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Abstract

This paper considers an extension to the classical compound Poisson risk model for which an
Erlang(2) process is utillized to the dependence structure between the claim sizes and interclaim
times. In this framework, we derive the Lundberg generalised equation and the number of its
roots, and the Laplace Transform(LT) of the expected discounted penalty function. We also show
that the Gerber—Shiu function satisfies a defective renewal equation. Some explicit expressions
are given to measure the impact of Erlang(2) dependence structure in the risk model on the ruin

probability.
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1 Introduction

In the actuarial literature, many authors focus their research intertsts to two well-known risk
models, namely the classial compound Poisson risk model and the risk model based on the renewal
or the Sparre Andersen risk model. Ruin probabilities and many other ruin measures such as the
marginal and the joint(defective or not) distributions of the time to ruin, the deficit at ruin and
the surplus prior to ruin have been extensively studied(see Dickson and Hipp(1998)m, Rolski et
al.(1999)[2] and references therein). A unified approach to study these ruin measures with the
discounted penalty function for the classical risk model has be introduced in the Gerber and
Shiu(1998)"”
and Hu(2021)

Note that, for these two risk models, it is explicitly assumed that the interarrival times between
two successive claims and the claim amounts are independent. This assumption is appropriate
in certain practical circumstances and has the advantage of simplifying the models. However, this
assumptions is inappropriate in the real world. For example, in modeling natural earthquake events,

. Ruin problems in the generalized Erlang(n) risk model has been studied by Guan
[4]




more considerable damages are expected with a longer period between claims. M. Boudreault et
al.(2006)[0] studied the dependence structure among the interclaim time and the subsequent size.

Stathis et al.(2012)[6] considered an extension to the renewal process by introducing a dependence
structure between the claim sizes and interclaim times through a Farlie-Gumbel-Morgenstern copula.
[7 [8

We can also see that in the H. Cossette et al(2008) ', Woo and Liu (2018) " studied a discrete-time

risk model with Coxian interclaim times and time-dependent claims. Zhang and Liu(2020)[g] fouced
themselves on a discrete-time risk model with a mathematically tractable dependence structure.

Since then, several renewal risk models with different interclaim times have been studied by
many authors. The Erlang distribution is one of the most commonly used distributions in risk
and queueing theroy. See the paper writing by Dickson and Hipp(1998,2001)[11 [10]7 Cheng and
Tang(2003)[11]7 Gerber and Shiu(2005)[12], Guan and Hu(2021)[13]

In this paper, we consider that the interclaim times are distributed according to an Erlang(2)
and a dependence structure between the claim amount and the interclaim time.

The paper is organsized as follows. In Section 2, we briefly introduce the risk model and the
dependence structure of the proposed model. We analyse the generalised Lundberg equation and
its roots in Section 3. The Laplace transform (LT) of the Gerber-Shiu expected discount penalty
function is given in Section 4. In Section 5, the defective renewal function is given. Finally, explicit
expressions and numerical examples are given in Section 6.

2 The risk model and the dependence structure

In this section, we consider the surplus process {U(t),t > 0} defined by U(t) = u + ct — S(t),
where u = U(0) > 0 is the initial surplus and c is the premium rate which is assumed to be a
positive constant. S(t),¢ > 0 is the total claim amount process defined by S(t) = Zﬁ\f:(p X; and
ZZ = 0 if b < a. The claim number process {N(t),t > 0} is a renewal process defined by a
sequence of independent and identically distributed(i.i.d.) interclaim times {W;}{2;. We consider
that the random variable(r.v.) W has an Erlang(2) distribution with probability density function
(with expectation 2/, 8 > 0 is a constant) given by

fw(t) = B%te™ "t > 0. (1)

The individual claim amount X;,j € N1 are assumed to be a sequence of strictly positive random
variable with cumulative distribution function(c.d.f.) Fx(z) = 1 — Fx(x) and Laplace Transform
fx. We assume that the claim amount and the interclaim time r.v’s Xy and Wy is a dependence
structure. We define the density of X;|W} as a mixture of two arbitrary density function f; and
f2 (with respective means pq and p2), i.e.

