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BIVARIATE COMPOUND EXPONENTIATED SURVIVAL FUNCTION 

OF THE LOMAX DISTRIBUTION: ESTIMATION AND PREDICTION  

 

Abstract:  

In this paper, bivariate compound exponentiated survival function of the Lomax 

distribution is constructed based on the technique considered by AL-Hussaini (2011). Some 

properties of the distribution are derived. Maximum likelihood estimation and prediction of the 

future observations are considered. Also, Bayesian estimation and prediction are studied under 

squared error loss function. The performance of the proposed bivariate distribution is examined 

using a simulation study. Finally, a real data set is analyzed under the proposed distribution to 

illustrate its flexibility for real-life application.  

 

Keywords: Lomax distribution; Bivariate distributions; Compound exponentiated survival 
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simulations. 

  

1. Introduction 

  

Although bivariate extensions of univariate distributions are useful, it has not been 

applied in practice due to shortage of inferential procedures caused by numerical complexity. 

Moreover, generalization of univariate models is not straightforward in the sense that certain 

desirable properties may hold for more than one multivariate model. 

        One of the objectives of this paper is to construct a bivariate compound exponentiated 

survival function of the Lomax (BCESFLO) distribution; based on the technique considered by 

AL-Hussaini (2011) who constructed a class of multivariate distributions. It could be useful in 

studying reliability maintainability of complicated systems.  

This paper consists of six sections. In Section 2, construction of BCESFLO distribution based on 

the technique proposed by AL-Hussaini (2011), also some properties of the distribution are 

obtained. Maximum likelihood estimation and prediction are considered in Section 3. In Section 

4, simulation study and a data analysis are presented to illustrate the theoretical results derived 

for ML estimation and prediction. In Section 5, Bayesian estimation; for the unknown 
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parameters, rf and hrf of BCESFLO distribution, are derived, also Bayesian prediction is 

considered. Finally, a simulation study and a data analysis for the results of Bayesian estimation 

and prediction are given in Section 6.  

                                                                                                                                          

2. Construction of a Compound Exponentiated Survival of the Lomax Distribution 

 

Recently, in the statistical literature several methodologies of constructing bivariate and 

multivariate distributions based on marginal and conditional distributions have been proposed 

see Arnold et al. (1999, 2001), Kotz et al. (2000), Sarabia and Gomez-Deniz (2008), 

Balakrishnan and Lai (2009) among others. 

Bivariate survival data arise when each study subject experiences two events. Examples include 

failure times of paired human organs, kidneys, eyes, lungs, breasts and others, as well as first and 

second occurrences of given disease. Moreover, bivariate survival data may consist of time to 

diagnosis or hospitalization and the time to eventual death from a fatal disease. Moreover, it is 

appropriate to emphasize that in the medical literature the paired organs of an individual are 

considered as a two-component system, which work under interdependency circumstances. 

Specifically, in industrial applications these data types may come from system whose survival 

depends on the survival of two similar components. For an example, the breakdown times of 

dual generators in a power plant or failure times of twin engines in a 2-engine airplane are 

illustrations of bivariate survival data. In fact, there are many bivariate distributions that can be 

employed for the analysis of paired data, see Kotz et al. (2000). 

Regarding the bivariate Pareto distribution, we highlight that two bivariate Pareto distributions 

were suggested by Mardia (1962), which are called bivariate Pareto of the first kind and bivariate 

Pareto of the second kind. Arnold (1983) suggested a distribution of the fourth kind and 

presented three methods to derive this model. Moreover, Muliere and Scarini (1987) proposed a 

bivariate Pareto survival function which was characterized by Padamadan and Nair (1994) using 

the survival function of the marginal distributions.  

In this section, two cases of the construction of the compound exponentiated survival function of the 

Lomax (CESFLO) distribution, univariate and bivariate, are introduced. 
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2.1 Construction of the univariate compound exponentiated survival of the Lomax      

distribution 

         AL-Hussaini (2011) introduced the construction of a class of distributions by compounding 

the exponentiated survival function (sf)
 
with the gamma probability density function (pdf). The 

obtained class includes all distributions with positive domain. Such domain could be the whole 

positive half of the real line or subset of it. A particular class of such distributions is the 

univariate CESFLO distribution.  

