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ABSTRACT 

In this paper, we focused our attention on the creation of an almost unbiased predictive product 
estimator after estimating and correcting bias of the classical product estimator under 
predictive approach. Considering mean square error as the performance measure, superiority of 
the proposed estimator has been analyzed compared to the classical product estimator and 
Robson’s (1957) unbiased product estimator under (i) a finite population set-up, (ii) an infinite 
population set-up assuming bivariate normal distribution between the variables, and (iii) the 
assumption of a super-population model.  
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1. INTRODUCTION 

 Let   and   denote the survey variable and an auxiliary variable taking values    and 

   respectively on the  th unit of a finite population                     of    units. 

Define    
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    as the population means and    

  
 

   
      

   

  2,   2=1  1 =1      2  as the population variances of   and   , and 

    
 

   
         

           as the population covariance between   and  . Assume 

that a random sample   of   units is drawn from   according to simple random sampling 

without replacement (SRSWOR) in order to estimate unknown mean    when   is 

known accurately. Let    
 

 
   

 
    and    

 

 
   

 
    be the sample means,   

  

 

   
           

    and   
  

 

   
           

    be the sample variances, and     

 

   
          

            be the sample covariance. 

 When the correlation coefficient between   and   has a very high negative value, 

product method of estimation as complementary to the ratio method of estimation for 

estimating    is recommended as an error reducing technique. But, in the literature, 

product method of estimation has not yet been given as much emphasis as ratio method 

of estimation. Because, many survey statisticians are on the opinion that the occurrence 

of negatively correlated auxiliary variables is a rare phenomenon. It is of course true 

that positively correlated variables are easily encountered in practice. But, in the context 

of sample surveys, it is not very uncommon to observe highly negatively correlated 

variables. For example, in real life situations we observe that the correlations between 

yield of paddy per plant ( ) and percentage of sterility ( ); average miles per gallon ( ) 

and engine HP of passenger cars ( ); child mortality ( ) and female literacy rate ( ); the 

loss of body weight ( ) and time spend for practicing exercise ( ); selling of chocolate 
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products ( ) and atmospheric temperature ( ); egg production ( ) and age of chicken 

( ) are highly negative. A negatively correlated auxiliary variable is also generated 

taking inverse transformation of a positively correlated variable. Some recent papers 

highlighting useful theoretical results on the product method of estimation are 

Mandowara and Mehta (2016), Kamba et al. (2019), Kumar and Chhaparwal (2020), 

Brar et al. (2020), Kumar and Sharma (2020), Sahoo et al. (2021) among others.    

  The classical product estimator of the population mean   is defined by 

      
    

 
   

[cf., Murthy (1964)], which performs better than the mean per unit estimator    

when             , where         and         are coefficients of variation of 

  and   respectively, and   is the coefficient of correlation between them. However,    is 

a biased estimator of    and the exact expression for the bias is  

                 
   

 
 ,        (1) 

where   
   

  
 . Although the bias may be small for large samples, in small samples its 

impact may be important enough not to be ignored. Ordinarily, the survey statisticians 

avoid estimators that are considerably biased, because valid confidence intervals cannot 

be obtained if bias is substantial. The most important estimators in survey sampling are 

therefore either unbiased or approximately unbiased.     

 Estimation of     by its unbiased estimator     and then correction of bias given in 

(1) lead to define an unbiased estimator  

                 ,  

where             . This unbiased estimator was framed by Robson (1957). Srivastava 

et al. (1981) compared variance expressions up to terms of order     and concluded 

that     is more efficient than   . Considering exact variance expressions under finite 

and infinite population’s set-up, Chaubey et al. (1990) established that     is better than 

   when            . 

 Referring to Sahoo’s (1983) work, Singh (1989) constructed an almost unbiased 

product estimator (unbiased up to terms of      )) of the form  

                 .  

The followed technique is to consider expected value of    i.e.,  

                 ,         (2) 

where           , and then dividing    by the estimate of the terms in the 

parentheses to get the proposed estimator. But the two estimators     and     are 
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virtually equivalent in the sense that they use the same statistics for their computation 

and moreover their variances are equal to       .  

 From (1), we note that the bias of    is a function of the parameters   and    . Since 

  is known, estimation of bias needs an estimation of     from the sample data. But in 

this work, instead of estimating the covariance     under classical approach, we 

estimate the parameter under prediction approach in order to have an almost unbiased 

product estimator.  

