Chen Software Reliability Growth
Model

Abstract

Software reliability analysis is very vital in software development. Software manufactur-
ers assess the quality of their developed software through this analysis. This has triggered
the development of reliability models. Software reliability growth models have been used
extensively to examine the quality of manufactured software before they are sent to the
market. This study presents a new software reliability growth model using Chen distri-
bution. The Chen software reliability growth model is then used to establish sequential
probability ratio test limits for determining whether a manufactured software is reliable
or unreliable. The applications of the proposed model revealed that it performs better
than some of the existing software reliability growth models for the given datasets.
Keywords: Software reliability, Growth model, Chen, SPRT, Quality control.

1 Introduction

Quality control in the production of goods and services come up handy on regular bases
due to the fact that the world is evolving into a global village (Schonberger, 2008). More
producers have products and goods they need to send to the market with each passing
day. Thus, when customers realize these products are not of high quality, demand of
products decrease (Shen et al., 2021). Quality control is one of the most important ways
of examining quality for products before they are sent to the market (Dillon, 2021). Prod-
ucts come in the form of tangible and intangible goods (Fouad et al., 2017). Ranging
from tangible products such as clothing, food , building materials and so on, to intangible
products such as software(Park, 2016). Software are a set of instructions that teach a
computer what to do (Hubbard, 2006). In today’s economy, software quality is becoming
increasingly critical. This is due to the fact that the advantages of its usage outweighs
the detrimental aspect of it (Michael and Miller, 2013). Spanning from performing basic
mathematics to performing complex computations, software make living easier. Accord-
ing to ANSI Standard (ANSI/ASQC A3/1978): ”Quality is the totality of features and
characteristics of a product or a service that thrives on its ability to satisfy the given
needs”. Users of software are aware of software as a tool for assisting them in their en-
deavors whiles producers see software as a means yielding profits (Jamwal et al., 2009).
Software reliability growth models (SRGM) are implementations of statistical methods
as a quality control technique, in verifying the quality and durability of a software. These
models are able to model various forms of failure data, by collecting information of the
behavior of software over a period. It stems from employing techniques such as the Non-
homogeneous Poisson Process (NHPP), the Sequential Probability Ratio testing (SPRT)
and so on. During the production of software, the monitoring process is the phase where
the performance of the software is tracked. The SPRT provides a rule for stopping or con-
tinuing the monitoring process of a software during production (Nikolakopoulou et al.,
2018). It gives a general perspective of whether a software should be deployed to the
market or not. This is done by comparing the limits of the SPRT against cumulative
number of failures at a given time (this could be number of hours, days, weeks, months
or years). This study seeks to propose a Chen SRGM that incorporates environmental
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factors and the limits of its SPRT. The remainder of the paper is organized as follows:
Section two presents the SPRT for the NHPP, Section three presents the proposed Chen
SRGM, Section four presents the application of the proposed model and lastly Section
five presents the conclusion of the study.

2 Sequential Probability Ratio Test for NHPP

Sequential sampling is a sampling technique where items are drawn one at a time and the
consequent result at every stage determines if sampling or testing should stop. Hence,
any sampling procedure where the number of observations is a random variable can be
regarded as sequential sampling. The term sequential test has its name of origin from
the fact that the sample size is not determined in advance but allowed to ”"float” with
a decision as to whether it should be accepted, rejected, or the test must continue after
each trial or data point (Anderson, 1960).

SPRT is a ratio test method that follows the sequential sampling process. The SPRT is
similar to the Maximum Likelihood Estimation used for constructing tests. It is formu-
lated by taking the ratio of the sample densities under H; over Hy. Consider the NHPP
{N(t),t € [0,00)}. Suppose we are interested in testing the hypothesis in terms of the
mean value function m(t):

Hy : m(t) = my(t) versus Hy : m(t) = my(t) > my(t). The probability distribution when
Hy is true can be formulated as,
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Then, when H; is true, the probability distribution can be formulated as,
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Suppose X and Y are two positive constants where X > Y. Then at every stage of the

SPRT, the likelihood ratio (LR), LR = % is estimated. Thus, based on the value of the

likelihood ratio, the following decisions are arrived at:
1. Stop sampling and reject Hy as soon as LR > X.
2. Stop sampling and accept Hy as soon as LR <Y .
3. Continue sampling as long as Y < LR < X.

