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ABSTRACT 

This study is aimed at evaluating the technological characteristics of wild non-Saccharomyces 

sourced from banana fruit and wild honey. The isolation of yeasts was done according to standard 

microbiological procedures. Technological traits screened for are as follows: fermentation ability, 

alcohol production, flocculation ability, organic acid production, and hydrogen sulphide production. 

Five yeast isolates were identified as B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida 

tropicalis), H7 (Clavisporalusitaniae), and CY (Candida tropicalis), which are sugar fermenters. The 

percentage of alcohol produced from each sugar fermented by the yeast isolates are as follows: 

sucrose - B7(11.50%) > H7(8.62%) > CY (7.80%) > H4(4.88%) > B10 (4.11%); Glucose - 

B7(9.82%) > CY (6.28%) > B10(4.56%) > H7(4.03%) > H4(2.19%) and Fructose - H7(13.11%) > 

CY (9.40%) > B10(7.03%) > H4(4.41%) > B7(3.70%). Yeast isolate CY demonstrated high 

flocculation of 28.55 and 44.75 (%) at 5 and 15 (minutes). The organic acid produced by the yeast 

isolates B10, B7, CY, H4 and H7 are as follows 1.90±0.41, 3.10±0.41, 1.25±0.07, 3.90±0.41 and 

2.40±0.41 (AU) respectively and Yeast isolates B7, CY, H4, and H7 produced low hydrogen sulphite 

concentration. Wild non-Saccharomyces could be the hope of the wine microbiologist to ease the 

challenges in the wine industry, as they competed flavourably with the commercial wine yeast. 

Keywords: Non-Saccharomyces, Fermentation ability, flocculation, hydrogen sulphide production. 

Introduction 

The Saccharomycescerevisiaeyeasthas been themost widely accepted microorganism industrially 

(Dorota, 2008; Nandy and Srivastava, 2018), due to its ability to complete sugar fermentation, high 

alcoholyield,positive influence on the sensorial features of wines, long history of domestication by 

man (Brice et al., 2018; Rainier and Pretorius, 2000), outstanding in the processing of substrates into 

wine, dominates the alcoholic fermentation (Di Paola et al., 2020; Mills et al., 2008) and well 

researched and understood eukaryotic cell (Knop, 2011).  

Review and harmonization of the microbialtaxonomy employed in food fermentation (Bourdichon et 

al., 2012), have led to the adoptionofyeast varieties that aim to satisfy consumer longings for wines 

with reduced alcohol content (Lee et al., 2021) and organic acid (Bely et al., 2008) using 

commercially tailored wine yeast strains (Ambroset et al., 2011)asstandard(Nogami et al., 2007) to 

identify low alcohol-producing yeast (Mateo and Maicas, 2016; Úbeda et al., 2014).The natural 

obtainability of yeast strains that possess an ideal blend of oenological properties is decidedly 

improbable: current interest in non-Saccharomyces yeasts revealed strains possessing interesting 

oenological properties (Rainier and Pretorius, 2000), thusrevealing a new world of improved 

fermentation of complex and differentiated sensory profiles in wines (Morata, 2019)which have 

gained importance lately in the biotechnological setting (Varize et al., 2019). 
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For eons, wine production has been by spontaneous fermentation carried out by yeasts originating 

from the grapes; and the contribution of non-Saccharomyces yeasts in the wine production has been 

made known as the backbone of wine quality (Sorrentino et al., 2013). Biotechnologically, yeast 

biodiversity, especially for oenology,isunderutilized, such asthe potential benefits of non-

Saccharomyces yeasts in wine production that unavoidably have a different list of desired properties 

(Mateo and Maicas, 2016). The characteristics ofyeasts without Saccharomyces (Candida, Kloeckera, 

Hanseniaspora, Zygosaccharomyces, Schizosaccharomyces, Torulaspora, Brettanomyces, 

Saccharomycodes, Pichia and Williopsis genera) in vinificationare receiving increasing attention from 

wine microbiologists in countries producing Old and New World wines(Jolly et al., 

2016)andindigenous yeasts involved in the production of indigenous honey wine (Ogol) have proven 

to possess the basic oenological properties (Teramoto et al., 2005). 