Fxpw, @) = e M i)+ (1= e ) fa(e), 2>0,k=1,2,..., (2)

where A is a positive constant.

We let 7 = infi>o{t,U; < 0} be the time of ruin with 7 = oo if Uy > 0(i.e. ruin does not
occur). The deficit at ruin is denoted by |U;| and the surplus just prior to ruin is U,—. To ensure
that ruin does not almost surely occur, the premium rate c is such that

E[CWj—Xj]>0,j:1,2,... (3)

providing a positive safety loading.
The Gerber-Shiu discounted penalty function ms(u) is defined as

ms(u) = Ele " w(Us_, |Ur)1r<o0|Uo = 1], (4)

where § > 0,w : RT x R™ — R™ is the penalty function. Especially, a special case of the Gerber-
Shiu discounted penalty function is when w(z,y) = 1, for all z,y > 0. Then ms(u) becomes the



Laplace Transform(LT) of the time of ruin, denoted by m-(u). If 6 = 0 the ms(u) becomes the ruin
probability ¥(u) = E[l;<co|U(0) = u].

3 Lundberg’s generalised equation

In this section, we need to derive the Lundberg generalised equation and the number of its
roots, then we can evaluate the ruin quantities and find the defective renewal equation for the
Gerber-Shiu function ms(u).

To obtain the equation, we consider the discrete-time process embedded in the continuous-time
surplus process {U(t);t > 0} to be the surplus immediately after the kth claim, where Uy = u, i.e.

k
Ug=u+> (Wi-X,), k=1.2,...,

i=1

The process {e~° L WitsUk  k=0,1,2,...} for s > 0 is a martingale if and only if

E[eféwes(cwfx)] _ E[e(csfé)West] _ 1’ (5)

which is called the Lundberg generalised equation. Given in Equation (1) and (2), the left-hand
side of Equation (5) can be written as

Ele=®W "W =] = / h / Tt f () (e fa () + (1 — e fol)) e~ T dadt
0 0

1

_ n2¢ 1 27
*ﬂ fl(s)((5+)\—|—ﬁ—05)2+5 fz(s)(§+6—05)2
1

RSl rw v

Then, Equation (5) reduces to

B2 (72 = 9)2a(s) + (32 — ) fa(s) — (522 — 9)* fa(s)
2 (ZE2EE  )2(2EE _ g2

—1. (7)

We use Rouché’s theorem to show the numbers of roots of the generalized Lundberg equation in
the following proposition.

PROPOSITION 1. For § > 0, Lundberg’s generalised equation in (7) has exactly 4 roots, say
p1(6)7 02(5), pg((S), p4((5), with Re(pl(é)) >0,i=1,2,3,4

Proof. To prove the result, we apply Rouche’s theorem on the closed contour C, containing the
imaginary axis running from -ir to ir and a semicircle with radius r running clockwise from ir to -ir.
Also let » — oo and denote by C the limiting contour.

The generalised Lundberg Equation (7) can be written as

B2+ B8 —cs)’ fils) + B2 f2() (6 + A+ B —¢cs)” — (6 + B — cs)”]

=+ A+ B—cs)?(0+B—cs). (8)
(1) For Re(s) > 0, we have |6 + 8 —cs| = 00, |0+ A+ 3 —cs| — 0o as r — oo, and thus
ﬂ2 . 1 1 22
‘(5+A+5—cs)2fl(s)+ {(6+ﬁ—cs)2 - (5+)\+B—cs)2} 1)
; 8° ; B B
< |f1(3)|‘m + 1 f2(s)] G+ f—cs)? + G+ At B —cs)? =0




on C. For » — oo, and hence it holds that

B2 s 1 1

Gt O Gy (6+/\+ch3)2] B f2(s)

<1 9)

on C.