The choice of selection of the estimates of X and Y are chosen such that the SPRT has
the needed strength («, 3). Thus, with the above test, suggested by Wald (1945) X and

Y can be expressed as follows: Y = % and X = % The basis for o and S respectively
are, therefore,

P[LR > X|Hy| = « (3)
and

P[LR < X|Ho] = 3, (4)

where a and [ are the type I and type II errors respectively. To make computation more
simplified the logarithm form of the likelihood ratio is used often, that is log Y < log %’ <
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log X. Hence, using the SPRT in reliability analysis of software that follows the NHPP,
the following decisions may be arrived at: the given software is reliable, the software is
unreliable or the testing process should be continued by adding more observations in the
failure data.

The likelihood ratio %’ at a given time t is considered as an estimate for a decision
to take with regards to mg(t) or my(t), for a sequence of time t; < ty--- < t, with
their corresponding realizations N(t1), N(t3), ..., N(t,). By using the likelihood ratio, a
software failure data which follows a NHPP is reliable if,
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Implying that,
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A software failure data which follows a NHPP is unreliable if,
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Implying that,
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The testing process is continued as long as,
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3 The Proposed Chen SRGM

Software developers often times ignore the effects environmental conditions could have on
their software. When the location of the software is changed from its original environment,
this could result in a type I or II error (Basili and Weiss, 1984).

Pham (2014) proposed a generalized NHPP incorporating the uncertainty of environ-
mental conditions with all existing assumptions of the NHPP in place and the following
assumptions;

i. The occurrence of software failures follows an NHPP.
ii. Software can fail during execution, caused by faults in the software.

iii. The software failure detection rate at any time is proportional to the number of
remaining faults in the software at that time.

iv. When a software failure occurs, a debugging effort removes the faults immediately.

v. For each debugging effort, regardless of whether the faults are successfully removed,
some new faults may be introduced into the software system.



vi. The environment affects the unit failure detection rate, ¢(t), by multiplicative factor
w.

Thus a generalized NHPP SRGM can be obtained as,

dm(t)
D) — et - m(0) (10

where w represents the uncertainty of the system fault detection rate in the operating
environments with a probability density function f, N is the expected number of faults
that exists in the software before testing, ¢(t) is the fault detection rate function, which
also represents the average failure rate of a fault, and m(t) is the mean value function
(the expected number of errors detected by time ¢). Solving the differential equation from
equation (10) and setting the initial condition of m(0) = 0 results in,

m(t) = /N(l — e o PO g (). (11)

The mean value function can be derived from equation (11) given that the random variable
w has a generalized probability density function g with two parameters p and 7, and is

given by, )
m(t) = N (1 - W) , (12)

where b(s) is the fault detection rate (Pham, 2003).
Now, assuming the underlying distribution of the failure time data is the Chen distribu-
tion and its fault rate is given as,

b(t) = yvs"te!" t > 0,0 >0,7y>0,v>0.

Let the expected number of failures in the software be N, then the mean value function
when the environmental uncertainties are factored in can be given as,

v(1- ) (13

where v, 7, p and v are positive parameters of the mean value function.

3.1 SPRT Limits for Chen SRGM

This section presents the limits of the SPRT of the Chen SRGM. Assuming our interest
is in testing the null hypothesis Hy : m(t) = mg(t) against the alternative hypothesis
Hy : m(t) = my(t)(> mo(t)). Suppose the focus parameters here is 7, then for a Chen
SRGM which follows the NHPP having a mean value function given in equation (13), the
probability distribution when Hj is true and when H; is true are respectively given as,
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and
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where the parameter specifications are; for v is 74 and 75. Therefore, the acceptance
region for a reliable software with the Chen mean value function is established as,
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Similarly, for unreliable software, the rejection region is given by,
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The continuation region is given by,
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4 Application of the Chen SRGM

This section presents the application of the Chen SRGM in real life using two data sets.
The first data set was reported by Zhang and Pham (2002) based on system test data
for a telecommunication system data (T'SD). System test data consisting of two releases,
that is Phase 1 and Phase 2. In both tests, automated test and human involved tests are
executed on multiple test beds. Phase two was considered in this study.