2.  A PREDICTIVE ESTIMATION OF     

 Let us decompose    into two mutually exclusive sets   and   of   and   units 

respectively, where       denotes the collection of un-sampled units of  . Then, 

under the usual prediction criterion [c.f., Bolfarine and Zacks (1992), p.12], it is possible 

to express the population covariance     in the following form:  

                                                      ,  (3)  

where    
 

 
 ,    

 

   
       ,    

 

   
       and        

 

     
               

  .  

 According to the equation (3), note that     and    
      

   
 are known quantities 

whereas    and        are unknown. Hence, prediction of          needs 

simultaneous prediction of     and        by some means from the sample data. Letting 

   and    as their respective predictors, a predictor of     can be formed from the 

following equation: 

                                                    .  (4)  

 Most of the predictions are based either on the distributional forms or an assumed 

model [cf., Royall (1988), Bolfarine and Zacks (1992)]. However, Sampford (1978) 

argued that a model free prediction can generate a new estimator possessing some 

desirable properties. Basu (1971) also encouraged the use of tools of the classical 

estimation theory to find out suitable predictors for  . Inspired by Basu (1971), Biradar 

and Singh (1998) and Nayak and Sahoo (2012) formulated some predictive estimators 

of the population variance   
  in terms of the auxiliary variable   under the classical 

estimation tool.  

 Under classical approach, the predictive equation (4) provides a family of estimators 

of     for various selections of    and   . But to avoid complexity, we concentrate on the 

simple selections. Towards this motivation, let us now consider        and 

              , a difference estimator where   is a suitably chosen constant which 

in particular may a random variable converging in probability to a constant  . But here 
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we need to determine   such that the resulting estimator of      is unbiased. The 

predictive equation after simple algebra yields the following estimator:  

      
  

   

   
    

 

      
       

 
.  

 To determine   we have to satisfy       
       that gives 

  
   

   
    

 

     
  

       

      
   

  
     , 

the regression coefficient of   on  . Hence, for        ,                  and     
  

defines an unbiased estimator for    .   

 In actual practice the composite parameter     may not be known in advance and 

ordinarily estimated by its plausible consistent estimate           
  , the sample 

regression coefficient of   on  . Hence, on the consideration of        and       

          , (4) provides us the following new predictive estimator for    :   

      
   

   
    

 

      
         

 
.    

 It may be remarked that     is no more a completely unbiased estimator but an 

almost unbiased estimator for     i.e., unbiased to       . To justify this let us write 

      
   

   
    

 
 
   

      
                    

        (5) 

where      
    

 
 ,      

       

   
  and     

  
  
    

 

  
  . Further, let us assume that     

     

[vide Sukhatme et al. (1984), p.238], so that       
     can be validly expanded as a 

power series in    
 . After considerable simplification and then retaining terms up to 

degree 2 for  ’s, we obtain 

      
   

   
    

 
 
   

      
       

          
   

   
       

 
 
   

      
         

           
   

   
    

 
 
   

      
 

  
 

 
     .      (6) 

This means that     is almost unbiased.  

3. THE PROPOSED ALMOST UNBIASED PRODUCT ESTIMATOR 

 Estimating     by     in equation (1), the bias of    is estimated by  

   st        
   

 
 .         (7) 

Then adjusting    for its bias, we compose the following almost unbiased estimator 

for  : 
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 .  

 To check almost unbiasedness property of     see from (1) that           
   

 
 , 

and from (6) up to        that             . Hence, finally we have 

                  
   

 
   .       (8) 

4. EFFICIENCY OF THE PROPOSED ESTIMATOR 

 In order to study the efficiency aspect of     compared to   ,     and    , we need 

expression for its mean square error (MSE). But, our main concern here is that     is a 

nonlinear function of four statistics viz.,   ,   ,     and   
 . Therefore, it is often impossible 

to derive exact results on its MSE under a finite population set-up. For this reason, we 

have to rely on the asymptotic results i.e., expressions up to a desired order of 

approximation. To achieve this we may take the help of Taylor linearization technique 

[cf., Sarndal, Swensson and Wretman (2003, p.172)]. But to circumvent much difficulty, 

we consider the power series expansion method using    notations as in section 2. 