(2) For Re(s) = 0, that is, for s on the imaginary axis, similar to Cossette et al.(2008)[8], we let

7 5 52

A(8) = I )  G1rtB—co)
then we derive
. .2 (20 + 28 — 2cs) A + N°
s = B T p—cs2 G+ A+ B —ca)

< 52)\‘ (26 + 28+ X)? + (2cs)? ’
- (6+B)2(6+ B+ N)2(26 + 28 + \)
2 (26 + 28 4+ N)? s
SﬂA‘(6+,6)2<6+5+A)2(25+25+A>‘*‘dé(())'
and
B P 1 1 -
Grri e O [Gra—ar ~ wearaar SR
2 ~ ~ ~
- m,\fwfl(s)Jrﬁ(S)da(S)
o —
T+ AN+ B —cs)? g
< ((3—1—f\37+ﬂ)2 +|CZ§(0)| (10)
It holds 625(0) > 0 for § > 0, then Equation (10) becomes
B 2 1 1 -
’mfl(S) " 6+B—cs)> (B+r+B— cs)Q} B fa(s)
2 ~
< ((5_~_f7+5)2 + |ds(0)] < 1

Above all, we proved that
1828+ 8= cs)fis) + B Fals) [(6+ A+ B = c5)” = (0 + B — ¢s)]|
< ‘(6—1—)\—1—6— cs)2(6+ B —05)2’

in two case.

By using Rouche’s theorem, the Equation(8) has the same number of roots as the equation
(6 + X+ B8 —cs)*(0 4 B —cs)*> = 0 inside C. Then we deduce that Equation (7) has exactly 4 roots,
say p1(9),...,pa(0) with positive real parts.

In the following, for simiplicity we write p; for p;(d),7 = 1,2,3,4. when § > 0.



REMARK. For ¢ = 0, the conditions to Rouche "’s theorem are not satisfied, since
B2 5 { 1 1 } 2z
‘(5+>\+ﬁ_cs)2f1(5)+ (6+B—CS)2 (5+)\+ﬂ—cs)2 ,BfQ(S)
2 2
' N PR
(A+8)? (A+8)?
for s = 0. The case of § = 0 is important to evaluate several ruin related quantities, such as the
ruin probablity, being special cases of the Gerber-Shiu penalty function at 6 = 0. We apply the
Klimenok(2001)""

! to derive the number of roots to the generalized Lundberg’s equation with § = 0.

PROPOSITION 2. For § = 0, Lundberg’s generalised Equation(7) has exaclty 3 roots, say
p1(0), p2(0), p3(0), with positive real parts and one root equals zero.

Proof. Define the contour Dy = s:|z| =1 and let z =1 — 7. In terms of s, the contour Dy, is
a circle with origin at k and radius k. Similarly as in Proposition 1, we let k¥ — oo and denote by D
the limiting contour.Using the same arguments as in the proof of Proposition 1, one can show that
Equation(8) also holds on D (excluding s=0 or equivalently z=1) for § = 0. Besides, the functions
B2 6+ B —cs)’fi(s) + B f2(s)[(6+ A+ B—cs)” — (5+ B —cs)*] and (5 + A+ B — ¢s)* (5 + B — cs)°
are continuous on D. As Theorem 1 of Klimenok(2001), we need prove that

d B’ ; B
E{l B e g s PRA G {(5 — k(1 — 2))2

- (/\+5—§Z(1—z))2}f2(’f—k2)} > 0.

The left-hand side of this relation is equal to

d% {1 B [e(kszxcwfx)}}

z=1

= kE[cW — X] >0,

z=1
where E [cW — X| > 0 given the solvability condition in Equation (3).

Based on Klimenok(2001), we conclude that inside D, the number of roots of Equation (8) is
equal to 3, that is, the number of roots of (§ + A+ 3 —cs)?(6 + B3 — ¢s)? inside D minus 1. Moreover,
a trival root to Lundberg’s generalised equation (7) equals zero.