Understanding the metabolic activity of safe wild yeasts could proffer solutions to the challenge of 

high alcohol production in wine(Viana et al., 2017), as non-Saccharomyces possessgood fermentation 

attributes of industrial importance (Ebabhi et al., 2013; Vicente et al., 2021). Currently, indigenous 

yeasts involved in spontaneous fermentation of alcoholic beverages are being studied (Bourdichon et 

al., 2012; Teramoto et al., 2005), forthe expression of essential enzymes required for quality 

winemaking, and these qualities aroused the use of non-Saccharomyces in winemaking (Cocolin et 

al., 2000; Mateo and Maicas, 2016) and essential components of human production of fermented food 

(Di Paola et al., 2020). 

Flocculation is a natural, reversible active assemblage of cells into flocs. Aggregation of 

microorganismsis common among bacteria, filamentous fungi, algae, and yeasts.Dominant 

flocculation genes (FLO genes) FL01, FL05, and FL08 were proposed to be the structural genes 

encoding proteins (lectins) involved in flocculation (Straver et al., 1993),  FLO1,FLO2 and FLO4 

(Domingues et al., 2000). The presence of glycoproteins on cells surfaces of the flocculentis due to 

the ionic or lectin-like binding force which is influenced by pH, sugar concentration, and flocculation 

inducing substances (Kamada and Murata, 1984), dissolved oxygen, pH, fermentation temperature, 

and yeast handling, storage conditions and cell wall composition (Verstrepen et al., 2003). The 

FLO11-encodingflocculin is required for flocculation, adhesion to agar and plastic, invasive growth, 

pseudohyphae formation and biofilm development (Bayly et al., 2005; Nayyar et al., 2014; Van 

Mulders et al., 2010). 

Hydrogen sulfide (H2S) production during fermentation is common and a substantial problem in the 

global wine industry as it imparts undesirable off-flavors at low concentrations. The production 

ofH2Sis a necessary intermediate compound in wine, resulting from the assimilation of sulfur through 

the sulfate reduction pathway using sulfite reductase(Cordente et al., 2009). the gene leading to 

reduced H2S formation as an allele of MET10 (MET10-932), which encodes a catalytic subunit of 

sulfite reductase, MET1, MET5, MET8, or MET10, and loss of sulfite reductase activity is inversely 
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correlated with H2S formation (Linderholm et al., 2010). However, Good Manufacturing Practices 

must be strengthened to deal with the problem of volatile sulphur production in wines (Hine et al., 

2015; C.-W. Huang et al., 2016; Li et al., 2019; Malfeito-Ferreira, 2011; Ugliano et al., 2011; Winter 

et al., 2014; Zara and Nardi, 2021). 

The organic acids content of fermented alcoholic beverages is largely associated with the substrate, 

but the concentrations of some of the organic acid are formed by yeasts as by-products of the main 

metabolic pathways during fermentation (Whiting, 1976). The non-conventional yeast 

Yarrowialipolytica degrades hydrophobic substrates efficiently to produce organic acids (Darvishi et 

al., 2009), and organic acid production from glucose by yeast at neutral and low pH (Klinke et al., 

2009). The regulation of organic acidis concurrently achieved by activation or inactivation of single 

genes like GTR1, GTR2, LIP5, LSM1, PHO85, PLM2, RTG1, RTG2, and UBP3 genes (Yoshida and 

Yokoyama, 2012). Wine-related yeast, Candida zemplinina, and Saccharomyces cerevisiae produce 

organic acidic (malic, fumaric and succinic acid) at a level comparable to the production of acid by 

Saccharomyces species(Magyar et al., 2014).  Yeast strains have different patterns of consumption 

and production of organic acids and organic acid management during fermentation (Chidi et al., 

2015), which contributes significantly to the perception of wine quality by consumers(Chidi et al., 

2018). This study aims to evaluatethetechnological characteristic of non-Saccharomyces wild bananas 

sourced from the wild. 