 Denoting     
    

 
  and then using (5), we write  

                           
   

      
             

                     
 

     
                     

      
              

       (9)  

Squaring both sides of (9), simplifying and keeping terms up to degree 2 for  ’s, and 

taking expectation term-by- term, we obtain MSE of     to order     as 

                 
 
     

         
  .                 (10) 

This is also MSE expression of   ,     and     up to       . It means that the four 

estimators    ,   ,     and     are asymptotically equally well under MSE criterion. In 

view of this, we further need a comparison of MSEs considering terms up to       . 

 Evaluating the expression         
 

 and considering term-by-term expectations, 

after some algebraic manipulation we derive MSE of     to terms of        as given 

below. Here we follow the same notations and approximations used by Tin (1965) [also 

see Kendall, Stuart and Ord (1983), Vol. III, p.2421].   

         
 
      

 

   
             

   

   
 
 

   
      

 

   
 

 
  ,              (11) 

where                ,           ,    
            

   
,   

    

  
 and     

    
 
 

 
 ,     being the         cumulant in   and  .  

 Precisely, in a similar way Srivastava et al. (1981) obtained MSEs of     and      to 

order    . But from Singh’s (1989) derived results, up to this order of approximation, 
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             . So, we ignore      from the comparison and rewrite below the results 

for    and   : 

         
 
                       

                     (12) 

          
 
      

 

 
               

                    (13) 

 From the equations (11), (12) and (13), we have the following results:  

(i)    
            

    
        

                     (14) 

 It means that     is more efficient that    when  

        
   .                      (15) 

This result is due to Srivastava et al. (1981). Since    
   , a sufficient condition for     

to be more efficient than    is that     . 

(ii)  
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 In survey sampling literature,       is one of the most commonly accepted 

theoretical conditions so that   is most likely to be positive. This implies that the 

coefficients of       
  and    in (16) and (17) are positive. Hence, when      ,     

would be more efficient than both     and    if      . As       , fulfillment of the 

sufficient condition      is possible only when           . But, depending on the 

distribution of the variables under consideration, the parametric function           

may assume either positive or negative values. In view of this, we tentatively draw the 

following conclusion:  

Under the situation       i.e., when      is more precise than   ,     would be 

preferable to both     and    if either       or the contribution of the third term 

   
 

   
    in the right hand sides of (16) and (17) is negligible in comparison to 

the preceding terms. 

 In some practical situations, it is not so easy to check the feasibility of the derived 

sufficient conditions to draw any meaningful conclusion as they depend on the survey 

situations, unknown population parameters, composition of population units, joint 

distribution of the variables and many other constraints. This may mislead our efficiency 

comparison. However, this comparison clearly indicates that there is enough scope for 

using our proposed estimator in place of its competitors.  

 To make our efficiency comparison more viable, we further continue our analytical 

comparison under two noteworthy assumptions – bivariate normal distribution of the 

variables and a super-population model.  

4.1 Efficiency Comparison under the Assumption of Bi-Variate Normality 
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 Let us assume that the random sample of   units is drawn from an infinite 

population in which the joint distribution of   and   is bivariate normal. Then 

                       and as 
   

   
   and    , we may easily assume 

that 
   

   
  . Hence, after some algebra, from (11), (12) and (13) we obtain the following 

MSE expressions for    ,    and     to       : 
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                          (19) 

         
 

 

 
    

           
   

  
   

 

 
                       (20) 

Thus, it follows that under bivariate normality assumption, both    and     are inferior 

to     under MSE criterion. 

 To make an idea on the efficiency gain in estimation quantitatively by the different 

estimators compared to    whose variance under normality assumption is   

         
 

 

 
  

 ,                       (21)   

we computed numerical values of their percentage relative efficiencies (RE) for some 

selected values of         and   as shown in table 1. For a given value of   , values of    

and   are chosen so as to satisfy the condition              with a view to make the 

product method of estimation more effective.  

