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Abstract

The rise in global temperature which is global warming has lead to erratic and
disruptive weather pattern in several regions of the world including the area
surrounding the Lake Victoria basin. Likewise, economic activities associated with
Lake Victoria and its Basin such as agriculture, fishing, mining and transportation
are significantly affected by this climatic changes. The primary cause of negative
impact that stems from this changes is lack of reliable information that can be used
to predict and address the climatic variations within the basin. The objective of
this research is to identify a suitable time series model that can be used to analyse
and predict this weather variations and pattern around the Lake Victoria basin.
This research uses Box jenskin methodology to build ARIMA(2,0,1) model for
rainfall pattern around Lake Victoria basin. The data is obtained from three
Kenya Meteorological Department weather stations as secondary data from the
years 2008 to 2014. In this research, data from the years 2008 to 2010 was used to
estimate the values for the years 2011 to 2013. The relationship from the research
showed a strong positive relationship which indicates high level of accuracy on
predictability by the model.
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1 Introduction

Climate change is described as changes in the state of climate that can be identified by statistical
variables and tend to persist for a long time [8]. Global climatic changes, known as global warming,
is caused by a high concentration of carbon and fluorine related gases in the atmosphere(GHG). The
gases have a profound effect on the environment by affecting global climatic distribution patterns and
consequently the regional climate changes[6]. It is projected that there will be an increase in climatic
changes with a resulting adverse effect on humanity and nature [5]. At the top of this changes is
the environment that supports Lake Victorian basin ecosystem which is becoming fragile from such
extreme and erratic weather fluctuation[1]. This type of extreme fluctuations have a high negative
effect on socio-economic activities that takes place along the Lake Victoria Basin.[3]
Lake Victoria climate is known to heavily depend on global Tropical Inter Convergence Zone(ITCZ)[9],
EL Nino southern oscillation and Indian ocean zone temperature gradient[2]. Absence of precise,
reliable and consistent information from weather forecasters for these temperature and rainfall
distribution pattern creates uncertainty and lack of anticipation by policy makers, policy implementers
and the general inhabitants of Lake Victoria Basin who directly depend on its environment with
about three thousand people die from weather related accidents on Lake Victoria every year [7].
Examples of extreme weather conditions that was not predicted includes the expected El Nino rainfall
and temperature occurrences in Kenya from December 2014 to February 2015, predicted rainfall in
December 2015 that never materialized and the devastating drought from the year 2009 to the year
2010 that was never anticipated. This project will use rainfall data from the years 2007 to 2014
from selected Kenya Meteorological Department’s stations to identify a suitable Time series model
that can give precise weather forecast for the Lake Victorian Basin. The most commonly used Time
series model is the ARIMA model developed by Box and Jenkins [4]. ARIMA models, also called
the Box-Jenskin models, are models that relate the present value of a series to the past values and
past prediction errors.
ARIMA models includes Auto-regressive terms,moving average terms and differencing operation.
ARIMA stands for a series which needs differencing to be made stationary. Lags of stationary series
are called Auto-Regressive(AR) terms while lags of forecast errors are called Moving Average(MA)
terms.

1.1 Basic Concepts

1. A time series is said to be strictly stationary if the joint probability distribution of the process
does not change when shifted in time i.e., If we take Xt to be a stochastic process and

Xt1 , Xt2 , Xt3 , · · · , Xtn (1.1)

is the same as

Xth+1 ,Xth+2 , Xth+3 , Xtn+h ∀ ti ∈ R. (1.2)

In stationary series, the mean and variance do not change with time, It has no periodic
variations, has no trend and its autocorrelation is constant. A time series is called 2nd order
stationary or weakly stationary if it has a constant mean and its auto covariance function is
independent of time but dependent only on the distance between the variables and its mean
is finite,i.e if

E(X) = µ < ∞∀ t ∈ R

Where E(X) is the expectation of the X
Taking X at times t as Xt it will follow that

E(Xt) = µt andE(Xt+ h) = µt+h
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applying the covariance equation for two variables XY given by

cov(XY ) = E(X − µx)(Y − µy) = σ

for the variables Xt and Xt+h we obtain

E(Xt − µt)E(Xt+h − µt+h) = σ(h) (1.3)

2. Auto correlation function ρ(h). Auto correlation function is a measure of how much(significant)
the present variables are correlated with the past variables at a given lag h and helps in
determining how far back the variables are correlated. The values of auto correlation varies
between +1 and -1. If the covariance of Xt and Xt+h is given by σ(h) and their respective
variances as V (Xt) andV(Xt+h) respectively Then

ρ(h) =
σ(h)√

V (Xt)V (Xt+h)
(1.4)

ρ(h) represents the auto correlation function (ACF) of a time series at a time lag of h between
the variables Xt and Xt+h and this varies between -1 and +1

