η2)

∫ 0

−∞
(eη2y − e−(η1+η2)u+η2y)(σω,1(u− y)− σω,2(u− y))dy

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)

∫ 0

−∞
(eω2y − e−(ω1+ω2)u+ω2y)σω,2(u− y)dy, (4.9)

where

σω,1(u) =

∫ u

0

ϕ(u− x)f1(x)dx+ ω1(u); σω,2(u) =

∫ u

0

ϕ(u− x)f2(x)dx+ ω2(u);

ω1(u) =

∫ ∞

u

ω(u, x− u)f1(x)dx;ω2(u) =

∫ ∞

u

ω(u, x− u)f2(x)dx.

Let s = u− y in (4.10), and we have

ϕd(u) =
λ2η1η2

(λ2 + δ + β2)(η1 + η2)
(

∫ u

0

(e−η1(u−s)(σω,1(s)− σω,2(s))ds+

∫ ∞

u

eη2(u−s)(σω,1(s)− σω,2(s))ds

−
∫ ∞

0

e−η1u−η2s(σω,1(s)− σω,2(s))ds)

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)

Å∫ u

0

e−ω1(u−s)σω,2(s)ds+

∫ ∞

u

eω2(u−s)σω,2(s)ds−
∫ ∞

0

e−ω1u−ω2sσω,2(s)ds

ã
,

(4.10)

then setting u = 0 in (4.11) gives the boundary condition (4.7).
Applying the operator P1(D)P2(D) to both sides of (4.11), we can obtain the integro-

differential equation (4.6).

Next we differentiate the integral equation (4.11) w.r.t. u and setting u = 0, we can get

ϕ
′

d(0) =
2λ2
σ2

∫ ∞

0

e−η2s(σω,1(s)− σω,2(s))ds+
2λ2
σ2

∫ ∞

0

e−ω2sσω,2(s)ds. (4.11)
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Differentiating (4.11) again and then setting u = 0, we can get

ϕ
′′

d(0) = −2λ2
σ2

ω1(0)−
4λ2c

σ4

∫ ∞

0

e−η2s(σω,1(s)− σω,2(s))ds−
4λ2c

σ4

∫ ∞

0

e−ω2sσω,2(s)ds. (4.12)

Finally, comparing (4.12) and (4.13) gives the boundary condition (4.8).

Theorem 2. Under the assumptions of the first-order delayed and perturbed risk model
(Type I) defined in Equation (2.1), the Gerber–Shiu function ψd when the ruin is caused by
oscillation satisfies the following integro-differential equation.

P1(D)P2(D)ψd(u) = −2λ2
σ2

P2(D)(σd,1(u)− σd,2(u))−
2λ2
σ2

P1(D)σd,2(u), (4.13)

with the boundary conditions

ψd(0) = 1, (4.14)

ψ
′′

d (0) +
2c

σ2
ψ

′

d(0) =
2(λ2 + δ)

σ2
, (4.15)

where

σd,1(u) =

∫ u

0

ψ(u− x)f1(x)dx;

σd,2(u) =

∫ u

0

ψ(u− x)f2(x)dx.

The ordinary Gerber-Shiu function ψ which satisfies

A1(D)A2(D)ψ(u) = −2λ

σ2
A2(D)(σd,1(u)− σ2(u))−

2λ

σ2
A1(D)σd,2(u).

Proof.Let τu = inf{t ≥ 0 : Z(t) = u}, we have

E[e−δτu1(τu < W2)] = E[e−δτuE[1(τu < W2)]|Z(t)] = E[e−(λ2+δ)τu ] = e−ω1u,

where

ω1 =
c

σ2
+

 
2(λ2 + δ)

σ2
+
c2

σ4
.

Because of that ruin caused by oscillation may occur or not before the first claim, we have

ψd(u) =

∫ ∞

0

∫ u

−∞

∫ u−y

0

e−δtPr(Z̄(t) < u,Z(t) ∈ dy)ψ(u− y − x)fX2,W2(x, t)dxdt

+ E[e−δτuI(τu < W2)]

=e−ω1u +

∫ u

−∞

∫ u−y

0

ψ(u− y − x)P(u, y, x)dxdy, (4.16)
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when y < 0,

P(u, y, x) =
λ2η1η2

(λ2 + δ + β2)(η1 + η2)
(eη2y − e−(η1+η2)u+η2y)(f1(x)− f2(x))

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)
(eω2y − e−(ω1+ω2)u+ω2y)f2(x).

