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Abstract 

In this article, we present an A- stable block integrator scheme for the solution of first 

order system of IVP of ordinary differential equations. The block scheme at a single integration 

step produces four approximate solution values of yn+1, yn+2, yn+3 and yn+4 at point xn+1, xn+2, xn+3 

and xn+4 respectively. The order and stability property of the scheme are checked, the method is 

zero stable, A–stable and of order 6. Some test problems are solved with the proposed scheme 

and the result are compared with some existing method. The proposed method found to have 

advantages in terms of accuracy, minimum errors and less computational time. Hence, the 

method is recommended for solving first order system of IVP of ordinary differential equations. 
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1. Introduction 

A number of real life issues that we encounter, especially in the field of engineering, sciences 

both physical, social and life sciences can be modeled in Mathematics as differential equations. 

Considering the vast application of differential equations, analytical and numerical methods are 

being developed to find solutions. 

This study consider a method for solving system of first order initial value problem of 

ordinary differential equation of the form 

                      ,                                   (1) 

                   ,                          
    

 Ordinary differential equations can be solved by analytical and numerical methods. The 

solutions generated by the analytical method are generally exact values, whereas with the 

numerical method an approximation is given as a solution approaching the real value (Fatokun et 

al 2005). Implicit numerical schemes proved to be more efficient in solving problems than 

explicit ones.  Most common implicit algorithms are based on Backward Differentiation Formula 

(BDF).  The BDF first appeared in the work of (Curtiss and Hirschfelder 1952).  Researchers 

continued to improve on the BDF methods.  Such improvements include the Extended Backward 

Differential Formula by (Cash, 1980), modified extended backward differential formula by 

(Cash, 2000), 2 point diagonally implicit super class of backward differentiation formula (Musa 

et al., 2016), an order five implicit 3-step block method for solving ordinary differential equation 

(Yahaya and Sagir, 2013), Implicit r-point block backward differentiation formula for solving 

first- order stiff ODEs (Ibrahim et al., 2007), a new variable step size block backward 

differentiation formula for solving stiff initial value problems (Suleiman et al., 2013), a new fifth 



 

 

order implicit block method for solving first order stiff ordinary differential equations by (Musa 

et al 2014), an accurate computation of block hybrid method for solving stiff ODEs (Sagir, 

2012), One-leg Multistep Method for first Order Differential Equations (Fatunla, 1984), Sagir 

(2014), Numerical Treatment of Block Method for the Solution of Ordinary Differential 

equations, Order and Convergence of Enhanced 3 point fully implicit super class of block 

backward differentiation formula for solving first order stiff initial value problems (Abdullahi & 

Musa, 2021). All the schemes mentioned above developed by different scholars possesses 

various sort of accuracy, minimum error and less computation time at one step or the other. 

However, there is need of developing a numerical algorithm that will solve system of ODEs with 

minimal computational time and converge faster, hence the motivation for this research.  

 

2. Preliminaries 

The following are definition of the basic terms used in this research. 

Definition 1 (Ordinary Differential Equation) 

A differential equation involving derivatives with respect to a single independent variable 

is called an ordinary differential equation. 

Definition 2 (Order of the Differential Equation) 

The order of a differential equation is the order of the highest differential coefficient 

present in the equation. A differential equation that has the second derivatives as the 

highest derivatives is said to be of second order. 

Definition 3 (Solution of ODEs) 

An equation containing dependent variable y and independent variable x and free from the 

derivative, which satisfies the differential equation is called the solution (primitive) of the 

differential equation. 

Definition 4 (Initial Value problems) 

A differential equation along with initial conditions on the unknown function and its 

derivatives, all given at the same value\ of the independent variable, constitutes an initial- 

value problem.  

Definition 5 (Linear multi-step method) 

A general linear multi-step method (LMM) has the following form: 

         
 
            

 
                       

  Where         are constants and     .          Cannot both be zero at the same time, for 

any linear k-step method,     is normalized to 1. 