Next, we will obtain the univariate CESFLO distribution. Suppose that the random variable   

has Lomax (LO) distribution whose pdf and cumulative distribution function (cdf), are given, 

respectively, by 

                                                                                                                                  

and   

                                                                                                                                 

Using (1) and (2), we can define the following pdf and cdf, respectively, as follows: 

                                                                                                                                  

and 

                                                                                                                         

where        . From (3), it follows that the corresponding sf is  

                                                                                                                                                       

         Now, using the idea proposed by AL-Hussaini (2011), we will define the pdf of CESFLO 

distribution, f, as the compounding of q with the gamma pdf. That is,  

                                                                                                                                    
 

 

        

         where 
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Notice that using the equality                   
  

  

we can construct the following gamma density  
  

    
          with                   

and         
to ensure that the pdf of the CESFLO distribution is given by 

     
 

 
 
 

   
    

 

 
        

      

                                                                              

From (5) the cdf of CESFLO distribution can be written as 

          
 

 
        

  

                                                                                                                      

The hazard rate function (hrf) corresponding to      is  

      
    

      
 

           
 

 

 

     
   

 

 
        

  

                                                                                                             

The reversed hazard rate function (rhrf) is given by 

  
     

 

  

 

     
   

 

 
        

      

     
 

 
        

                                                                                                    

 

2.2 Construction of the bivariate compound exponentiated survival of the Lomax 

distribution 

 

Suppose that Ti has LO distribution for       with    and    are independent random 

variables. 

Again, using (1) and (2), we can define the following cdf and pdf  

                            
             

and 

                           
               

                                                                                            

for       , respectively, where             . 

Let   be defined by 
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where            with      for i=1,2 and                   with            for 

       

Again, using the idea proposed by AL-Hussaini (2011) we will define pdf of BCESFLO 

distribution, f, as the compounding of   with   where   is given by (4). That is, 

                     

 

   

         
 

 

                                                                                               

Next, we will derive the function,               . Observe that 

     

 

   

           

 

   

       
       

              

         
                                                                      

                                     

 

   

              

         
                 

                                       

Substituting (7) and (4) in (6), one obtains 

                     

 

   

              

         

  

    
                       

      
    

 

 

                  

                                   
      

    
   

  
 
 
              

         

 

   

      
  
 
 

 

   

        
    

      

   

Then the pdf in the bivariate case is 

                             
    
 
 

  
    

   
  
 
 

  
    

                                                                     

                                                        
      
 

          
      
 

           
      

                       

where              for        

The contour plots of the joint pdf of BCESFLO distribution for different parameter values are 

presented in Figure 1. 
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                            (1.a)       (1.b)  

  

 

                                        

 (1.c)  (1.d)  

Figure 1. The contour plots of the joint pdf of BCESFLO distribution for different 

parameter values 

(1.a)                                          ,  

(1.b)                                    ,  

(1.c)                                   

and (1.d)                               . 
 

On the other hand the cdf of BCESFLO distribution is given by 

                               
  

 

  

 

         

 

  



   7 
 

                                                    
    
 
 

  
    

   
  
 
 

  
    

     
  

 

  

 

    

                                                            
      
 

          
      
 

           
      

        

                                     
      
 

          
      
 

           
  

     
      
 

           
  

 

                                                  
      
 

           
  

                                                                         

             

                                   

where              for        Moreover, the marginal’s pdf and cdf of BCESFLO distribution 

can be written, respectively, as 

              
     
 

 
  

    
    

      
 

          
      

        

and 

                   
      
 

          
  

                                                                             

where              for        the joint reliability function (rf) of BCESFLO distribution is 

given by: 

                                                                                                                   

                       
      
 

          
      
 

           
  

                                                    

where              for        Also, the joint hrf of BCESFLO distribution can be defined as 

         
        

        
          

    
 
 

  
    

   
  
 
 

  
    

                                                                       

                           
      
 

          
      
 

           
  

                                                

where              for        

Just express that h is a decreasing function in           the probabilistic was clarified at the 

beginning of the section. The contour plots of the joint hrf of BCESFLO distribution for different 

parameter values are presented in Figure 2. 
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 (2.a)                                                                            (2.b) 

 

                

                    

 (2.c)  (2.d)  

Figure 2: The contour plots of the joint hazard of BCESFLO distribution for different 

                 parameter values 

 (2.a)                                        ,  

(2.b)                                     ,  

(2.c)                                             

and (2.d)                               . 

3. Maximum Likelihood Estimation  
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In this section, the ML estimation and prediction for the vector of the parameters  

                    of BCESFLO distribution will be considered.  

3.1 Maximum likelihood estimation of the parameters  

The likelihood function of BCESFLO distribution can be derived using the pdf in (8) directly, 

but compounding of          
 
    and      can be applied to make the ML estimation easier, 

hence  

                                                       

 

   

                                                                

               

 

   

                              

 

   

 

 

 
   

       
    

 

   

 

   

  
   

   
   

         
          

   

   

 

   

                                                

                                                                      

 

   

                 

                 
                                                

                                                             

where                     . The log likelihood function is given by 

                                              

 

   

                                

                                                     

 

   

            

 

   

                                            

                                                                

 

   

                                               

To obtain the ML estimators for the parameters, Equation (13) is differentiated with respect to 

the parameters. Hence, the resulting non-linear system of likelihood equations are given below 
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and 

                               

 

   

 

where                     

 

Setting the previous non-linear system of likelihood equations to zero and then solving 

numerically, the ML estimates can be obtained. The invariance property of the ML estimators 

can be applied to obtain the ML estimators for          and          by replacing the parameters 

in (10) and (11) by their ML estimators as given below 

                 
        

  
           

        

  
            

   

                                                          

and 

                      
     

  
 

   
     

   
   

  
 

   
     

                                                                         

                             
        

  
           

        

  
            

  

                                                        

 Hence the              and             can be calculated numerically. 