Then we can rewrite (4.17) and setting s = u− y, as

ψd(u) =e
−ω1u +

λ2η1η2
(λ2 + δ + β2)(η1 + η2)

[ ∫ ∞

u

eη2(u−s)(σd,1(s)− σd,2(s))ds

−
∫ ∞

0

e−η1u−η2s(σd,1(s)− σd,2(s))ds)
]

+
λ2ω1ω2

(λ2 + δ)(ω1 + ω2)

[ ∫ ∞

u

eω2(u−s)σd,2(s)ds−
∫ ∞

0

e−ω1u−ω2sσd,2(s)ds
]
, (4.17)

then setting u = 0 in (4.18) gives the boundary condition ψd(0) = 1.
Applying the operator P1(D)P2(D) to both sides of (4.18),we can obtain the equation

(4.14).

We differentiate the integral equation (4.18) and setting u = 0, we can get

ψ
′

d(0) = − c

σ2
−

 
2(λ2 + δ)

σ2
+
c2

σ4
+

2λ2
σ2

∫ ∞

0

e−η2s(σd,1(s)−σd,2(s))ds+
2λ2
σ2

∫ ∞

0

e−ω2sσd,2(s)ds.

(4.18)
Next, differentiating again and setting u = 0, we can get

ψ
′′

d (0) = ω2
1 −

4λ2c

σ4

∫ ∞

0

e−η2s(σd,1(s)− σd,2(s))ds−
4λ2c

σ4

∫ ∞

0

e−ω2sσd,2(s)ds. (4.19)

Finally, comparing (4.19) and (4.20) gives the boundary condition (4.16).

Theorem 3. Under the assumptions of the second-order delayed and perturbed risk model
(Type II) defined in Equation (2.1), the Gerber–Shiu function ϕ∗

d when the ruin is caused by
claims satisfies the following integro-differential equation.

B1(D)B2(D)B1e(D)B2e(D)ϕ∗
d(u) =

−
(
q
2λ1
σ2

B2(D)B1e(D)B2e(D) + (1− q)
2(λ1 + λ2)

σ2
B1(D)B2(D)B2e(D)

)(
σω,1(u)− σω,2(u)

)
−
(
q
2λ1
σ2

B1(D)B1e(D)B2e(D) + (1− q)
2(λ1 + λ2)

σ2
B1(D)B2(D)B1e(D)

)
σω,2(u),

(4.20)
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with the boundary conditions

ϕ∗
d(0) = 0, (4.21)

ϕ∗′′
d (0) +

2c

σ2
ϕ∗′
d (0) = −

(
q
2λ1
σ2

+ (1− q)
2(λ1 + λ2)

σ2

)
ω1(0), (4.22)

where

σω,1(u) =

∫ u

0

ϕd(u− x)f1(x)dx+ ω1(u); σω,2(u) =

∫ u

0

ϕd(u− x)f2(x)dx+ ω2(u);

ω1(u) =

∫ ∞

u

ω(u, x− u)f1(x)dx;ω2(u) =

∫ ∞

u

ω(u, x− u)f2(x)dx.

Proof. By conditioning on the time and amount of the first claim and recalling the defi-
nition of p(u, y, x), we have

ϕ∗
d(u) = E

[
e−δW1E[w(u− Zw1, X1 − u+ Zw1)1(X1 > u− Zw1, Z̄W1 < u)|(W1, X1)]

]
+ E

[
e−δW1E[ϕd(u− Zw1 −X1)1(X1 < u− Zw1, Z̄W1 < u)|(W1, X1)]

]
= qE

[
e−δV1E[w(u− ZV 1, X1 − u+ ZV 1)1(X1 > u− ZV 1, Z̄V 1 < u)|(V1, X1)]

]
+ (1− q)E

[
e−δV2E[w(u− ZV 2, X1 − u+ ZV 2)1(X1 > u− ZV 2, Z̄V 2 < u)|(V2, X1)]

]
+ qE

[
e−δV1E[ϕd(u− ZV 1 −X1)1(X1 < u− ZV 1, Z̄V 1 < u)|(V1, X1)]

]
+ (1− q)E

[
e−δV2E[ϕd(u− ZV 2 −X1)1(X1 < u− ZV 2, Z̄V 2 < u)|(V2, X1)]

]
= qϕ1(u) + (1− q)ϕ2(u).