 

 

Definition 6 (Explicit and Implicit method) 

The general linear multi-step method is said to be Explicit if      , otherwise it is 

Implicit           . 

Definition 7 (Linear Difference Operator L) 

The linear difference operator L associated with the linear multi-step method  is defined by 

                          
          

                                                                    

Where      is an arbitrary test function and it is continuously differential on [a, b].Expanding 

        and          as a Taylor’s series about , and expanding the common the terms 

yields: 

                               
              

                                 

Where    are common constants given by 

                  

                                   

. 

. 

. 

   
 

  
                 

 

      
                                                   

                                                                                                  

Definition 8 (Zero stability) 

 A linear multi-step method (2) is said to be zero stable if all the roots of first 

characteristics polynomial have modulus less than or equal to unity and those roots with 

modulus unity are simple.   

Definition 9 (A- stability) 

A linear multi-step method (2) is said to be A-stable if the stability region covers the entire 

negative half plane 

 



 

 

 

Definition 10 (Block method) 

A method is called Block if it computes more than one solution values at different points per step 

concurrently. 

Let           be vectors defined by  

                          
    

                          
     

Then a general k-block, r-point method is a matrix of finite difference equation of the form 

          
 
           

 
                                                                                         

         are      coefficient matrices.                                                                     

 

            

3. Analysis of the proposed Method 

3.1  Formulation of the Method 

Consider the general k-step linear multistep method in definition (5) 

   
 
                           (2) 

This study consider adding a future point in (2), with three step backward, to came-up with the 

formula of the form 

   
 
                                                               (3)  

The implicit four point method (3) is constructed using a linear operator  .  To derive the four 

point, define the linear operator     associated with (3) as 

                                                                    
                                            (4) 

To derive the first, second, third, and fourth points as                            respectively 

Using Taylor series expansion in (4) and normalizing                             as 

coefficient’s of the four points,     ,    ,     and     respectively.  To obtain 
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of the Method  Order 3.2 

 In this section, we derive the order of the methods (5). It can be transform to a general matrix 

form as follows 

   
            

        
 
   

 
                                                      

Let    
    

    
  and   

  be block matrices defined by 

  
                  

                     
                  

                 

Where     
     

     
  and   

  are square matrices                           are column vectors 

defined by 

    

 
 
 
 
    
    
    
     

 
 
 

  

     
     

     

     

        

 
 
 
 
    
    
    
   

 
 
 

  

         

         

         

         

         

 
 
 
 
 
    
    
    
   

 
 
 
 

 

 
 
 
 
 
         

         

         

          
 
 
 
 

 

   

 
 
 
 
 
    
    
    
     

 
 
 
 

  

     

     

     

     

             

Thus, equations (5) can be rewritten as 
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
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






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115614684
49388481
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2326014617
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353855969

348237
338687
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599131
5593225

1198262
1295843
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426060731
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From the (6) we have 
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From definatio()the order of the block method (5) and its associated linear operator are given by 

                        
         

         
                                                 

Where p is unique integer such that  
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Therefore, the method is of order 6, with error constant as:   
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
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5947583
563

6926402
981

3184255
324

8293585
210

 (7)  

 

 



 

 

3.3 Zero Stability of the Method. 

The method (5) is converted into matrix form as: 
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495749336
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1117145237

599131
426901

1198262
6496015
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1972285
14016

59168550
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The equation above can be written in matrix form as:  

    =                                                                                                        (9) 
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                        and      are column vectors defined by  

 

    

 
 
 
 
    
    
    
     

 
 
 

  

     
     

     

     

        

 
 
 
 
    
    
    
   

 
 
 

  

         

         

         

         

         

 
 
 
 
 
    
    
    
   

 
 
 
 

 

 
 
 
 
 
         

         

         

          
 
 
 
 

 

                       

 
 
 
 
 
    
    
    
     

 
 
 
 

  

     

     

     

     

           

 

Substituting scalar test equation    λy (λ < 0, λ complex) into (9) and using λh =    gives 

    =                                                                                                         (10) 

The stability polynomial of (5) is obtained by evaluating 
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By putting     = 0 in (11), we obtain the first characteristic polynomial as 
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Since, the roots of (12) are                                                                                  

Therefore, the method (5) is zero Stable by definition (8). 