Materials and Method 

Isolation of yeast from samples 

About 10g of the ripe banana fruit and 10ml of the wild honey was transferred aseptically into 250ml 

conical flasks containing 90ml sterile peptone broth and incubated for 24-48 hours at 30 ℃. After 

incubation, an aliquot (0.1ml) of the broth was transferred to prepared yeast extract peptone dextrose 

agar plates(YEPDA) supplemented with chloramphenicol and evenlyspread using a sterile bent glass 

rod. Plates were also incubated at 30 ℃ for 48 hours ( Hong and Park, 2013),observed growth was 

sub-cultured on YEPDA plates. The morphology of the yeasts was confirmed macroscopically and 

microscopically (under the light microscope at X40 and X100 magnification)(Ali and Latif, 2016) 

after staining.  

 

Molecular Characterization 

The molecular characterization was carried out in the Bioinformatics Service Laboratory, Ibadan, 

Nigeria. The CTAB method as described by Ali and Latif(2016) was adoptedfortheextraction of DNA 

from yeast strains. In this method, 24 hours yeast cultures in YEPD broth were centrifuged at 

maximum speed. Approximately 10 mg of yeast cells for each strain were taken and pre-warmed in 

200 µl of solution I at 65 ° C containing 1.4M NaCl, 2% CTAB, 20mM EDTA (pH 8.0), 0.2% β-

mercaptoalcohol, and 100mM Tris-HCl (pH 8.0) was introduced, mixed well and incubated at 65 ° 
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Cfor 15-20 minutes in the water bath. After incubation, all tubes were cooled for 3-5 minutes and the 

same volume of solution II (Chloroform: Isoamyl alcohol, 24:1) was added, thoroughlymixed and 

centrifuged at 14,000 rpm for 10 minutes at room temperature. The aqueous phase (upper) was taken 

from each Eppendorf separately and 3M Na acetate (1/10) was introduced into each Eppendorf along 

with an equal volume of cold isopropanol or a double volume of cold absolute alcohol, gentlymixed 

and placed on ice for 10 minutes. All tubes after incubation were centrifuged at 12,000 rpm at 4 ° C 

for 15 minutes and the supernatant was discarded. About 500µl of chilled 70% alcohol (solution III) 

was added directly towashed pellet and then centrifuged at 14000 at 4°C for 2 minutes. The pellet was 

air-dried after thesupernatant was removed from each tube. The pellet was resuspended in 50µl 

double deionized water or TE buffer and stored at -20 ° C. The yield of DNA was quantified by a 

spectrophotometer. The ribosomal DNA internal transcribed spacer region: ITS1 

(GTAGGTGAACCTGCGG) and ITS4 (TCC GCTTATTGATATGC) was used to amplify the DNA 

(Oliveira et al., 2008). The reaction mixture contained 100ng of DNA, 5µl of 10pmol of each 

oligonucleotide primer, 3µl of 25mM MgCl2, 3µl of 250mM dNTP mixture and Taq DNA 

polymerase (5units) in a total volume of 50 µl. PCR conditions were as follows: 3 min. at 94 ° C 

followed by 35 cycles (45 s at 94°C, 45 s. at 55 ° C (annealing temperature), 1 min. at 72°C, and final 

extension for 7 min. at 72°C. The amplified product was determined by running on 0.8% agarose gel 

and visualized using a UV illuminator and photographed. More so, PCR products of the partially 

amplified-ITS region were subjected to restriction fragment length polymorphism (RFLP) for two 

restriction endonucleases TaqI and HaeIII. The reaction mixture contained 3.0 µl of 1X buffer (R-

buffer for BsuRI (HaeIII) and unique-buffer for TaqI), 15.0 µl PCR products (approximately 1.0 µg), 