(4.23)

Then,by (4.3) and (4.4), we have

ϕ1(u) =

∫ u

−∞

∫ ∞

u−y

ω(u− y, x− (u− y))P(u, y, x|λ1, β1)dxdy

+

∫ u

−∞

∫ u−y

0

ϕd(u− y − x)P(u, y, x|λ1, β1)dxdy

=
λ1ξ1ξ2

(λ1 + δ + β1)(ξ1 + ξ2)

∫ u

0

(e−ξ1y − e−(ξ1+ξ2)u+ξ2y)(σω,1(u− y)− σω,2(u− y))dy

+
λ1ζ1ζ2

(λ1 + δ)(ζ1 + ζ2)

∫ u

0

(e−ζ1y − e−(ζ1+ζ2)u+ζ2y)σω,2(u− y)dy

+
λ1ξ1ξ2

(λ1 + δ + β1)(ξ1 + ξ2)

∫ 0

−∞
(eξ2y − e−(ξ1+ξ2)u+ξ2y)(σω,1(u− y)− σω,2(u− y))dy

+
λ1ζ1ζ2

(λ1 + δ)(ζ1 + ζ2)

∫ 0

−∞
(eζ2y − e−(ζ1+ζ2)u+ζ2y)σω,2(u− y)dy, (4.24)
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ϕ2(u) =

∫ u

−∞

∫ ∞

u−y

ω(u− y, x− (u− y))P(u, y, x|λ1 + λ2, β1)dxdy

+

∫ u

−∞

∫ u−y

0

ϕd(u− y − x)P(u, y, x|λ1 + λ2, β1)dxdy

=
(λ1 + λ2)ξ

′
1ξ

′
2

(λ1 + λ2 + δ + β1)(ξ
′
1 + ξ

′
2)

∫ u

0

(e−ξ
′
1y − e−(ξ

′
1+ξ

′
2)u+ξ

′
2y)(σω,1(u− y)− σω,2(u− y))dy

+
(λ1 + λ2)ζ

′
1ζ

′
2

(λ1 + λ2 + δ)(ω
′
1 + ω

′
2)

∫ u

0

(e−ζ
′
1y − e−(ζ

′
1+ζ

′
2)u+ζ

′
2y)σω,2(u− y)dy

+
(λ1 + λ2)ξ

′
1ξ

′
2

(λ1 + λ2 + δ + β1)(ξ
′
1 + ξ

′
2)

∫ 0

−∞
(eξ

′
2y − e−(ξ

′
1+ξ

′
2)u+ξ

′
2y)(σω,1(u− y)− σω,2(u− y))dy

+
(λ1 + λ2)ζ

′
1ζ

′
2

(λ1 + λ2 + δ)(ζ
′
1 + ζ

′
2)

∫ 0

−∞
(eζ

′
2y − e−(ζ

′
1+ζ

′
2)u+ζ

′
2y)σω,2(u− y)dy, (4.25)

where
ξ1 =

c
σ2 +

»
2(λ1+δ+β1)

σ2 + c2

σ4 , ξ2 = − c
σ2 +

»
2(λ1+δ+β1)

σ2 + c2

σ4 ,
ζ1 =

c
σ2 +

»
2(λ1+δ)

σ2 + c2

σ4 , ζ2 = − c
σ2 +

»
2(λ1+δ)

σ2 + c2

σ4 ,
ξ
′
1 =

c
σ2 +

»
2(λ1+λ2+δ+β1)

σ2 + c2

σ4 , ξ′
2 = − c

σ2 +
»

2(λ1+λ2+δ+β1)
σ2 + c2

σ4 ,
ζ

′
1 =

c
σ2 +

»
2(λ1+λ2+δ)

σ2 + c2

σ4 , ζ ′
2 = − c

σ2 +
»

2(λ1+λ2+δ)
σ2 + c2

σ4 ,

σω,1(u) =

∫ u

0

ϕd(u− x)f1(x)dx+ ω1(u), σω,2(u) =

∫ u

0

ϕd(u− x)f2(x)dx+ ω2(u),

ω1(u) =

∫ ∞

u

ω(u, x− u)f1(x)dx, ω2(u) =

∫ ∞

u

ω(u, x− u)f2(x)dx.