3. Partial autocorrelation function (PACF) are a measure of correlation between variables
Xt and Xt+h. if there is a large set of lags in between that is making the auto correlation
difficult to establish, Partial auto correlation function gives the partial correlation within its
lagged values thereby handling shorter lag values. The PACF is used in data analysis to
identify the extent of a lag in ACF. If Φhh represent the coefficient of partial regression of
the rth order auto regression, Then

Xt+h = Φh1Xt+h−1 +Φh2Xt+h−2 + · · ·+ΦhhXt + et+h

where et+h is a normal error term. Multiplying Xt+h and Xt+h−j and finding the expectation
we obtain its covariance at lag h given by

σ(h) = E(Xt+h,Xt+h−j)

The covariance at lag h is then divided by covariance at lag 0 to find the partial auto
correlation function

ρ(h) = Φh1ρ(j − 1) + Φh+2ρ(j − 2) + · · ·+Φhhρ(j − h)

4. Moving average process(MA). Suppose et is a white noise(serially uncorrelated random
variables with zero mean and finite variance), then the process

Xt = θ0et + θ1et−1 + θ2et−2 + θ3et−3 + · · ·+ θqet−q

is the moving average process of order q and can be represented as

Xt =

q∑
j=0

θjet−j (1.5)

θ1, θ2, θ3, · · · , θq are the parameters of the moving average process with q being the maximum
order.
The mean µ of MA process given by E(Xt) is zero since E(et) = 0 The variance of MA
process is given by

var(Xt) = V ar(
∑

Xt)
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Taking the variance of et as σ which is a constant then
var(Xt) = σ2 ∑ θjθj at lag h = 0.

var(Xt) = σ2
∑

θ2j (1.6)

The covariance of Xt, with
E(Xt) = 0

will be
E(Xt;Xt+h) =

∑
θjθj+hE(etet+h)

hence the covariance is
σ(h) = σ2

∑
θjθj+h (1.7)

The auto correlation coefficient for an MA process is give by

ρ(h) =
σ2 ∑ θjθj+h∑

θ2j
(1.8)

5. Auto regressive process. A time series described by the process

Xt = δ + ϕ1Xt−1 + ϕ2Xt−2 + ϕ3Xt−3 + · · ·+ ϕpXt−p + et (1.9)

Where ϕ1, ϕ2, ϕ3, ϕp are some constants representing the parameter of the series, p represents
the order of the series and et represents normally, identically and independently distributed
random error term with mean µ = 0 and variance σ2.
An autoregressive process that is stationary has the absolute values to the solution of the
equation ϕ(B) = 0 and lie outside the unit circle in the complex plane where B is a backward
shift operator such that

B(Xt) = Xt−1

B2Xt = B(BXt) = Xt−2. (1.10)

The AR Model and the AR polynomial.

Φ(B) = 1− ϕ1B + · · ·+ ϕpB
p (1.11)

For AR(1) we have
Xt = δ1Xt−1 + ωt (1.12)

Hence

(1− ϕ1B)Xt = δ + ωt

Denoted as

Φ(B)Xt = δ + ωt

Where ωt ∼ N(0, σσ2) and Φ(B) = 1− ϕ1B is an AR polynomial.

6. Auto regressive moving average process. The combination of autoregressive process
(AR(p)) and moving average process (MA(q)) from a stochastic model in develops to get
Auto Regressive Moving Average (ARMA) model. The model represents a stationary time
series process. The ARMA model is represented as

ϕ1 + ϕ2Xt−2 + · · ·+ ϕpXt−p = θ1e1 + θ2et−2 + · · ·+ θqet−q (1.13)

Using a backward shift operator
ϕ(B)Xt = θ(B)Xt (1.14)

where ϕ(B) = 1− ϕ1B + ϕ2B
2 + · · ·+ ϕpB

p and θ(B) = 1− θ1(B) + θ2B
2 + · · ·+ θqB

q

These equations are polynomials of degree p and q that forms an ARMA model with parameters
p, q. For stationariness, both the absolute values of the solutions to the polynomials must lie
outside the unit circle.

4



British Journal of Mathematics and Computer Science X(X), XX–XX, 20XX

7. Differencing A non stationary time series can be made stationary by either linear filtering
or differencing method. In this research, the differencing method is applied such that

∇Xt = Xt −Xt−1 (1.15)

which representing a first order differencing and

∇(∇X) = ∇2 = (Xt −Xt−1)− (Xt−1 −Xt−2) (1.16)

representing a second order differencing

8. Auto regressive integrated moving average process.
If a time series has an ARMA model with a trend that is not stationary, the model is integrated
by differencing to make it stationary.
Let ∇d represent d times differencing to produce a stationary model, by using a backward
shift operator function

∇ = (1−B) (1.17)

this implies
ϕ(B)∇Xt = θ(B)et (1.18)

can be represented as
ϕ(B)(1−B)dXt = θ(B)et (1.19)

This is Auto Regressive Integrated Moving Average (ARIMA) model of order p, d, q.