1µl of specific endonuclease, and 11µl of deionized water with a total volume of 30µl. The reaction 

mixtures were incubated at their specific temperatures as recommended by the manufacturer’s 

instructions (Fermentas) The restriction fragments were separated along with a DNA 100bp ladder on 

1.5% w/v agarose gel and photographed after visualization under UV light. Finally, 2.5µl of the 

purified PCR products were sequenced using the Applied Biosystems ABI PRISMTM 3100 DNA 

sequence Analyzers with the BigDye® Terminator v3.1 Cycle Sequencing kit and protocols (Shittuet 

al., 2016). The DNA sequence obtained was blasted onto the NCBI gene bank to confirm the 

identities of the various yeasts. 

 

Screening of yeast isolates for sugar fermentation ability 

The method of Alabere et al. (2020) was adopted. Yeast extract peptone dextrose (YEPD) broth was 

compounded by transferring 15g of peptone water, 10g of yeast extract, and 20 g of fructose, glucose, 

sucrose, galactose, maltose, and lactose respectively into 2litres conical flasks containing 1litre of 

distilled water, then 10ml of broth was dispensed into test tubes containing inverted Durham 

tubesterilized by autoclaving at 121°C and 15 Psi for 15 minutes. At cooling, yeast isolates were 
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inoculated into the broth and incubated for 48 hours at 28-30 (°C). The presence of gas (space) in the 

Durham tube was a confirmation of sugar fermentation.  

Screening of yeast isolates for alcoholproduction 

Yeast isolates were screened for alcoholproductioncapacity according to the method of Ambadas 

(2011) and Reddy et al. (2009) modified usingpeptone water containing sucrose, glucose, and fructose 

(20 % (w/v)) respectively as substrate. The bottles were sterilized and rapidly cooled to room 

temperatureand the yeast inoculum was transferred to the sterilized 50 ml fermentation medium. Test 

organisms were inoculated into a 100 ml flask containing 50 ml fermentation media and incubated for 

48 h. The YEPS broth was adjusted to pH 4.0 before sterilization. Fermentation bottles were kept on a 

shaker to shake at 120 rpm and aeration for 8 h. Then followed by anaerobic fermentation for 24 h.  

Percentage alcohol by volume = (OG-FG) ×131.25. Ogu (2011). ………….. Equation 1. 

where: 

                OG = original gravity of the sample. 

               FG = Final Gravity of the sample. 

For specific gravity correction, sample temperature below 20 ºC 0.0002 is subtracted per degree ºC 

and temperature above 20 ºC 0.0002 is added per degree ºC (Jean, 2006). 
 

Flocculation ability 

Flocculation properties of yeast isolates were confirmed by using the method described by mill 

(1964)with slight modification. yeast isolates were cultured for 3 days at 30 °C in a 100 ml conical 

flask containing 50 ml of Peptone water broth (15 g/l peptone and 5 g/l NaCl) supplemented with 10 

g/l yeast extract and 20 g/l glucose under 24 hours shaking (140 rpm). Cells were harvested by 

centrifugation (4000 x g for 5 minutes) and washed with deionized water. The dispersed yeast was 

washed three times in a 1%NaCl solution and in deionized water, then the cells were suspended in 10 

ml of 50 mM acetate buffer (pH 4.6) enriched with 0.1 % (g/l) CaCl2, while the initial OD600 

nmculture for each was determined. After agitationon shaking incubator at 140 rpm for 30 min, 5 ml 

of the cell suspension was transferred to a new test tube and allowed to stand undisturbed for 0, 5 and 

15 minutes in a vertical position, after which, samples (3000 µl) were taken from just below the 

meniscus and the OD600nm determined using spectrophotometric method (Nayyar et al., 2014). 

Flocculation ability (F) was determined by the following equation: F = (1-B/A) × 100%. Where A is 

the absorbance at 600 nm (OD600) immediately before the cells were shaken in flocculation buffer 

and B is the absorbance at 600 nm (OD600) after the flocculation settled for 5 min and 15 minutes. 
 