4 Laplace Transform of ms(u)
In this section, we want to derive the Laplace Transform(LT) 75 (s) = [~ e™**ms(u)du of the

Gerber-Shiu expected discount penalty function ms(u) defined by Equation (4). For u > 0, we
define the following functions

o15(u) = / C s (u— 1) fi(2)dz (), () = / ~ hi(@)da
02,5 (u) = / " s (u — 2) fal@)de + (), a(u) = / " folw)de (11)

By conditioning on the time and the amount of the first claim, we have
oo u+ct
ms(u) = / e_étfw(t)/ (ms(u+ ct — x)) (e_)‘tfl(az) + (1 - e_’\t) fz(:v)) dzdt
0 0

+ /OOO e fw (t) /:t {e_”fl(x) +(1-e) fg(x)}dxdt (12)



=6’ (y;u) 676(%)7 then Equation

Setting y = u + ct, and using Equation (11) and fw (y;“)
(12) yields

*ms(u) = B2 /°° e UMDy w)(01,5(y) — 025(y))dy+

62/ eI (4 — w)oa s (y)dy

Taking LTs gives

o y v (s_ A8
Piing(s) = B2 / DL (1 (1) — 325(y)) / (y — wpe= =D gy gy
(0] 0

< y v (s 3EBy,
+ 52 / e %00 5(y) / (y —w)e” "< " dudy
0 0

(14)
It can be easily proved that for ¢ > 0

y —ay
—au y 1 e
/O (y —u)e ““du= s + o) (15)

Therefore, using Equation (15), Equation (14) can be written in the form

2
*ins(s) = (S*ET’B)Q(&M(S) —62,5(5))
+52/0 e OO (015(y) — 02.5(y)) (S - 6y+i+ﬁ - oo 5+’Z+ﬁ)2) dy
g . © _(5+8)y y 1
+W02,6(3)+ﬂ2/0 e c 02,5(7;) (S 51_[3 (S(HCB)Q)dy
B R R g X
=y ) (61,6(s) — 62,6(s)) + Gty #)202,5(3) + Bs(s) (16)
where -
Gi,5(s) = / e ois(u)du i=1,2. (17)
0
and
Bs(s) = /32/0 e~ (FHA+A) 2 (o1(y) — o2(y)) (S - 5+);+5 — o ‘H'E‘Lﬁ)?) dy
0 (6B y 1
+ﬂ2/0 e c ag(y)(sétﬁ (S(s_'_cﬂ)Q)dy. (18)

Let 4i(s) = [y e *“vi(u)du, i = 1,2. Since from Equation (11) it holds 6;s(s) = s (s)fi(s) +
4i(s) ¢ =1,2. The above Equation (16) reduces to

(-2
B B N

W(%(S) —%2(s)) + m%(S) + Bs(s)

s (s) { - (S_fmws) — fals)) - ﬂ)ﬁ(s)}

(19)

Now using Equation (19), we give the following theorem about the expression for 7hs(s).



THEOREM 1. In the Erlang(2) risk process with a dependence structure, the Laplace Transform(LT)

mes(s) of the ms(u) is given by

where

pute = LR, @
hos() = % (5= ZE2) (i) — Bolopy + &5 (5= T2AEEY g 22)
hro) = % (- 28 o + 2 (s= 2240 s )

and 32’5(3) is a polynomial in s of degree 3 or less, given by

4

Ba,s( Z H ﬂ (24)

k=1 ke Pj — Pk

Proof. Multiplying both sides of Equation (19) by (s — wy (s — %)2 /c? and then

solving the resulting equation for s (s) we get immediately the equation (20), with

Ba.s(s) = 5 has(s) Bals)
2 2 2 oS}
. (s - M) (s B ﬂ) L = §+A+B /0 e CEAENI gy 5(y) — 02.6(y))ydy

c? c c

62 - —(6+x+8)y/c ]
( 5+>\+5> / € (01,5(y) — 02,5(y))dy
1 S+A+p §+B\ [ B ® _ 54B)/e
R
2
_57/ 7(5+5)y/602yé(y)dy}

(s — *27)>2
5+B) (3_5+’\+5)jﬂj(5+’\+ﬁ)

c

/82
:?2(8 c c
gty ey )

which is a polynomial in s of degree 3 or less, where

N ES o . .
fij (76> =/ e OOV (01 5(y) — 2,5(y))y dy
0

C

N ) oo 3 . . .
(5j( +/B) :/0 o~ (5+B)y/ 02,5(y)yjdy (j=0,1). (26)