9. Ljung-Box test;
A test statistics on the residuals of ARIMA model used in confirming weather the data used
in the research are random in nature or not. Generally, the residuals tests the hypothesis.

Ho : The data is random
H1 : The data is not random

The test statistics is given by

QLB = n(n+ 2)

h∑
j=1

P 2

n− j
(1.20)

Where n is the sample size, p is the auto correlation at lag j and h is the number of lags.
The hypothesis on the test of randomness is rejected when

QLB = X2 (1.21)

where X2 is a chi-square distribution.

2 ARIMA MODEL

The research developed ARIMA model using secondary data that was collected from Kenya meteorological
department.
Analysis was done by using Box jenskin methods of

1. model identification

2. parameter estimation

3. data validation.
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2.1 Identification of the model

At this stage data is smoothed by using the moving average(MA) process and the central moving
average(CMA) process. Smoothing is done so that a clear signal of patterns and trends in the time
series is produced by removing irregular roughness. A twelve period moving average is used to center
the twelve months of the year and six months central moving average is used as the average of the
twelve months. The central moving average helps us to see the trend from the data.
The table below represents monthly rainfall with their moving average(MA) and central moving
average(CMA) from the years 2008 to 2010.

Time year month Rain year month MA(12) CMA(6)

1 2008 1 27.178 2008 1
2 2008 2 68.072 2
3 2008 3 146.05 3
4 2008 4 164.338 4
5 2008 5 150.368 5
6 2008 6 101.09 6
7 2008 7 83.312 7
8 2008 8 86.36 8
9 2008 9 81.534 9
10 2008 10 260.069 10
11 2008 11 144.526 11 154.9823 153.8938
12 2008 12 546.862 12 161.671 151.9162
13 2009 1 107.442 2009 1 159.2157 148.9166
14 2009 2 38.608 2 149.86 148.5446
15 2009 3 33.782 3 155.0882 146.9813
16 2009 4 227.076 4 151.003 144.2115
17 2009 5 101.346 5 145.4362 137.7557
18 2009 6 34.29 6 141.1393 131.8441
19 2009 7 31.75 7 140.6737 17.0786
20 2009 8 80.772 8 156.6122 124.1244
1 2009 9 272.796 9 138.9168 119.8003
22 2009 10 47.752 10 135.6995 117.6867
23 2009 11 105.918 11 105.8122 115.824
24 2009 12 188.214 12 104.0553 117.9437
25 2010 1 86.36 2010 1 107.7807 120.2569
26 2010 2 83.31 2010 2 119.9938 120.4474
27 2010 3 180.34 2010 3 126.3438 119.6673
28 2010 4 303.276 2010 4 124.1213 118.0616
29 2010 5 74.676 2010 5 122.6608 115.8754
30 2010 6 16.764 2010 6 120.65 114.1895
31 2010 7 7.62 2010 7 120.2478 113.1127
32 2010 8 75.946 2010 8 109.1142 111.6857
33 2010 9 139.192 2010 9 114.5328 112.3286
34 2010 10 112.776 2010 10 115.1043 111.5939
35 2010 11 112.776 2010 11 108.8178 109.8386
36 2010 12 112.776 2010 12 110.8595 110.8595

Rainfall moving average and central moving average
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2.1.1 Time series plot of rainfall data

A plot of time series rainfall data indicates seasonal behaviour from the moving average as time
increase weather the trends are increasing, decreasing or are constant. This plot can help us choose
between multiplicative and additive methods and also show us the general trend of the series which
in this case is a non increasing trend.

Figure 1: Time series plot for rainfall data

2.1.2 Parameter estimation

Auto Correlation Function plot The two figures below illustrate autocorrelation function and
Partial Autocorrelation functions respectively. As both ACF and PACF show significant values, we
assume that an ARIMA model will serve our needs. The ACF can be used to estimate the MA-part,
i.e. q-value, the PACF can be used to estimate the AR-part, i.e. p-value. To estimate a model-order
we look at;

1. If the ACF values die out sufficiently

2. If the ACF and PACF show any significant and easily interpretable peaks at certain lags.

ACF and PACF might suggest not only one model but many from which we need to choose from
after considering other diagnostic methods. The most obvious model seems to be ARIMA (4,0,2) as
ACF values die out at lag 4 and PACF shows spikes at 1 and 2

Figure 2: ACF and PAC function plot.