Organic acid production 

The ability of yeast isolates to produce organic acid was determined using the methods adopted by 

Uzahet al. (2020). After a 3 - 5 days incubation period at 28 – 30 ° C of Czapek-Doxagar medium, 

supplemented with 0.5 g of Ca2CO3 and bromocresol green asindicator, the cells were then inoculated 

with each yeast isolate.Positive isolates were identified based on the presence of yellow zones around 

the colonies. The rate of organic acid production by yeast was determined by measuring the zones of 
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clearance of each isolate.  To ascertain the acid unitage (AU) of each yeast isolate, the diameter of the 

yellow zone was divided by the diameter of the colonies. 

Hydrogen sulphide production 

Hydrogen sulphide (H2S) production was evaluated on BiGGY and Lead Acetate agar. The agar 

plates were streaked with a pure culture of yeast and incubated for 48 hours at 28-30 ℃. The 

qualitative measure for H2S production on the medium was decided by the colour of the colonies, 

which ranged from white through brown to near-black. The white colony means no hydrogen sulfide 

production and the black colony means high hydrogen sulphide concentration (Cordente et al., 2009). 

Result 

Sugar fermentation ability 

Yeastisolates isolated from banana fruit and wild honey were subjected to sugar fermentation to 

determine their fermenting ability of fructose, glucoseandsucrosedue to the presence of gas trapped in 

the Durham tube.Yeast isolates CY a commercial wine yeast adapted for referencing, B7 and B7 are 

wild yeast isolates from banana, and H4 and H7 are wild yeast isolates from wild honey. andyeast 

isolates identified as B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida tropicalis), H7 

(Clavisporalusitaniae), and CY (Candida tropicalis) fermented the three sugars as represented in 

Table 1.  

Table 1. Sugar fermentation ability of yeast isolates 

Isolates Sucrose Glucose Fructose 

C. tropicalis
B10

 + + + 

C. tropicalisB7
 + + + 

C. tropicalisH4
 + + + 

Cl. lusitaniae
H7

 + + + 

C. tropicalis
CY

 + + + 

+ signifies the ability to ferment sugar. – signifies a lack of ability to ferment sugar. 

 

Alcohol production ability 

The alcohol production ability of yeast isolates from sucrose, glucose, and fructose is illustrated in 

Figure 1. The concentration (%) of alcohol produced by the yeast isolates vary with the type of sugar 

fermented toalcohol. The percentage of alcohol produced from the sucrose fermentation ranges from 

4.11 – 11.50 (%) and individual yeast isolates recorded thefollowing:B7(11.50%) > H7(8.62%) > CY 

(7.80%) > H4(4.88%) >B10 (4.11%), yeast isolates B7(11.50%) and H7(8.62%) produced more 

alcohol than the commercial wine yeast, CY (7.80%).  The alcohol produced from glucose 

fermentation ranges from 2.19 – 9.82 (%), while individual yeast isolates recorded the 



 

 

following:B7(9.82%) >CY (6.28%) > B10(4.56%) > H7(4.03%) >H4(2.19%), only B7(9.82%) 

producedmorealcohol than the commercial wine yeast, CY (6.28%). Alcoholproducedfrom fructose 

fermentation ranges from 3.70 to 13.11 (%), and individual yeast isolates recorded the 

following:H7(13.11%)>CY(9.40%) > B10(7.03%) > H4(4.41%) > B7(3.70%), only H7(13.11%) 

produced morealcohol than the commercial wine yeast, CY (9.40%). Statistically, there is a 

significant difference in the concentration of alcoholproducedbetween yeast isolates from sucrose, 

glucose, and fructose at the P value <0.001, and the three different sugarsfermentedby yeast isolates, 

show a significant difference in the percentage of alcohol produced by yeast isolates from sucrose, 

glucose, and fructose, respectively, at the P value <0.001. 