3.2 Two-sample maximum likelihood prediction  

Considering two- sample prediction, the two samples are assumed to be independent and drawn from 

the same distribution. In univariate case, the density of the s-th order statistic in the future sample is 

used to obtain the predictive pdf of the s-th ordered statistic. The first variable in the vector of 

bivariate distribution is the ordered observation and the second variable is its concomitants, therefore 

the joint pdf of the ordered observations and the concomitants is needed to obtain the joint predictive 

density function of future ordered observations and their concomitants.  
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For a future bivariate sample of size  , the joint pdf of future s-th ordered observation and its s-th 

concomitant denoted by                  ,          , has the joint pdf which is given by (8) after 

replacing    by         and    by        . For simplicity, it can be written as               instead 

of                  . Then the joint pdf of               can be derived as follows: 

                    
  

            
                                

   
                  

   
   

using binomial expansion to simplify the last term in the previous equation, one gets  

                  
   

   
   
          

                   
 
   

Thus, the joint probability density of               is  

                                           

   

   

                
     

                                              

where                      and                                with  

        
  

                  
                                                                                                          

Substituting          given in (8) and          in (9) after replacing    by       and    by       

then, the joint ML predictive pdf of the ordered observations and their concomitants is given by 

                                                                                                                                                

                                                 
     

  
 

   
       

   
   

  
 

   
       

                                                              

                                            
        

  
             

        

  
              

       

                                      

                                 

   

   

       
        

  
             

        

  
              

   

   

                                
        

  
              

   

        
        

  
              

  

 

     

                  

where                                

The point predictors of the future ordered observations and their concomitants                 

            can be obtained as follows:  
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and 

                                                                                            
 

     

 

       

 

where                              . 

From (15) and (16), the ML point predictors   
  and    

  cannot be obtained in closed form. Then, 

the joint point predictors of the future ordered observations is 

                                                                     

 

 

 

 

                         

which can be evaluated numerically. 

 

4. Numerical Illustration  

This section aims to clarify the theoretical results for both estimation and prediction on the basis 

of simulated and real data set. 

4.1 Simulation study 

In this subsection, a simulation study is conducted to illustrate the performance of the presented 

ML estimates based on the generated data from BCESFLO distribution. The ML averages of the 

estimates of the parameters, rf and hrf are computed. Moreover, confidence intervals (CIs) of the 

parameters, rf and hrf are calculated. Simulation studies are performed using Mathematica 11 for 

illustrating the obtained results. 

The steps of the simulation procedure are as follows: 

a) For given values of   (where                    ), random samples of size n are 

generated from BCESFLO distribution. 

b) For each sample size sort    
 

s, such that                                . 

c) Repeat the previous two steps N times, where N represents a fixed number of simulated 

samples. 
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 For the number of the population parameter values the Newton-Raphson method can be 

used, the ML averages and the CIs of the parameters are obtained. Also, the rf, hrf and 

their CIs are calculated using the ML averages of the parameters. 

 Evaluating the performance of the estimates is considered through some measurements of 

accuracy. To study the precision and variation of the estimates, it is convenient to use the 

estimated risk (ER) 

     
                         
   

 
  . 

 Simulation results of the ML estimates are displayed in Tables 1, 2, where N = 10000 is 

the number of repetitions, samples of size (n=30, 50, 100), and the population parameter 

values are  

                                            

and                                             . 

 Tables 1 and 2 present the ML averages, ERs, and CIs of the unknown parameters based. 

While Tables 3 and 4 display the ML averages, Ers and CIs of the rf and hrf for different 

values of time        . The ML two-sample predictors are presented in Table 8. 

 

4.2 Example data set 

In this example, a data set is analyzed from a Sankaran-Nair bivariate Pareto distribution [see 

Sankaran-Nair (1994) and Sankaran and Kundu (2014)]. The generated data set for n=30 is: 

(0.252, 8.400), (1.105, 0.458), (0.427, 1.602), (12.491, 2.383), (0.260, 0.106), (0.240, 1.769), (4.888, 

0.758), (0.870, 0.572), (0.036, 0.254), (1.537, 0.023), (1.508,0.535), (0.239, 1.4120), (0.173, 0.011), 

(1.090, 1.278), (6.002, 0.017), (0.897, 2.032), (0.690, 0.138), (1.883, 0.398), (0.960, 0.257), (0.561, 

0.573), (5.370, 0.325), (0.167, 0.260), (13.602, 0.364), (3.922, 0.938), (0.132, 0.547), (0.603,0.102), 

(0.226, 0.481), (0.143, 0.779), (0.643, 0.071), (0.349, 1.586). 