Table 1: Relative Efficiencies of the Estimators w.r.t.    (in %) 

                     

10 1.0 0.3      116.62 116.03 116.22 

0.6      150.83 142.47 145.15 

0.9      250.56 180.31 198.88 

1.2      2500.00 211.86 304.87 

20 1.5 0.8      113.04 111.11 111.74 

0.9      150.17 140.92 143.88 

1.0      252.66 203.34 217.49 

1.1      1406.25 395.91 520.59 

30 2.0 0.7      116.79 115.73 116.08 

0.9      147.10 141.05 143.02 

1.1      228.83 194.39 204.65 

1.3      816.32 343.08 425.26 

40 2.5 1.0      116.14 114.55 115.07 

1.5      147.93 135.73 139.57 

2.5      219.18 132.23 152.38 

3.5      625.00 92.70 129.45 

  

 Results of table 1 indicates clearly that for given values of   and    , RE of all 

estimators increases with increase in the value of   except that of    and     for      
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and        . But the gain in efficiency of     over    and     is usually very high except 

for        where it is only marginal. This means that higher negative values of the 

correlation coefficient between   and   favors     for its efficient use. 

4.2 Efficiency Comparison under a Super Population Model  

 To study performance of     compared to others, we consider a super-population 

model for which  

           ,            ,                    (22) 

where   is an unknown real constant,   ’s are uncorrelated random errors such that 

           and     
         

  for all   with       and      . Further,   ’s are 

assumed to be        gamma variates with a common parameter        taken equal to 

the mean  . 

 By the direct substitution under the model and then after some algebraic 

manipulations, we see that     is completely unbiased i.e., model-unbiased. At the same 

time we also see that     is model-unbiased whereas    and     are not model-

unbiased.  

 Expressing population parameters i.e.,    ’s in terms of the model parameters, from 

equations (11), (12) and (13) we directly obtain the following model-based MSE results 

up to       : 
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                  (24) 

                
 

 
           

  

  
 

 

 
                  (25) 

where    
      

    
.  

 Comparing (23), (24) and (25), we straight-forwardly conclude that 

                     , 

which implies that     performs better than    and     on the ground of MSE. But, 

when    , that is under the assumption of homoscedasticity,               

      and the estimators appear to be equally efficient.  

 In table 2, we display numerical values of the deciding factors – the coefficients of 

    and    in the MSE expressions of the comparable estimators for a few 

combinations of the parametric values. Values are given for              

           and                       .  

 From the tabulated numerical results, it is crucial to note that the values of the said 

coefficients in each case decrease as   increases. On the other hand, it is also noted that 

(i) for increased value of   , coefficient values of     for        and        decrease 

whereas for       these values increase, and (ii) differences between coefficients 
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values of    for        and        are just marginal. On the whole from the calculated 

coefficient values, we see that        is the least for all cases indicating     as the most 

efficient estimator.  

Table 2: Coefficients of     and    

  
Coefficient of     

  
Coefficient of    

                                        

5 7.0316 9.6400 8.2000 0.0 1.0900 1.0900 1.0900 

0.5 1.0798 1.1700 1.0800 

1.0 1.0696 1.2500 1.0700 

1.5 1.0594 1.3300 1.0600 

2.0 1.0492 1.4100 1.0500 

10 6.9476 8.6400 8.0000 0.0 1.0400 1.0400 1.0400 

0.5 1.0298 1.0700 1.0300 

1.0 1.0196 1.1000 1.0200 

1.5 1.0094 1.1300 1.0100 

2.0 0.9992 1.1600 1.0000 

15 6.9198 8.3060 7.9332 0.0 1.0233 1.0233 1.0233 

0.5 1.0131 1.0366 1.0133 

1.0 1.0029 1.0499 1.0033 

1.5 0.9927 1.0632 0.9933 

2.0 0.9825 1.0765 0.9833 

20 6.9056 8.1400 7.9000 0.0 1.0150 1.0150 1.0150 

0.5 1.0048 1.0200 1.0050 

1.0 0.9946 1.0250 0.9950 

1.5 0.9844 1.0300 0.9850 

2.0 0.9742 1.0350 0.9750 
 

5. CONCLUDING REMARKS 

 Our preceding discussions show that the proposed estimator is no way inferior to 

the classical, Robson’s (1957) unbiased and Singh’s (1989) almost unbiased product 

estimators. Because it is not only approximately unbiased but also more efficient under 

a variety of easily acceptable conditions and assumptions relating to the population. As 

our estimator is structurally complex, from the computational point it may not be 

preferred to others. But, this drawback is not a matter of great concern for our purpose. 

However, the new estimation mechanism formulated here has a greater scope for 

further development of a wide variety of estimators.    

Acknowledgement: The authors are grateful to the reviewers whose constructive 

comments led to an improvement in the paper. 
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