Setting s = u− y in (4.25) and (4.26), we have

ϕ1(u) =
λ1ξ1ξ2

(λ1 + δ + β1)(ξ1 + ξ2)

(∫ u

0

e−ξ1(u−s)(σω,1(s)− σω,2(s))ds+

∫ ∞

u

eξ2(u−s)(σω,1(s)− σω,2(s))ds

−
∫ ∞

0

e−ξ1u−ξ2s(σω,1(s)− σω,2(s))ds)
)

+
λ1ζ1ζ2

(λ1 + δ)(ζ1 + ζ2)

(∫ u

0

e−ζ1(u−s)σω,2(s)ds+

∫ ∞

u

eζ2(u−s)σω,2(s)ds−
∫ ∞

0

e−ζ1u−ζ2sσω,2(s)ds
)
,

(4.26)

ϕ2(u) =
(λ1 + λ2)ξ

′
1ξ

′
2

(λ1 + λ2 + δ + β1)(ξ
′
1 + ξ

′
2)

(∫ u

0

e−ξ
′
1(u−s)(σω,1(s)− σω,2(s))ds+

∫ ∞

u

eξ
′
2(u−s)(σω,1(s)− σω,2(s))ds

−
∫ ∞

0

e−ξ
′
1u−ξ

′
2s(σω,1(s)− σω,2(s))ds)

)
+

(λ1 + λ2)ζ
′
1ζ

′
2

(λ1 + λ2 + δ)(ζ
′
1 + ζ

′
2)

(∫ u

0

e−ζ
′
1(u−s)σω,2(s)ds+

∫ ∞

u

eζ
′
2(u−s)σω,2(s)ds−

∫ ∞

0

e−ζ
′
1u−ζ

′
2sσω,2(s)ds

)
,

(4.27)
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then setting u = 0 in (4.27) and (4.28), we can get ϕ1(0) = 0, ϕ2(0) = 0, it’s easy to get the
boundary condition ϕ∗

d(0) = 0.
Applying the operator B1(D)B2(D) to both sides of (4.27), and put the operator B1e(D)B2e(D)

to both sides of (4.28), we can obtain the follows

B1(D)B2(D)ϕ1(u) = −2λ1
σ2

B2(D)(σω,1(u)− σω,2(u))−
2λ1
σ2

B1(D)σω,2(u), (4.28)

B1e(D)B2e(D)ϕ2(u) = −2(λ1 + λ2)

σ2
B2e(D)(σω,1(u)−σω,2(u))−

2(λ1 + λ2)

σ2
B1e(D)σω,2(u). (4.29)

Applying the operator qB1e(D)B2e(D) to equation (4.29), and added the operator (1−q)B1(D)B2(D)
to equation (4.30) drives the equation (4.21).
Similarly as Theorem 1 we differentiate the integral equation (4.27) and (4.28) respectively and
set u = 0, the results as follows

ϕ
′

1(0) =
2λ1
σ2

∫ ∞

0

e−ξ2s(σω,1(s)− σω,2(s))ds+
2λ1
σ2

∫ ∞

0

e−ζ2sσω,2(s)ds, (4.30)

ϕ
′

2(0) =
2(λ1 + λ2)

σ2

∫ ∞

0

e−ξ
′
2s(σω,1(s)− σω,2(s))ds+

2(λ1 + λ2)

σ2

∫ ∞

0

e−ζ
′
2sσω,2(s)ds, (4.31)

ϕ
′′

1(0) = −2λ1
σ2

ζ1(0)−
4λ1c

σ4

∫ ∞

0

e−ξ2s(σω,1(s)− σω,2(s))ds−
4λ1c

σ4

∫ ∞

0

e−ζ2sσω,2(s)ds, (4.32)

ϕ
′′

2(0) = −2(λ1 + λ2)

σ2
ζ

′

1(0)−
4(λ1 + λ2)c

σ4

∫ ∞

0

e−ξ
′
2s(σω,1(s)−σω,2(s))ds−

4(λ1 + λ2)c

σ4

∫ ∞

0

e−ζ
′
2sσω,2(s)ds.

(4.33)
Finally, comparing (4.31)-(4.34) gives the boundary condition (4.23).

Theorem 4. Under the assumptions of the second-order delayed and perturbed risk model
(Type II) defined in Equation (2.1), the Gerber–Shiu function ψ∗

d when the ruin is caused by
oscillation satisfies the following integro-differential equation.

B1(D)B2(D)B1e(D)B2e(D)ψ∗
d(u) =

−
(
q
2λ1
σ2

B2(D)B1e(D)B2e(D) + (1− q)
2(λ1 + λ2)

σ2
B1(D)B2(D)B2e(D)

)(
σd,1(u)− σd,2(u)

)
−
(
q
2λ1
σ2

B1(D)B1e(D)B2e(D) + (1− q)
2(λ1 + λ2)

σ2
B1(D)B2(D)B1e(D)

)
σd,2(u),

(4.34)

with the boundary conditions

ψ∗
d(0) = 1, (4.35)
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ψ∗′′
d (0) +

2c

σ2
ψ∗′
d (0) = q

2(λ1 + δ)

σ2
+ (1− q)

2(λ1 + λ2 + δ)

σ2
, (4.36)

where

σd,1(u) =

∫ u

0

ψd(u− x)f1(x)dx,

σd,2(u) =

∫ u

0

ψd(u− x)f2(x)dx.