The Kolmogorov–Smirnov goodness of fit test is applied to check the validity of the fitted 

model. The p values are given, respectively 0.808 and 0.393. The p values showed that the model 

fits the data very well. Table 5 displays the ML estimates and standard errors (Se) of the 

unknown parameters for the real data set. While Tables 6 and 7 present the ML estimates, Se and 

CIs of the rf and hrf for different values of time         . Table 8 gives the ML two-sample 

predictors for the future observation. 



   14 
 

Table 1 

ML averages, variance, estimated risks and 95% confidence intervals of the parameters 

                                                 
  Parameters Averages Var ER UL LL Length 

 

 

30 

  0.9764 0.0010 0.0163 1.0393 0.9134 0.1259 

  1.7883 0.0030 0.0478 1.8963 1.6804 0.2159 

   1.5112 9.6547e-06 0.0001 1.5173 1.5051 0.0122 

   2.2207 0.00003 0.0005 2.2319 2.2095 0.0224 

   1.9142 0.00002 0.0002 1.9219 1.9065 0.0154 

   3.1292 0.00007 0.0009 3.1450 3.1134 0.0315 

 

 

50 

  0.9951 0.00002 0.0110 1.0040 0.9861 0.0179 

  1.8199 0.00007 0.0325 1.8359 1.8038 0.0321 

   1.5086 1.4879e-08 0.0001 1.5089 1.5084 0.0005 

   2.2168 9.5819e-08 0.0003 2.2174 2.2162 0.0012 

   1.9109 2.3872e-08 0.0001 1.9113 1.9106 0.0006 

   3.1237 1.9025e-07 0.0006 3.1245 3.1228 0.0017 

 

 

100 

  0.9969 1.7630e-06 0.0106 0.9996 0.9944 0.0052 

  1.8235 5.2811e-06 0.0312 1.8279 1.8189 0.0090 

   1.5089 1.4657e-9 0.0001 1.5089 1.5088 0.0002 

   2.2167 1.0896e-08 0.0003 2.2169 2.2166 0.0004 

   1.9112 2.3517e-09 0.0001 1.9113 1.9111 0.0002 

   3.1236 2.1634e-08 0.0005 3.1239 3.1233 0.0006 

 
Table 2 

ML averages, variance, estimated risks and 95% confidence intervals 
 of the   parameters 

                                                      

  Parameters Averages Var ER UL LL Length 

 

 

30 

 

 

  0.9567 0.0005 0.1277 1.0020 0.9113 0.0908 

  1.7614 0.0018 0.3169 1.5254 1.6791 0.1647 

   1.5235 9.5511e-07 0.5983 1.5254 1.5216 0.0038 

   2.2370 7.6043e-06 1.29277 2.2424 2.2316 0.0108 

   1.9298 1.5324e-06 0.9599 1.9322 1.9273 0.0049 

   3.1521 0.00002 2.5668 3.1598 3.1445 0.0152 

 

 

50 

  0.9425 1.2119e-06 0.1173 0.9447 0.9404 0.0043 

  1.7359 3.3451e-06 0.2872 1.7395 1.7323 0.0072 

   1.5232 9.6456e-07 0.5978 1.5251 1.5212 0.0038 

   2.2376 3.2349e-08 1.2941 2.2379 2.2372 0.0007 

   1.9293 1.5476e-06 0.9591 1.9318 1.9269 0.0049 

   3.1529 6.4230e-08 2.5694 3.1534 3.1525 0.0009 

 

 

100 

  0.9411 5.4548e-07 0.1164 0.9426 0.9397 0.0029 

  1.7335 1.5400e-06 0.2846 1.7359 1.7311 0.0049 

   1.5238 4.0737e-07 0.5988 1.5251 1.5226 0.0025 

   22382 1.0435e-09 1.2955 2.2383 2.2381 0.0001 

   1.9302 6.5359e-07 0.9608 1.9317 1.9286 0.0032 

   3.1538 2.0718e-09 2.5723 3.1539 3.1537 0.0002 
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Table 3 

ML averages, relative absolute biases, variance, estimated risks and 95% confidence 
intervals of the reliability and hazard rate function 

                                                               

 
 

Table 4 

ML averages, relative absolute biases, variance, estimated risks and 95% confidence 
intervals of the reliability and hazard rate functions 

                                                                 

  rf and hrf Averages RAB Var ER UL LL Length 

30 
           0.0524 0.8323 1.2496e-08 0.0226 0.0527 0.0522 0.0004 

           0.0014 0.1493 5.0258e-10 0.0009 0.0016 0.0013 0.0003 

50 
           0.0522 0.8321 1.8122e-09 0.0224 0.0525 0.0523 0.0002 

           0.0013 0.1386 1.8525e-10 0.0006 0.0015 0.0012 0.0003 

100 
           0.0520 0.8320 1.7635e-09 0.0221 0.0521 0.0519 0.0002 

           0.0011 0.1382 2.5761e-12 0.0002 0.0012 0.0010 0.0002 

  

  Table 5 

ML estimates and standard errors of the parameters for the real data set  
Parameters Estimates Se 