The second data set employed yields from a modest on-line data entry software program
available in Japan since 1980 (Ohba, 1984). According to the International Business
Machines (IBM) journal, the software was about 40,000 lines of code long. The duration
of the testing was calculated using the amount of shifts spent executing test cases and
evaluating results of the matched couples

It is very important to explore the behavior of the failure rate of the data sets employed
in this study. Table 1 shows descriptive statistics of the failure rate of the TSD-Phase
two and IBM data sets. They both have a minimum of 1 and a maximum of 21 weeks.
They both have negative excess kurtosis that indicates the distribution of the failure rate



is flat with thin tails. They also both have a skewness of 0 that indicates the failure rate
is perfectly symmetrical.

Table 1: Descriptive Statistics of the TSD-Phase Two and IBM data

Statistic TSD-Phase two data | IBM data
Minimum 1.00 1.00
Maximum 21.00 21.00
Mean 11.00 11.00
Median 11.00 11.00
Standard deviation 6.205 6.205
Skewness 0 0
Kurtosis —1.37 —1.37

The total test on time (TTT) plot is employed to investigate the empirical behavior of
the data sets. Figure 1 presents the failure rate of both data sets. It shows that they
both have an increasing failure since the curve is concave above the 45° line.

T(i/n)
T(i/n)
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00 02 04 06 08 10
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TSD-Phase Two IBM

Figure 1: Plot of TTT of the TSD-Phase Two and IBM failure rate



Tables 2 and 3 summarizes the least square estimates of parameters for the TSD-Phase
two and the IBM data sets respectively for the Chen SRGM and the other existing
competing SRGMs. The estimated parameters of the Chen SRGM are all significant at
5%. This can be verified by using the p-values of the parameters.



Table 2: Estimates of parameters of fitted models for TSD-Phase two data set

SRGM Parameters Estimates Standard error 7 value p-value
GO @ 3.2305 x 102 9.5361 x 10710 3.38771 x 10" 2.2 x 10716
b 6.8853 x 1073 4.2424 x 1077 1.6230 x 10> 2.2 x 1071
DS a 67.2835630 2.0357850 33.050 2.2 x 10716
b 0.1089428 0.0032053 33.988 2.2 x 10716
IS a 44.357603 0.693023 64.006 2.2 x 10716
b 0.296139 0.013283 22.294 2.2 x 10716
B 22.674540 2.911473 7.788 6.808 x 1071"
YID a 0.214698 0.026390 8.1355 4.102 x 10716
b 0.397253 0.063547 6.2513 4.070 x 10716
& 11.611068 1.424200 8.1527 3.559 x 10716
DPM p 444.36 1.3159 x 1078 3.3768 x 101 2.2 x 1071¢
4 —3.4406 2.1050 —163.45 2.2 x 10716
Ohba a 44.355318 0.692953 64.0092 2.2 x 10716
B 22.689046 2.915186 7.7831 7.08 x 10715
b 0.296201 0.013291 22.2862 2.2 x 10716
VTS p 3.4988 x 1071 9.3259 x 1072 3.7517 0.0001757
a 1.0011 x 1072 2378 x 107 4.2086 x 107° 2.2 x 1076
b 5.0000 5.9218 x 10717 8.4433 x 10'6 2 x 10716
1 99.886 2.3604 x 10~* 4.2317 x 107 2x 10716
TC p 6.8986 x 1071 3.3148 x 1073 2.0811 x 10 2.2 x 10716
a 2.4868 x 107 1.3072 x 1074 1.9023 x 10! 2.2 x 10716
b 1.1893 1.8847 x 1072 6.3101 x 10 2 % 10716
1 10.838 3.2230 x 1076 3.3626 x 10° 2% 10716
N 7.9735 x 10°  7.9101 x 107°  1.0080 x 10'2 2 x 10716
Cheng b 77.554 7.3665 x 1075 1.0528 x 106 2.2 x 10716
B 24.119 6.9397 x 1076 3.4756 x 106 2.2 x 10716
b 2.5562 1.9032 x 107 13.431 2 x 107167
@ 0.10795 2.6385 x 1072 40.914 2x 10716
Chen SRGM p 0.48073 4.9985 x 1072 9.6175 2.2 x 10716
A 9.6184 x 1072 4.5404 x 1072 2.1184 0.03414
1 0.77355 2.0186 x 1072 38.3208 2.2 %1077
7 1.6402 x 10> 2.5666 x 1073 63907.0738 2.2 x 10716
N 4.2713 0.6325 67.5342 2.2 x 10716