C

It is easy to see that the Lundberg’s generalised equation (5) can be written as h1 5(s) — ha s(s) = 0,
which means that p;s,i = 1,...,4 are roots of the denominator in Equation (20). Since 7hs(s) is
analytic for Re(s) > 0, this implies that p;s,i = 1,...,4 are also roots of the numerator in Equation
(20), and thus Bas(pi) = —B1.5(pi),i = 1,...,4. Since Ba,5(s) is a polynomial in s of degree 3, by
the Lagrange interpolation formula at the 4 points p1, p2, p3, p4, we have

4 4

Bas(s Zﬂzap] I1 = Zﬁlm 1 ==, (27)

kl,k;ﬁ]p_pk ket ks P3 — Pk



and then the proof is completed.

5 Defection renewal function

PROPOSITION 3. The Laplace Transform(LT) of ms(u) is given by

. TT, ... T, prs(0)
s (s) = 17— ToTp, - .- Tpyh2,s(0)

(28)

Proof. By the Lagrange interpolating formula and using the Property of the Dickson-Hipp
operator of Li and Garrido(2004)[la], we have

4 A
&d@+&d@ZM({m5 =27 ?57@)}=m@ﬂnyunmmwx (29)
J:1 7
where 74(s) = [[/_, (s — p;), and
L s— P - fz = s—p
h s(s) = h 50 k 2Pk 30
Similar arguments as the Cossette et al. (2010) , the aforementioned relation implies that
~ 4 ]/:L p
a,s(5) — has(s) = ma(s { _haolps)
; —pi)ma(p;s)
4 .
+5° haslps) h“(s)}, (31)
j=1 (S - p])ﬂ-él(pJ) 7T4(S)

Since ha,s(pj) = h1,5(p;), 7=1,...,4, for s=0, we obtain

hia(0) < ol (P2)T(80)" (PR )" (P )’
7(0) * Z pim' (p;) T (—p2) * ]; i Tle s (05 — P1)

_ A0+ 8) +§:(6+A+6—cpj)2(5+ﬂ—cpj)2

ct H?ﬂ(_ﬂj) =1 ctp; Hi:l,k;ﬁj (pj — pr)
_ @A+ +8) {1_ (5+A+5>2<6+5)2]
AT (=) A Ty (o))
=1. (32)
Then Equation (31) becomes
his(s) = has(s) = wa(s) [1 = TuTp, ... Tpyha,s(0)] . (33)

Finally, replacing Equation (29) and (33), we obtain Equation (28).
PROPOSITION 4. The Gerber-Shiu discounted penalty function ms(u) admits a defective
renewal equation

nmm:AVMWww@@+@wLuzu (34
where

Cs(y) =Tp, - ~Tp4h2,5(y)7



Gs(u) =Tp, .. TpyP2.6(u).

Furthermore, Equation (34) admits the following alternative representation

= — )0 d A >
ma(u) = 1 [ ms(u— sy + o Aafw), w0 (3)
where ks is defined as )

5 =ToT),, .. .Tp4h2,5(0) = mg(O).

Besides, we have

As(u) = (1 + K5)Gs(u),
and

Os(y) = (1 + ks)Cs(y),

which is a proper density function. From this Proposition, we can get that the LT of the time to
ruin m.(u) is the tail of a compound geometric distribution.
PROPOSITION 5. The LT of the time to ruin m,(u) satisfies the defective renewal equation

u) = / " (- )G () dy + / Gy

/m5 u—1y)0s(y)dy

y)d > 0.
1+:"€5 )dy, u>0 (36)

6 Numberical illustration and impact of the dependence structure

In this section, we start with some example. We assume that the r.v. X representing the
individual claim amount follows a mixed exponential distribution with parameter A1, A2, that
is, fx(t) = 67”]”1( ) + (1 — ) fa(2) x>0, with fi(z) = Me M7, fo(w) = oe 2%, fi(s) =
ﬁ, fQ(S) =5 2. At first, We find an explicit expression for Taking LTs in both sides of the first
equation in Proposmon 5, we obtain that

g () = () _ 1= as) = [1 = me(0)] -

m-(s) = _ =

s [1 — C(g(s)] s [1 — @;(s)]

From Equation (33) we get
R R 4
his(s) = has(s) = [1=Gs(9)] ] (o

=1

(38)

and then Equation (37) becomes

(o) = s() = Pas(s) = (1= me (O TTLy (=), )

s {hm(s) — ﬁ2,5(8)]

By the Equation (21),(22) we can get that

where
Qas(s) =M1 +5) a4+ 80+ 8—cs)’(6+ A+ 8 —cs)?
— B2 M (A2 +8) (64 B —cs)® = BZha( A1 + 5)(—2esh + A° + 20\ + B)).