  0.9952 0.0109 

  1.8246 0.0307 

   1.5123 0.0002 

   2.2275 0.0008 

   1.9156 0.0002 

   3.1387 0.0015 

 
Table 6 

ML estimates and standard errors of the reliability and  
hazard rate functions for the real data set 

rf and hrf Estimates Se 

           0.0727 0.0001 

           0.0052 0.0044 

 
Table 7 

ML estimates and standard errors of the reliability and  
hazard rate functions for the real data set 

 

 

 
  

  rf and hrf Averages RAB Var ER UL LL Length 

30 
           0.0756 0.2194 0.00002 0.0001 0.0831 0.0681 0.0150 

           0.0051 0.1669 5.7242e-08 0.0016 0.0055 0.0046 0.0009 

50 
           0.0761 0.2178 0.00001 0.0001 0.0831 0.0691 0.0140 

           0.0051 0.1666 5.2811e-08 0.0016 0.0055 0.0046 0.0009 

100 
           0.0759 0.2160 0.0000 0.0001 0.0826 .06880 0300.0 

           0.0050 0.1654 5.0551e-08 0.0015 0.0055 0.0046 0.0009 

rf and hrf Estimates Se 

           0.0654 0.0001 

           0.0034 0.0038 
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Table 8 

ML predictors and bounds of the future observation  
under two-sample prediction  

                                                                   

        Estimates UL LL Length 

7 
       0.0068 0.0448 0.0000 0.0448 

       0.1141 0.3374 0.0147 0.3227 

15 
       0.0295 0.0452 0.0001 0.0451 

       0.2062 0.3563 0.0113 0.3450 

18 
       0.4845 2.1960 0.0222 2.1738 

       0.6831 1.3169 0.2638 1.0532 

 

 

4.3 Concluding remarks 

  

1. It is noticed, from Tables 1 and 2 that the ML averages are very close to the population 

parameter values as the sample size increases. Also, ER is decreasing when the sample 

size is increasing. This is indicative of the fact that the estimates are consistent and 

approaches the true parameter values as the sample size increases. 

2. The lengths of the CIs of the parameters become narrower as the sample size increases. 

3. The ML averages for the rf and hrf perform better as the sample size increases. Also, ER 

is decreasing when the sample size is increasing. 

4. The length of the CI for the first future order statistic is smaller than the length of the CI for 

the last future order statistic [Tables 8 and 9]. 

5. The ML interval includes the estimates (between the LL and UL). 

5. Bayesian Method  

In this section Bayesian estimation and prediction for the vector of parameters  

                    of BCESFLO distribution will be studied. 

5.1 Bayesian estimation  

AL-Hussaini and Ateya (2005) estimated the parameters under a squared error loss 

(SEL) function using Tierney- Kadane’s (1986) approximation form. Iliopoulos et al. (2005) 

considered bivariate gamma distribution for estimating the unknown parameters based on SEL 

function. Chadi et al. (2013) estimated the parameters and the mean time between failures of a 

bivariate exponential model under various loss functions, namely SEL, absolute error, DeGroot, 
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LINEX and Entropy loss functions. Lin et al. (2013) obtained the estimators for the parameters 

of Moran-Downton bivariate exponential distribution based on complete and Type-II censoring. 

Independent gamma priors were assumed for scale parameters and beta distribution for 

correlation parameter. Pradhan and Kundu (2015) derived the estimators for the parameters of 

the Block and Basu bivariate Weibull distribution.  

Considering               and         are independent, a prior density function of  

                     is given by 

                                                                                                                                     

where the first prior is 

                                                                                     
                                                     which is more suitable and easier to do the calculations. 

 the second prior is  

                                                                                      

                                                         which is more suitable and easier to do the calculations. 

and the third prior 

                                                                                         

                                                           which is more suitable and easier to do the calculations. 

The three priors can be written as 

                                                                                                                                          

            
         

                                                                                                                   

and  

            
         

                                                                                                                   

Bayes’ Theorem for probability distributions is often stated as: 

                              

Now, substituting from (18)-(20) in (17) and using the likelihood function in (12), then the 

posterior density function will separate into three posteriors, which are 
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and  

 

  
                                                                                                                                                                      

                
           

              
   

                              
 
             ) 

where               , for        and              . 

By using (21)-(23), hence the posterior density function is given by 

                
                 

                   
                                                      

where                    ,                                  

The Bayes estimators,      
  are the posterior means under SEL function 

     
               

 

                   

     
  can be evaluated numerically to obtain the Bayes estimates for the parameters. 