Proof.Let τu = inf{t ≥ 0 : Z(t) = u}, we have

E[e−δτu1(τu < W2)] = qE[e−δτuE[1(τu < V1)]|Z(t)] + (1− q)E[e−δτuE[1(τu < V2)]|Z(t)]
= qE[e−(λ1+δ)τu ] + (1− q)E[e−(λ1+λ2+δ)τu ]

= qe−ζ1u + (1− q)e−ζ
′
1u,

(4.37)

where

ζ1 =
c

σ2
+

 
2(λ1 + δ)

σ2
+
c2

σ4

ζ
′

1 =
c

σ2
+

 
2(λ1 + λ2 + δ)

σ2
+
c2

σ4
.

From Theorem 2, we have

ψ∗
d(u) = E[e−δτu1(τ < W1)] + E

[
e−δW1E[ψd(u− ZW1 −X1)1(X1 < u− Zw1, Z̄w1 < u)|(W1, X1)]

]
= q
[
e−ω1u +

∫ u

−∞

∫ u−y

0

ψd(u− y − x)P(u, y, x|λ1, β1)dxdy
]

+ (1− q)
[
e−ω

′
1u +

∫ u

−∞

∫ u−y

0

ψd(u− y − x)P(u, y, x|λ1 + λ2, β1)dxdy
]

= qψ1(u) + (1− q)ψ2(u).

(4.38)

Setting s = u− y, we can rewrite ψ1(u), ψ2(u) as follows

ψ1(u) =e
−ζ1u +

λ1ξ1ξ2
(λ1 + δ + β1)(ξ1 + ξ2)

[ ∫ ∞

u

eξ2(u−s)(σd,1(s)− σd,2(s))ds

−
∫ ∞

0

e−ξ1u−ξ2s(σd,1(s)− σd,2(s))ds)
]

+
λ1ζ1ζ2

(λ1 + δ)(ζ1 + ζ2)

[ ∫ ∞

u

eζ2(u−s)σd,2(s)ds−
∫ ∞

0

e−ζ1u−ζ2sσd,2(s)ds
]
, (4.39)
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ψ2(u) =e
−ζ

′
1u +

(λ1 + λ2)ξ
′
1ξ

′
2

(λ1 + λ2 + δ + β1)(ξ
′
1 + ξ

′
2)

[ ∫ ∞

u

eξ
′
2(u−s)(σd,1(s)− σd,2(s))ds

−
∫ ∞

0

e−ξ
′
1u−ξ

′
2s(σd,1(s)− σd,2(s))ds)

]
+

(λ1 + λ2)ζ
′
1ζ

′
2

(λ1 + λ2 + δ)(ζ
′
1 + ζ

′
2)

[ ∫ ∞

u

eζ
′
2(u−s)σd,2(s)ds−

∫ ∞

0

e−ζ
′
1u−ζ

′
2sσd,2(s)ds

]
, (4.40)

where

σd,1(u) =

∫ u

0

ψd(u− x)f1(x)dx;

σd,2(u) =

∫ u

0

ψd(u− x)f2(x)dx.

As in the proof of Theorem 3, the results (4.35)-(4.37) could be certificated.

5 Concluding remarks
In this paper, we show how to calculate the ruin probabilities with Gerber-Shiu func-

tion in a class of delayed and perturbed risk model (Type I and Type II). We derive the
integro-differential equations of the Gerber-Shiu function when ruin is caused by claims and by
oscillations in Type I and Type II respectively. It’s worth pointing out that, if during the time
between the last claim before time 0 and the first claim after time 0 is exponentially, the distri-
bution at time 0 has the same exponential density, regardless of when the last claim before time
0 occurred, as follows from the memoryless property of the exponential distribution. Which is
very useful in our disscussion. On the central problem of risk in the insurance industry, esti-
mating the probability of ruin,can effectively avoid huge losses of many insurance companies.
The proof of Theorem 1-4 are basically from [14] and [15], which play of importance role in
our paper. In the course of discussing the case of the roots of the Lundberg-type equation , we
mainly use the Rouche’s theorem, which can be seen it’s specific operation principle in detail
in [12].
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