Since Qu,5(s) is a polynomial of degree 4, that is Qu,5(s) = 0 has 4 roots in the complex plane.
From Proposition 1 and Equation (40), Q4,5(s) = 0 has 4 roots p1, p2, p3, pa with positive real part
and two roots say —R; = —R;(0), where Re(R;) > 0,7 = 1,2. Thus, we can rewrite Q4,5(s) as

Qas(s) = 04(5+Rl)(S+Rz)H(Pi —5). (41)

From Equation (40) and (41), Equation (39) yields

[ (s+Ry) = [1 = m-(0)] (A1 + 5) (A2 + 5) '

mo(s) = (42)
s HJQ‘:1 (s + R;)
When m,(s) < oo for s > 0, the numerator in Equation (42) is zero for s = 0, that is
R1R>
1—m,(0) = ,
m-(0) S
and then Equation (42) yields
R R RiRo(A1+A2)
(s) (1-202) s+ Ry + Ry — f20uto) . ()
" (s+ R1)(s + R2)
We assume that R;, R2 are distinct and we can get that
S
. 1,8
(s) = L 44
e =30 (14)
where
€1s= Ry ( B Ri(A1 4+ X2) R} )
YT R - Ry A Ao YA
€25 = Ry ( B Rao(A1 + A2) R} )
20" Ry — Ry A1 A2 At/
Inverting m-(s) is
me(u) = &rse” T+ Ease” 2w > 0, (45)

and by letting § — 0, the ruin probability ¥(u) can be obtained.

6.1 Numberical examples of two compared models

In this subsection, we start with a numberical example. We indicate the impact of the
dependence parameter A on the ruin probability and the LT of the ruin time, where § = 0.

Here we compare the ruin probabilities calculated in an Erlang(2) risk model with those
calculated by the exponential risk. Other settings for the two compared models are identical. We
assume the claim amount r.v. is fx;w = e M fi(z)+(1 — e ™) fa(w), where fi(z) = Ae™ ™%, fo(z) =
Ao 2 (the expectation is pu1 and p2) for both risk model, and also assume the interclaim r.v. is
fuw(t) = Bte™P* for Erlang(2) model and f,,(t) = Be~?* for exponential model.

The ruin probability ¥, (u) for the Exponential Poisson risk model are taken from Cossette et
al.(2010)[17]‘ The ruin probability ¥ (u) for the Erlang(2) risk model is from Equation (45) using
6 = 0. For u > 0 and for different values of the dependence parameter A\, both can be seen in Figure
1.

Let A1 =3, A2 =1, ¢c= 1.5, 8 = 2, then we have
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Figure 1: Ruin Probabilities in corresponding risk models



with A = 0.5

(u) = —0.0711385440307139¢ 2 72611056853693u | () 1583037580081028¢ ~*-B478757687088427u
p(u) = —0.15951259519348063¢ 1231 774360594839u ) 4366144680653996¢ ~0-6272051410032555u

with A = 0.75

¥(u) = —0.059056035582145394¢ 2 749180481989TIu 4 91693621102415286¢ 0 7908259477411941u
Pp(u) = —0.1128431290755753¢ > 010100953208820u 1 () 5464087972543871 ¢ 0-00841 7832868677 Tu

with A =1

P(u) = —0.0499755210860354¢ > 7090937T0T0163Tu 1 () 96370296752529546¢ 0 7134542500799464u
p(u) = —0.08233338133410702¢  >0733044134625125u 4 () 6393931557343817¢ 0 41244806273596246u

with A =2

¥(u) = —0.029493060910398744¢  2-827448T29560705u 4 () 3865120955900488¢ ~-6195283091024653u
Vp(u) = —0.024656369294917924 ¢~ >246964395688926Tu | () 9594591929729482¢ ~0-16407661550122832u

Table 1 is the numerical values of these ruin probabilities in corresponding risk models.