 
 

 

Figure1. The A-stability region of the proposed scheme ABISBDF. 

 The new method is A-stable by definition (9)   

 

4 Implementation of the Method 

4.1 Test Problems 

To validate the method developed, the following stiff IVPs are solved.   

               
            

   
               0 ≤ x ≤ 100 

Exact Solution 

         



 

 

         
Source: (Bronson, 1973) 

 

              
   198   + 199          

       0 ≤ x ≤ 10 

   
                            
Exact solution 

          

           
Eigen values −1 and −200 

Source: (Ibrahim et al., 2007); 

              
             

0 ≤ x ≤ 20 

   
              
Exact solution 

           

           
Source: (shampineet al, 1975) 

 

               
            

   
                 0 ≤ x ≤ 4ԯ 

                            
     2          

Exact Solution 

                       

                     

                    
Source: (Sulaiman,1989) 

 

 

4.2 Numerical Results 
 

The problems sampled in this research are solved using the developed scheme. The results are 

tabulated, compared; and the graphs highlighting the performance of these methods are plotted. 

The acronyms below are used in the tables. 

h = step-size;  

MAXE = Maximum Error; 

T=Time in second; 

3ESBBDF = 3 Point enhanced fully implicit Super Class of Block Backward Differentiation 

  3ESBBDF = Family of block 3 Super class of Block Backward Differentiation 

ABISBDF = A-stable block integrator scheme of Backward Differentiation Formula for solving 

Stiff IVPs. 

 

 

 

 



 

 

Table 1: Comparison of Errors between Proposed Method and other Methods for Problem 1 & 2 
Numerical Result for Problem 1 Numerical Result for Problem 2 

  Method MAXE TIME   Method MAXE TIME 
       3SBBDF 

3ESBSBDF 
ABISBDF 

3.30736e-002 

3.51456e-002 

5.83217e-004 

4.23434e-1 

3.52416e-4 

4.23441e-5 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.23032e-002 

3.98707e-002 

5.83217e-003 

3.77590e-002 

2.63337e-002 

5.68676e-002 

       3SBBDF 

3ESBSBDF 
ABISBDF 

5.41853e-003 

5.20191e-003 

6.95338e-005 

1.81850e-3 

2.50367e-3 

4.65467e-4 

       3SBBDF 

3ESBSBDF 
ABISBDF 

4.76165e-003 

4.40956e-003 

6.05338e-005 

5.66636e-001 

2.60816e-001 

5.64515e-001 

       3SBBDF 

3ESBSBDF 
ABISBDF 

5.44701e-005 

5.20417e-005 

6.95692e-007 

1.71443e-2 

2.36918e-2 

4.48433e-3 

       3SBBDF 

3ESBSBDF 
4BSBDF 

4.66516e-004 

5.08942e-005 

6.26692e-007 

5.64385e-001 

2.60725e-001 

5.68143e+000 

       3SBBDF 
3ESBSBDF 
ABISBDF 

5.44971e-007 

5.25030e-007 

6.959740e-009 

1.70042e-1 

2.34808e-1 

4.58687e-2 

       3SBBDF 
3ESBSBDF 
ABISBDF 

4.68707e005 

5.21534e-007 

6.32740e-009 

5.63788e+000 

2.60597e+000 

5.59821e+001 

       3SBBDF 

3ESBSBDF 
ABISBDF 

5.44998e-009 

5.25648e-009 

7.186362e-011 

1.70308e0 

2.35791e0 

4.23434e-1 

       3SBBDF 

3ESBSBDF 
ABISBDF 

4.69123e-006 

5.89872e-009 

6.33362e-011 

5.65356e+001 

2.60700e+001 

5.53567e+002 

 