*: means significant at the 5% significance level



Table 3: Estimates of parameters of fitted models for IBM data

SRGM Parameters Estimates Standard error 7 value p-value
GO @ 23.190 1.543 x 107 1.5029 x 10? 2.2 x 107167
b 2.1101 x 10? 2.6257 x 10718 8.0363 x 10Y 2.2 x 107167
DS a 23.190 1.5430 x 107! 1.5029 x 10? 2.2 x 10716
b 1.4040 x 10? 1.9559 x 10" 7.1784 x 10 2.2 x 10716
IS a 23.190 0.15430 150.29 2.2 x 107167
b 100.70 5.6227 x 1071 1.7910 x 10%° 2.2 x 10716
B 10.00 5.6620times1071%  7.788 x 10'® 2.2 x 10716
YID a 0.21873 0.02963 7.3820 1.559 x 10713"
b 0.34298 0.07076 4.8471 1.253 x 1076
& 12.14272 1.55468 7.8104 5.699 x 10715"
DPM p 486.00 1.0010 x 1078 4.8551 x 100 2.2 x 107167
4 —3.2227 x 1072 1.7530 x 1074 —183.84 2.2 x 10716
Ohba a 23.190 0.15430 150.29 2.2 x 10716
i 1.0000 x 1073 3.9086 x 103 2.5584 x 10°  7.08 x 107"
b 1.0046 x 10? 3.8906 x 10718 2.5822times10" 2.2 x 10716
VTS p 3.4988 x 107} 9.3259 x 1072 3.7517 0.0001757
a 1.0011 x 1072 2.378 x 107* 42086 x 107 2.2 x 10710
b 5.0000 5.9218 x 10717 8.4433 x 10'° 2 x 10716
v 99.886 2.3604 x 1074 4.2317 x 10° 2x 10716
TC p 6.4619 x 1072 1.2030 x 1072 5.3716 7.805 x 107%"
a 1.5643 x 1071 1.3342 x 1072 1.1725 x 10! 2.2 x 10716
b 1.6590 8.3058 x 1072 1.9974¢ x 10! 2% 10716
1 1.4149 1.4184 x 1074 9.9755 x 10* 2x 10716
N 7.6813 x 10% 1.6073 x 107° 4.7790 x 107 2 x 10716
Cheng et al p 55.386 1.5073 x 10~* 3.6745 x 10° 2.2 x 10716
1 1.7364 x 10~ 7.7813 x 1076 2.2316 x 10° 2.2 x 107167
b 2.6857 1.9466 x 107! 1.3797 2 x 10716"
a 0.12041 3.5473 x 1073 33.944 2% 10716
Chen SRGM p 3.0728 4.9905 x 1072 61.574 2.2 x 107167
A}f 20.688 4.5292 x 1073 4.5678 x 10° 0.03414
1 0.38282 2.4930 x 1073 1.5356 x 102 22x 107"
7 1.6284 x 107 5.7543 x 1074 2.8299 x 10° 2.2 x 10716
N 1.1604 x 10% 1.9592 x 107° 5.9226 x 106 2.2 x 10716

*

: means significant at the 5% significance level



Three model selection criteria are used to compare the Chen SRGM and other existing
SRGM for the data sets. This is to help identify which model fits the data sets better.
For the three criteria, the smaller the value, the closer the model fits relative to other
models (Sharma et al., 2010).