Table 1: Ruin probabilities in corresponding risk models.

A=0.5 A=0.75 A=1 A=

yYlu) (‘,,(u_] U(u) L‘;,l'u) v(u) L'r,[lr] Ylu) {‘j,{ u)

0 8.7255e-02 2.7710e-01 1.5718e-01 4.3366e-01 2.1382e-01 5.5029e-01 3.5712e-01 B.2780e-01
5 2.2834e-03  1.8963e-02  4.1463e-03  4.3006e-02 6.4102e-03 8.0447e-02 1.7458e-02  3.7530e-01
10 3.2920e-05 8.2448e-04 7.9509e-05 3.3850e-03 1.5577e-04 1.0231e-02 7.8831e-04 1.6523e-01
15 4.7459e-07  3.5828e-05 1.5246e-06 2.6641e-04 3.7852e-06 1.3010e-03  3.5597e-05 T7.2746e-02
20 6.8420e-09 1.5569e-06  2.9235e-08 2.096Te-05 9.1982e-08 1.6545e-04  1.6074e-06  3.2027e-02
25 9.8638e-11 6.7656e-08 5.6059e-10 1.6501e-06 2.2352e-09 2.1040e-05 7.2583e-08 1.4100e-02

30 1.4220e-12  2.9400e-09 1.0749e-11  1.2987e-07 5.4315e-11  2.6756e-06 3.2775e-09  6.2079e-03

Figure 1 and Table 1 both show that the ruin probabilities ¢(u) for the Erlang(2) risk model
are much smaller than the exponential risk model for different initial surplus u and for all A > 0,
so we see that it is worthwhile to consider Erlang(2) risk models.

6.2 Impact of the dependence parameter A

We plot the values ¥ (u) calculated in Figure 2, and we easily get that the dependence parameter
A has an impact on the ruin probabilities. It is clear that the lower the dependence parameter the
lower the ruin probability is.



I
IS

—*—\=0.75

o

w

a
T
I

A=1

o
w
T
>
il
N
I

o

)

o
T
I

&

Ruin Probabilities
o
i_‘ o
(6] N

o
[

0.05

0 5 10 15
Initial Surplus

Figure 2: Ruin probabilities

We may interpret the impact of the dependence relation A as follows. When the dependence
relation A is low, the probability of having an important claim increases as the time elapsed since
the last claim increases. Thus the ruin probability will be lower since the probability that the
insurance company will have enough premium income to pay the claim will be higher.

Furthermore using § = 0.05 and for different values of the dependence parameter A\, we arrive
the analytic expressions for the LT of the time of ruin ms(u) as function of the initial surplus u,
(w>0), where A1 =3, Ao =1, c= 1.5, 8 =2,

with A = 0.5

ma(u) = —0.07128752934999309¢ 2 7307092800651613u 1 (3 14600015980947344¢ ~0-8589112541726275u

with A = 0.75
(1) = —0.05977255444977979¢ ™ > TO31ZTR0IIIU (. 90007700234772152¢ 500519673653
with A =1
m.-(u) = —0.05105583625093204¢ > 7725204282005805¢ 1 9, 94356338303999145¢ 7092008 4985w
with A =2

m (u) = —0.031068233976860926¢ > 829560189332212u | () 3547980400374833¢0-071126273816391u
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Figure 3: Laplace transform of time to ruin

From Figure 3, we can see that the lower the dependence parameter A, the lower the value of
the LT of time to ruin is.

7 Conclusion

In this paper, we considered a dependence structure between the claim sizes and interclaim
times, which the claim inter-arrival distribution is Erlang(2). We derived the roots of the generalised
Lundberg equation and the Laplace transform(LT) of the expected discounted penalty function. In
particular, some explicit expressions are obtained to show that as the dependence parameter A is
lower, the ruin probability and the value of the LT of time to ruin are both lower.
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