The Bayes estimators of the          and          can be obtained using (10), (11) and (24), 

respectively, as given below 

   
                                      

 

                                                            

and 

   
                                      

 

                                                             

Equations (25) and (26) can be calculated numerically to obtain the Bayes estimates of the 

parameters, rf and hrf based on SEL function. 
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5.2 Bayesian prediction  

The joint pdf of               has the form as given in (14), and hence the joint Bayes predictive 

density of the ordered observations and their concomitants is given by 

                 

                         
            

 

 

 

 

 

 

 

 

 

 

 

 

                       

                                                                                                                                                               

   Substituting (14) and (24) in (27), yields the joint Bayes predictive density of               as 

 

                                 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                

where  

   
        

      
               

         
      

         
        

        
        
 
                                  

  
            

  
  

       
      
 

             
      
 

              
      

   

            

 

   

 

  

         

 

   

 

  

    

 

   

 

   

 
            

     
              

   
    

  

and 

           

   

   

       
      
 

             
      
 

              
  

   

              
      
 

              
  

       
      
 

              
  

 

     

                            

where                              . 

The Bayes point predictors of the future ordered observation and their concomitants 

                

            under SEL function can be obtained as follows:  

                                                                                                       
 

 

 

 
                          

and 
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where                                

From (29) and (30), the Bayes point predictors      and      cannot be obtained in closed form. 

The joint Bayes points predictors of future ordered observation is 

                                                                   

 

 

 

 

                             

 

6. Numerical Illustration  

 

This section aims to investigate the precision of the theoretical results of Bayesian estimation and 

prediction based on the simulated and real data set. 

 

6.1 Simulation study  

In this subsection, a simulation study is conducted to illustrate the performance of the presented 

Bayes estimates based on generated data from BCESFLO distribution. Bayes averages of the 

estimates for the parameters, rf and hrf are computed. Moreover, credible intervals of the 

parameters, rf and hrf are calculated, Bayes point predictors for a future observation from 

BCESFLO distribution are computed for the two-sample case. All simulation studies are 

performed using R programming language. 

Simulation algorithm  

A. In similar manner to the steps used in Subsection 4.1, different samples can be generated. 

B. The Bayes estimates of               and     are obtained by following the steps: 

1. Assuming the population parameters and the sample size n. 

2. Generate random samples with different sizes (30, 50, and 100) from the population 

distribution under study. 

3. Repeat Step 2, N times, where N =10000. 

4.    is an estimate of    and is given by         
 

 
   

   
    

5. The ER of      over the N samples is given by  
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    Using Steps 4 and 5, compute               
       

       
       

    ,  

                        
        

        
            

  . 

In the case of two-sample Bayesian prediction  

1. Assuming the population parameters and the sample size n. 

2. Generate a bivariate random sample of size n, say                 as shown in the beginning 

of this algorithm. 

3. Follow steps in Subsection 5.2. 

 The underlying population in Tables 10 and 11 displays the averages estimates, ERs and 

variances of the Bayes case based on sample of different sizes n, and N=10000 repetitions 

with informative prior. The generated population parameters are 

                                            

and                                         ,  

the given vector of hyper parameters is  

(                                                               . 

Tables 12 and 13 present the Bayes averages, ERs and credible intervals of rf and hrf for 

different values of the time         based on informative priors. 

 The Bayes two-sample predictors under informative priors are presented in Tables 18 and 19. 

 Considering the two-sample prediction and using informative prior, in Tables 18 and 19 the 

hyper parameters are  

(                                                                 

the population parameters are (                                          

            and                                          ). 

 

6.2 Example data set 

The data set is given in Subsection 4.2 and analyzed to illustrate the theoretical results of 

Bayesian estimation and prediction. Tables 14- 17 present the Bayes averages and ERs, of the 
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estimates of the parameters, rf and hrf, for the real data set under informative prior. Bayes 

predictors and Se of the future observation are given in Table 19. 

  

6.3 Concluding remarks 

In our study we observe the following 

1. The variance of the estimates is inversely proportional to the sample size and that the variance 

of an estimate tends to zero as the sample size tends to infinity.  

2. The lengths of the CIs of the parameters become narrower as the sample size increases. 

3. The Bayes averages for the rf and hrf performs better as the sample size increases. Also, ER 

is decreasing when the sample size is increasing. 

4. It is interesting to notice that if the variables of the prior density are independent and if the 

likelihood function factors out with respect to these variables, then the variables of the 

posterior given data are also independent. 

 That if                  
 
    and if                       

 
   , then 

                                            
 
                        

                                                                                                                 
 
                     

            are independent, the analysis will be easier. 

5. The likelihood function of BCESFLO distribution can be derived using the pdf in (8) directly 

but compounding of      
 
       and      can be applied to make the ML estimation easier. 