Another way to analyze would be an ARIMA(2,0,1) as we see two significant spikes in PACF
and one significant spike in ACF (after which the values die out starting from a much lower point
(0.4)). Looking at the in-sample-forecast results (using a simple Mean Absolute Percentage Error)
ARIMA (2,0,1) delivers much better results than ARIMA (4,0,2). So we use ARIMA (2,0,1).

2.1.3 Data validation

After fitting the model, the research checked weather the model is appropriate. From Residual
analysis, a sequence plot is run to show that the residuals have no constant location and scale.
The research preformed a lagged plot to show that the residuals are not auto correlated at lag one.
Finally, an auto correlation of the residuals is perform to show that all sample auto correlation falls
inside the 95 per cent confidence interval
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2.1.4 Testing for auto correlation at lag 1

A simple graphical approach is the lagged scatter plot, but the approach is cumbersome when there
are many scatter plots to be examined in covering the possibility of relationship at higher lags.

Xt−1 154.98 161.671 159.215 149.86 155.08 151.00 145.43

Xt 161.671 159.2157 149.86 155.088 151.003 145.436 141.13

Xt−1 141.13 140.67 156.61 138.916 135.69 105.82 104.055

Xt 140.67 156.612 138.9163 135.699 105.824 104.0553 107.78

Xt−1 107.7807 119.9938 126.3438 124.121 122.6608 120.65 1220.24

Xt 119.99 126.3438 124.121 122.660 120.65 120.2478 109.1142

.

From the table we plot a graph of the series Xt against its lag Xt−1

Figure 3: xt against xt−1

In our case, the series are auto correlated and therefore the lags are interdependent.

2.1.5 Testing for auto correlation Function of residuals

Figure 4: Plot of ACF.

Figure 5: Plot of PACF

The auto correlation function shows that all lags fall inside 95 per cent confidence interval, an
indication that the residuals are random.
There is no indication of significant autocorrelation in the residuals as confirmed by the Ljung-
Box test. The Ljung-Box statistic is 19.8 based on 20 lags, which is not significant (p = 0.65)
because the quantile corresponding to the 95th percentile of a chi-squared distribution with 16 degrees
freedom is 35.17. The Ljung-Box test is valid under these conditions of non-normality, although for
stronger non-normality, the Ljung-Box test is not robust and tends to reject the null hypothesis of
no autocorrelation too quickly.
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3 Results and Discussion

Data that were collected from Kenya meteorological station in Kisumu is first analysed using twelve
month moving average and six month central moving average. A time series plot ( Fig 3.1) revealed a
stationary trend with a slightly increasing seasonal component that has constant mean and variance.
Given that it shows stationariness, differencing the time series is not necessary and the integrated
part of the model is taken to be zero.
A plot of Auto correlation and Partial auto correlation factors represented in figure( Fig 3.2) helps
us to identify pattern in the data that is stationary in both mean and variance. The parameters of
the model are estimated using the mean absolute percentage error that gives an Auto Regressive(AR)
term of order( p term) and a moving average term of order (q term) with a value of one. This is
ARIMA (2,0,1) model.
The data is then subjected for validation . A plot of values of random variable residuals, X against
its lag at X−1 as shown in ( Fig. 3.3), shows that most of the spikes fall within the significant line
hence there is no correlation within the residuals. This indicates that the residuals are independently
and identically distributed normal random variables.
More checks on the residuals using Auto-correlation Function(ACF) shown in ( Fig 3.4) and Partial
Auto Correlation Function(PACF) shown in figure (Fig 3.5).
Ljung-Box statistics at lag 20 was found to be 19.8 with a p-value of 0.65, a value that is not
significant and lies within the confidence interval. The result shows that the residuals are independent.
The forecast values were superimposed on the actual values as shown in (Fig 5.1) with the aim of
determining and comparing the level of accuracy between actual and predicted values including a
four years prediction of rainfall from 2010 to 2014 obtained from the model. The R2 = 0 : 90846 (a
high value), implied that the fitted values are closer to the actual ones. This confirms the ARIMA
model (2,0,1) to be accurate and suitable in forecasting rainfall data around Lake Victoria Basin.
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4 Conclusions

This study has accurately determined and analysed trends and patterns of rainfall around the Lake
Victoria region from year’s 2007 to 2014 by fitting ARIMA (2,0,1) model from the data set as shown
in figure 6.
From the figure, it can be observed that there is no significant deviations between the actual rain
data as shown by lines of blue colour and the predicted rainfall data represented by grey lines.
This research thus proves that ARIMA(2,0,1) model can be suitably used for weather forecasting
along the Lake Victorian basin and hence guide the inhabitants who depend on the basin to manage
their socio economic activities.
The study also observed the trends and generalized them for use in future forecasting.

Figure 6: Time series plot of historical and predicted.
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