1. The Akaike information criterion (AIC )
The AIC is a model selection criterion test used to evaluate how well a model fits
the data it is meant to describe. The test statistic is given by,

AIC = —2log L(6) + 2k,
where k is the number of estimated parameters for the model.

2. Bayesian Information Criterion (BIC)
The BIC is a model selection criterion that employs the Bayes factor assumption.
It is defined as,

~

BIC = —2log L(6) + klog(n),
where n is the sample size.
3. Predictive Ratio Risk (PRR)

The PRR indicates the distance of model estimates from actual data with respect
to the model estimates. Its test statistic is given as,

Tables 4 and 5 shows the AIC, BIC, and PRR of the fitted models for the TSD-Phase
two and the IBM data set respectively. Since the Chen SRGM has the smallest AIC, BIC
and PRR values for both data sets, it means that the Chen SRGM performs better than
the other existing models.

10



Table 4: The AIC, BIC, and PRR of existing models with the TSD-Phase two
data set in comparison with the proposed model

Model AIC BIC PRR
Goel Okumoto 599.229 | 601.318 | 762.2693
Delayed Shaped 314.666 | 316.7551 | 14106.45

Yamada imperfect debugging 395.0934 | 398.227 | 203.7502

Testing coverage 439.8727 | 445.09534 | 113.5076

Dependent paramter model 247.4809 249.57 232.6096

Ohba 213.5258 | 216.6594 | 192.7347

Vtub-shaped fault detection rate 11640 11644.18 | 353.0258

Chen SRGM 197.1243 | 202.3469 | 77.22079
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Table 5: The AIC, BIC, and PRR existing models with the IBM data set in

comparison with the proposed model

Model AIC BIC PRR
Goel Okumoto 9546.476 | 9548.565 | 335.0073
Delayed Shaped 9546.476 | 9548.565 | 109.8387
Inflection S-shaped 9548.476 | 9551.61 | 109.5235
Yamada imperfect debugging 75.97479 | 79.10836 | 199.6663
Testing coverage 71.23634 | 76.45895 | 4714.083
Dependent paramter model 105.0307 | 107.1197 | 98.73821
Ohba 9548.476 | 9551.61 | 47758.21
Vtub-shaped fault detection rate | 11640 11644.18 | 168.4894
Cheng et al 12070.82 | 12075 | 3518.143

Chen SRGM 71.2169 | 76.43951 | 84.2606

4.1 Sensitivity Analysis

In understanding the effect of the model parameters on the model, sensitivity analyses
were carried out on the two data sets. Tables 6 and 7 shows that the parameters of the
Chen SRGM which vary the most are 7 and v for the TSD-Phase two and IBM data sets

respectively. This means that 7 and ~ have a higher effect on the model than the other

parameters.

Table 6: Sensitivity analysis of the model paramters of the TDS-Phase two

data set
Parameter —30% —20% —10% 0% 10% 20% 30%
p —0.2578838 —0.1584435 —0.06342719 0.1365728 | 0.2415565 | —0.2578838
vy 0.0114692 0.009285574 0.004400278 0.2044003 | 0.4092856 0.6114692
v 5.16919 —1.241054 0.007564877 0.2075649 | —0.8410543 5.76919
T —0.2078706 0.006207353 0.2075649 0.2063613 2.233445 0.3921294
N 7.971515 x 1079 | 5.314485 x 1075 | 0.007564877 0.153671 0.4000053 0.600008
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Table 7: Sensitivity analysis of the model paramters of the IBM data set
Parameter —30% —20% —10% 0% 10% 20% 30%
p 0.006366132 0.002814267 | 0.0006997361 | 0 | 0.2006997 | 0.4028143 0.6063661
v 0.002500126 0.00166693 | 0.0008339586 | 0 | 0.0008339586 | 0.4016669 0.6025001
v 0.6985742 4.199024 —0.1091852 | 0 | 0.09081482 | 4.599024 1.208574
T 0.2933698 0.1934233 0.09364173 | 0 | 0.2036417 | 0.5934233 0.8933698
N —4.442251 x 107° | —6.145704 x 107° | 0.0004685412 | 0 | 0.2004685 | 0.3999385 | —4.442251 x 10~