The results become better as the informative sample size gets larger. In all cases, the simulated 

percentage coverage is at least 95%. 
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Table 9 

Bayes averages, relative absolute biases, estimated risks and 

95% credible intervals for the parameters of BCESFLO 

                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

  Parameters Averages RAB ER UL LL Length 

30 

a 0.60059 9.9478e-04 4.6360e-07 0.6012 0.5986 0.0026 

b 0.8007 0.0008 8.9479e-07 0.8019 0.7992 0.0028 

   1.0985 1.3765e-03 2.8541e-06 1.1002 1.0973 0.0029 

   1.4993 0.0015 3.9345e-06 1.2030 1.1998 0.0032 
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Table 10 

Bayes averages, relative absolute biases, estimated risks  
and 95% credible intervals for the parameters of BCESFLO  

                                                 
  Parameters Averages RAB ER UL LL Length 

 

 

30 

 

 

  2.5014 0.0005 2.6580e-06 2.5024 2.4994 0.0029 

  0.6710 0.0015 2.0137e-06 0.6724 0.6694 0.0029 

   3.0017 0.0005 4.5668e-06 3.0044 2.9998 0.0045 

   2.5017 0.0007 3.9767e-06 2.5029 2.4998 0.0030 

   7.3985 0.0006 3.2725e-06 7.4001 7.3970 0.0020 

   5.1023 0.0004 7.0838e-06 5.1039 5.0998 0.0041 

 

 

50 

  2.4991 0.0003 1.0481e-06 2.4999 2.4978 0.0020 

  0.6709 0.0013 1.8134e-06 0.6720 0.6695 0.0055 

   3.0007 0.0002 1.1669e-06 3.0055 2.9905 0.003. 

   533403 030000 .30338e-06 2.4999 2.4971 0.0028 

   7.4008 0.0001 9.0744e-07 7.4016 7.3995 0.0020 

   5.1013 2.6363e-04 2.5136e-06 5.1029 5.0996 0.0033 

 

 

100 

  2.4994 2.1057e-04 6.5731e-07 2.5005 2.4983 0.0000 

  0.6698 2.5083e-04 4.2225e-07 0.6710 0.6686 0.0023 

   3.0001 6.5163e-05 9.1350e-07 3.0015 2.9974 0.0041 

   2.5003 5.7028e-05 1.3608e-06 2.5010 2.4993 0.0016 

   7.4004 1.4222e-04 3.3561e-07 7.4023 7.4005 0.0018 

   5.0988 0.0002 1.5726e-06 5.0997 5.0975 0.0021 

 

    1.2018 0.0005 8.7362e-07 1.5004 1.4982 0.0021 

   1.7015 0.0009 3.7897e-06 1.7037 1.6998 0.0039 

50 

a 0.5998 0.0004 4.4439e-07 0.6006 0.5982 0.0024 

b 0.7996 4.5745e-4 6.5481e-07 0.8008 0.7982 0.0026 

   1.0997 0.0003 3.6181e-07 1.1001 1.0978 5.0.00 

   1.5002 9.6223e-03 1.7531e-06 1.2023 1.1996 0.0027 

   1.2011 1.1497e-04 3.7496e-07 1.5012 1.4989 0.0024 

   1.7006 3.6611e-04 8.0349e-07 1.7016 1.6994 0.0021 

100 

a 0.5997 5.3088e-04 2.3494e-07 0.6004 0.5988 0.0017 

b 0.7999 7.8312e-05 3.9512e-07 0.8009 0.7986 0.0024 

   1.0999 4.1095e-05 2.9580e-07 1.1007 1.0986 0.0022 

   1.5001 6.3095e-04 8.3359e-07 1.2002 1.1982 0.0019 

   1.1992 3.4961e-05 3.2374e-07 1.5007 1.4988 0.0019 

   1.6996 2.1334e-04 4.4509e-07 1.7006 1.6985 0.0021 
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Table 11 

Bayes averages, relative absolute biases, estimated risks  
and 95% credible intervals for the reliability and 

 hazard rate functions of BCESFLO  
                                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 

Bayes averages, relative absolute biases, estimated risks and 
  95% credible intervals for the reliability and 

 hazard rate functions of BCESFLO 
                                                               

  
Table 13 

Bayes estimates and standard errors  
for the parameter of BCESFLO  

Parameters Estimate Se 

  0.6013 0.0009 

  0.8001 0.0008 

   1.1025 0.0009 

   1.5003 0.0008 

   1.2003 0.0007 

   1.6999 0.0004 

  rf and hrf Averages RAB ER UL LL Length 

30 
           0.2886 0.0006 5.4372e-07 0.2897 0.2874 0.0024 

           0.0032 0.4062 6.6236e-06 0.0055 0.0012 0.0042 

50 
           0.2881 0.0011 3.3358e07 0.2888 0.2868 0.0019 

           0.0055 0.0387 2.8049e-07 0.0063 0.0042 0.0022 

100 
           0.2884 6.3252e-05 1.2286e-07 0.2890 0.2877 0.0014 

           0.0055 2.6847e-02 2.7532e-07 0.0062 0.0043 0.0019 

n rf and hrf Averages RAB ER UL LL Length 

30            0.0035 0.7896 5.5620e-06 0.0061 0.0009 0.0052 

           0.0472 0.0402 4.2526e-06 0.04841 0.0449 0.0034 

50            0.0025 0.2684 4.1521e-07 0.0031 0.0014 0.0017 

           0.0441 0.0268 2.5180e-06 0.0453 0.0429 0.0024 

100            0.0019 0.0051 1.4099e-07 0.0026 0.0009 0.0016 

           0.0456 0.0059 2.8211e-07 0.0464 00447 0.0017 
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Table 14 