Table 2: Comparison of Errors between Proposed Method and other Methods for Problem 3 & 4 
Numerical Result for Problem 3 Numerical Result for Problem 4 

  Method MAXE TIME   Method MAXE TIME 
       3SBBDF 

3ESBSBDF 
ABISBDF 

2.07208e-002 

2.54347e-002 

2.83117e-004 

1.37500e-2 

1.20394e-3 

7.36289e-2 

       3SBBDF 

3ESBSBDF 
ABISBDF 

2.83032e-002 

2.48705e-002 

3.83217e-003 

3.67590e-002 

2.63337e-002 

5.58676e-002 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.20160e-004 

3.02893e-004 

4.05338e-006 

2.72200e-2 

1.25972e-2 

5.81512e-2 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.76163e-003 

3.40956e-003 

4.05338e-005 

8.56636e-002 

2.60816e-001 

5.54515e-001 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.20233e-006 

3.09895e-006 

4.26592e-008 

2.02700e-1 

1.25148e-1 

5.81491e-1 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.76514e-005 

3.48942e-005 

4.26690e-007 

8.54385e-001 

2.60725e+000 

5.58143e-001 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.20261e-008 

3.10157e-008 

4.32640e-010 

1.92600e0 

1.25471e0 

5.81122e0 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.70705e005 

3.58532e-005 

4.32740e-009 

8.53788e+000 

2.60597e+001 

5.49821e+000 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.20263e-010 

3.41129e-010 

4.33262e-012 

1.91700e1 

1.24892e1 

5.79987e1 

       3SBBDF 

3ESBSBDF 
ABISBDF 

3.71121e-007 

3.69872e-007 

4.3335e-009 

8.53356e+001 

2.60700e+002 

5.43567e+001 

   

Similarly, to highlight the performance of the proposed methods, ABISBDF in relation to 

the other methods, 3ESBSBDF and   3SBBDF. The graphs of Log10(MAXE) against the step 

size, h for the 4 problems are plotted accordingly as shown below: 

 

 



 

 

 

Figure 2: Graph of             against h for problem 1 

 

 

Figure 3: Graph of             against h for problem 2 
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Figure 4: Graph of             against h for problem 3 

 

 

Figure 5: Graph of             against h for problem 4 

4.3 Discussion of the results 

From the numerical problems solved in the Table 1 (comprising problem 1&2), it has been 

shown that the proposed scheme, ABISBDF outperformed both the 3ESBSDF and   3SBBDF in 

terms of minimum error and less computational time. Also, from table 2 (comprising problem 

2&3) the proposed scheme have good advantage in terms of scale error over the two methods 

compared. But,   3SBBDF has advantages over the new method ABISBDF in execution time. 
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To visibly highlight the performance of the proposed method, ABISBDF in relation to the other 

methods, 3ESBSBDF and   3SBBDF. The graphs of Log10 (MAXE) against the step size, h for 

the 1-4 problems are plotted accordingly in figure (2,3,4,5), the method has minimum scaled 

error in the entire problems considered. The proposed scheme is recommended for solving first 

order system of initial value problems of ordinary differential equation. 

 

Conclusion 

An A stable block integrator scheme is proposed. The order and stability properties of the 

method are investigated, the scheme found to be zero stable, A-stable and of order 6. The 

developed method is implicit methods, can computes four solution values at a time per step, 

concurrently. The results from the tested  problems shows that the new method has advantages in 

terms of accuracy of the scaled error and computational time when compared with the 

3ESBSBDF and also has advantages in terms of accuracy of the scaled error over   3SBBDF 

method. The proposed scheme can be used in solving a system of first order initial value problem 

of ordinary differential equations. 
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