4.2 Application of the SPRT

After conducting the sensitivity analysis, it showed that 7 and v were the most sensitive
parameters for the TSD-Phase two and IBM data sets respectively. Thus, the focus of
the SPRT are on these two parameters. Table 8 shows the specifications of the cases for
the application of the SPRT. Hence, the paramters of interest are set as, 79 = 7 — 0,
m=7+dand vy =v+9, vy = v — . The values of o and 3 are kept low. This is due
to the fact that these values increase the effectiveness of the SPRT (Erixon et al., 2003).

Table 8: Case for applying SPRT

Case 0 | a (Type I Error) | B8 (Type II Error)
Case 1 (for parameter 7) | 0.03 0.1 0.1
Case 2 (for parameter v) | 0.9 0.1 0.1

Table 10 presents the SPRT for the parameter T for the TSD-Phase two data set. From
10 cumulative failure for serial number 15 indicates we should terminate the experiment
and conclude that the associated software the data was extracted from is not reliable.
Likewise from 9 which presents the SPRT for parameter 7 for the IBM data set. The
cumulative failure for serial number 16 indicates the experiment should be terminated
and the conclusion drawn that the software is not reliable.
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Table 9: SPRT results for the IBM data (Case 1, parameter 7)

T | N(t) | Acceptance region | Rejection region | Decision
1 2 -36.77727 36.79657 continue
2 3 —36.65325 36.78118 continue
3 4 —36.623666 36.77414 continue
4 5 —36.61433 36.77027 continue
d 7 —36.61109 36.77174 continue
6 9 —36.60999 36.77396 continue
7 11 —36.60962 36.77666 continue
8 12 —36.60949 36.77626 continue
9 19 —36.60944 36.79635 continue
10 | 22 —36.60943 36.80281 continue
11| 23 —36.60942 36.80283 continue
121 25 —36.60942 36.80626 continue
131 27 —36.60942 36.80977 continue
14| 31 —36.60942 36.81955 continue
15| 32 —36.60942 36.82004 continue
16 | 38 —36.60942 36.83579 continue
171 39 —36.60942 36.83632 continue
18 | 42 —36.60942 36.84289 continue
19 | 43 —36.60942 36.84355 continue
20 | 46 —36.609423 36.85011 continue
21 | 47 —36.60942 36.85087 continue
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Table 10: SPRT results for the TSD-Phase two (Case 1, parameter 7)

T | N(t) | Acceptance region | Rejection region | Decision
1 3 -36.77244 36.80139 continue
2 4 —36.65195 36.7855 continue
3 4 —36.62366 36.77414 continue
4 7 —36.61402 36.77797 continue
d 9 —36.61098 36.77916 continue
6 9 —36.60999 36.77396 continue
7 10 —36.60962 36.77316 continue
8 13 —36.60949 36.77969 continue
9 17 —36.60944 36.78964 continue
10 | 23 —36.60943 36.8061 continue
111 25 —36.60942 36.80931 continue
121 30 —36.60942 36.8222 continue
13| 32 —36.60942 36.82549 continue
14| 36 —36.60942 36.83506 continue
15| 37 —36.60942 36.83536 continue
16 | 39 —36.60942 36.83882 continue
171 39 —36.60942 36.83632 continue
18| 39 —36.60942 36.83399 continue
19| 39 —36.60942 36.83181 continue
20 | 42 —36.60942 36.83847 continue
21| 43 —36.60942 36.83933 continue

Tables 11 and 12 presents the SPRT for the case where the focused parameter is v for
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the IBM and TSD-phase two data set respectively. Based on the reliability, using the
Chen SRGM, it can be concluded that the software testing should continue because the
software reliability is nondeterministic