Bayes estimates and standard errors 
 for the parameters of BCESFLO  

Parameters Estimates Se 

  1.5018 0.0014 

  0.5510 0.0005 

   5.8005 0.0007 

   3.5027 0.0008 

   3.5027 0.0014 

   2.4978 0.0013 

 

Table 15 

Bayes estimates and standard errors for the 
 reliability and hazard rate functions of BCESFLO 

 

 

 

   

 Table 16 

Bayes estimate and standard errors for  
the reliability and hazard rate functions 

 

 

 

Table 17 

Bayes predictors, relative absolute biases, estimated risks 

and 95% credible interval of the future observation  

                                                  

  s       Averages RAB ER UL LL Length 

 

 

30 

1 
       3.9999 2.7731e-05 5.0017e-07 4.0009 3.9982 0.0026 

       7.0003 4.0064e-05 3.5349e-07 7.0011 6.9989 0.0021 

12 
       4.0003 6.6825e-05 8.0271e-07 4.0015 3.9986 0.0029 

       6.9982 2.5996e-04 3.7367e06 6.9994 6.9968 0.0026 

18 
       4.0009 0.0002 1.6289e-06 4.0022 3.9992 0.0031 

       6.9981 0.0003 5.1302e-06 7.0001 6.9959 0.0042 

 

 

50 

1 
       4.0005 1.1660e-04 4.6721e-07 4.0013 3.9993 0.0019 

       7.0000 2.0907e-06 1.6751e-07 7.0006 6.9989 0.0017 

12 
       4.0007 1.6923e-04 1.0526e-06 4.0016 3.9989 0.0027 

       6.9994 8.2851e-05 5.9514e-07 7.0004 6.9983 0.0020 

18 
       4.0014 0.0004 3.2526e-06 4.0028 3.9998 0.0030 

       7.0008 0.0001 1.5965e-06 7.0024 6.0024 0.0033 

 

 

100 

1 
       3.9997 6.9537e-05 2.9892e-07 4.0006 3.9989 0.0017 

       7.0004 51594e-05 2.9367e-07 7.0009 6.9994 0.0016 

12 
       3.9997 8.0968e-05 3.7275e-07 4.0005 3.9983 0.0022 

       7.0014 2.0482e-04 2.4549e-06 7.0023 6.9996 0.0027 

18        4.0002 5.7244e-05 7.7567e-07 4.0016 3.9983 0.0032 

rf and hrf Estimates Se 

           0.2897 0.0004 

           0.0035 0.0008 

  rf and hrf Estimate Se 

30 
           0.0029 0.0009 

           0.0461 0.0005 
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       6.9985 2.1164e-04 3.8607e-06 7.0005 6.9964 0.0041 

 

Table 18 

Bayes predictors, relative absolute biases, estimated risks and 

 95% credible intervals of the future observation  

                                                   

  s       Averages RAB ER UL LL Length 

 

 

30 

1 
       3.9986 0.0003 3.1005e-06 4.0007 3.9982 0.0025 

       7.0008 1.1791e-04 1.1019e-06 7.0016 6.9991 0.0026 

12 
       3.9983 4.3381e-04 3.2831e-06 3.9993 3.9957 0.0036 

       6.9994 7.2306e-05 1.6241e-06 7.0013 6.9969 0.0043 

18 
       3.9978 5.4197e-04 6.6847e-06 3.9999 3.9956 0.0043 

       7.0022 0.0003 7.1597e-06 7.0041 6.9994 0.0048 

 

 

50 

1 
       3.9997 7.5194e-05 3.0675e-07 4.0005 3.9989 0.0017 

       7.0002 2.6742e-05 2.5213e-07 7.0011 6.9990 0.0021 

12 
       4.0001 2.7094e-05 4.2356e-07 4.0010 3.9986 0.0024 

       6.9983 0.0002 3.5432e-06 6.9999 6.9971 0.0029 

18 
       4.0008 0.0002 1.0349e-06 4.0018 3.9993 0.0025 

       7.0023 3.3174e-04 7.4926e-06 7.0049 6.9995 0.0054 

 

 

100 

1 
       3.9997 8.631e-05 3.6679e-07 4.0004 3.9989 0.0015 

       6.9999 1.5412e-05 2.2928e-07 7.0006 6.9988 0.0019 

12 
       4.0007 0.0001 1.0153e-06 4.0019 3.9995 0.0024 

       6.9989 0.0001 1.8428e-06 7.0003 6.9975 0.0028 

18 
       3.9996 9.3514e-05 1.1006e-06 4.0010 3.9979 0.0031 

       7.0027 3.9138e-04 9.4936e-06 7.0048 6.9999 0.0049 

Table 19 

Bayes predictors and standard errors  
of the future observation 
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