16



Table 11: SPRT results for the IBM data (Case 1, parameter v)

T | N(t) | Acceptance region | Rejection region | Decision
1 2 —2022.158 2024.156 continue
2 3 —1530.421 1534.418 continue
3 4 —1388.1266 1394.121 continue
4 5 —1307.528 1315.521 continue
5 7 —1204.834 1214.825 continue
6 9 —1137.763 1149.751 continue
7 11 —1089.029 1103.0156 continue
8 12 —1068.567 1084.551 continue
9 19 —975.4384 993.4184 continue
10| 22 —948.3416 968.3187 continue
11| 23 —939.7071 961.6817 continue
121 25 —924.7166 948.6885 continue
131 27 —911.1729 937.142 continue
14| 31 —888.4984 916.4644 continue
15| 32 —882.6649 912.6282 continue
16 | 38 —856.392 888.3517 continue
171 39 —851.6995 885.6565 continue
18 | 42 —840.3369 876.2909 continue
19 | 43 —836.1004 874.0516 continue
20 | 46 —825.9592 865.90731 continue
21 | 47 —822.0872 864.0325 continue
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Table 12: SPRT results for the TSD-Phase two (Case 1, parameter v)

T | N(t) | Acceptance region | Rejection region | Decision
1 3 —1531.42 1533.419 continue
2 4 —1389.125 1393.122 continue
3 4 —1388.126 1394.121 continue
4 7 —1205.833 1213.826 continue
d 9 —1138.762 1148.752 continue
6 9 —1137.763 1149.751 continue
7 10 —1111.186 1125.173 continue
8 13 —1051.274 1067.257 continue
9 17 —996.2303 1014.211 continue
10 | 23 —940.706 960.6829 continue
111 25 —925.71542 947.6897 continue
12| 30 —895.5458 919.5168 continue
13| 32 —884.6624 910.6306 continue
141 36 —866.1823 894.1474 continue
15| 37 —861.2167 891.1791 continue
16 | 39 —852.6982 884.6578 continue
171 39 —851.6995 885.6565 continue
181 39 —850.7008 886.6553 continue
19| 39 —849.702 887.654 continue
20 | 42 —838.3395 878.2883 continue
21| 43 —834.103 876.049 continue
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5 Conclusion

Quality control techniques come in different forms. Software reliability growth model as
a quality control technique is one of the most crucial elements in software production.
A newly developed Chen SRGM is proposed incorporating environmental uncertainties.
We developed the limits of its SPRT and showed the application of these limits. This
was done by examining which parameters were the most sensitive ones. The results re-
vealed that the variation of the parameters 7 and v were the largest. Thus the SPRT
was performed based on these parameters. The first case of the SPRT showed the soft-
ware was not reliable and hence the experiment should be terminated, whiles the second
case showed that software reliability was non-deterministic and hence the testing process
should continue. The results from the model selection criteria showed that the Chen
SRGM is suitable for reliability analysis than the other competing models. The Chen
SRGM can therefore assist software engineers model reliability data which follow the
Chen distribution. The limits of the SPRT developed can be used as a quality control
tool in software production during the monitoring phase.
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Table 13: IBM data

Failure rate (weeks) | Failures | Cumulative failures
1 2 2
2 1 3
3 1 4
4 1 5
5 2 7
6 2 9
7 2 11
8 1 12
9 7 19
10 3 22
11 1 23
12 2 25
13 2 27
14 4 31
15 1 32
16 6 38
17 1 39
18 3 42
19 1 43
20 3 46
21 1 47
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Table 14: TSD-Phase two data

Failure rate (weeks) | Failures | Cumulative failures
1 3 3
2 1 4
3 0 4
4 3 7
5 2 9
6 0 9
7 1 10
8 3 13
9 4 17
10 2 19
11 4 23
12 2 25
13 5 30
14 2 32
15 4 36
16 1 37
17 2 39
18 0 39
19 0 39
20 3 42
21 1 43
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