 

/  

Figure 1. Alcohol production ability of yeast isolates using glucose, fructose, and sucrose. 

Flocculation ability 

The flocculation ability of yeast isolates is graphically presented in Figure 2. Yeast isolate CY 

demonstrated increasing flocculation of 28.55 and 44.75 (%) at 5 and 15 (minutes) respectively, while 

the wild yeast isolates B10, B7, H4, and H7 had percentage flocculation < 10 % at 5 and 15 (minutes) 

respectively. Statistically, there is a significant difference in flocculation and time between yeast 

isolates at P-value < 0.001. 
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Figure 2. Flocculation proportion of yeast cells with time. 

Organic acid production 

The ability of microorganisms to produce organic acid is measured in Acid Unitage (AU) as presented 

in figure 3. The organic acid produced by the yeast isolates ranges from 1.25 – 3.90 (AU), while the 

individual yeast isolates B10, B7, CY, H4 and H7 recordedthefollowings: 1.90±0.41, 3.10±0.41, 

1.25±0.07, 3.90±0.41 and 2.40±0.41 (AU) respectively. H4 (3.90 AU) and CY (1.25 AU) had the 

highest and least organic acid production, statistically, there is a significant difference in organic acid 

production among the yeast isolates at P-value < 0.001;but there is no significant difference in the 

acid unitage of B10 (1.90±0.41) and H7 (2.40±0.41). 



 

 

 

Figure 3. Acid unitage values of yeast isolate on Czapek-Dox agar. 

Hydrogen sulphide production is an undesired but inevitablemetaboliteexpressed by yeast isolates 

during fermentation. A qualitative method of screening yeast isolates for H2S carryout on Lead 

Acetate Agar (LAA) and Bismuth Glycine Glucose Yeast extract (BIGGY) agar is shown in Table 2. 

Hydrogen sulphide production was measured base on colour and colour intensity: White colony, no 

hydrogen sulphide production; light brown colony, low hydrogen sulphide production; brown colony, 

medium hydrogen sulphideproduction; and black colony, high hydrogen sulphide production. On 

LAA and BIGGY agar yeast isolate, B10 had a brown colony. Yeast isolates B7, CY, and H7 

produced similar light brown coloniesin the medium, while H4 showed variation in colour intensity 

between LAA and BIGGY agar. 

Table 2.  Production of hydrogen sulfide of yeast isolates on lead acetate agar and bismuth 

glycine glucose yeast extract (BIGGY) agar 

Isolates Lead Acetate Agar BIGGY agar 

C. tropicalis
B10

 ++ ++ 

C. tropicalis
B7

 + + 

C. tropicalis
H4

 + ++ 

Cl. lusitaniae
H7

 + + 

C. tropicalis
CY

 + + 

keys: - white colonies; + light brown; ++ brown; +++ dark brown/black 

 



 

 

Discussion 

The present study was aimed at evaluating the technological characteristic of wild non-

Saccharomyces sourced from banana fruit and wildhoney in southern, Nigeria in order to select 

appropriate autochthonous starter cultures fortheproductionof typical safe regional wine and 

traditional fermented food 

Sugar Fermentation Capacity 

The yeast isolates B10 (Candida tropicalis), B7 (Candida tropicalis), H4 (Candida tropicalis), H7 

(Clavisporalusitaniae), and CY (Candida tropicalis) fermented sucrose, glucose, and fructose. My 

finding is consistent with the report of Lee et al. (2011) and Tao et al. (2011) that wild yeast isolates 

fermented of sugar, such as glucose, fructose, and sucrose. Non-Saccharomyces have been implicated 

in fermentation sugar (Panagiotis et al., 2013), and Candidaspp isolated from palm wine was able to 

ferment sugar (Olowonibi, 2017), which can play a major role in the production of fermented 

beverages (Di Paola et al., 2020). The fermentation of glucose, fructose, and sucrose implies the 

possession of the hexose transporter gene (hxt 1- hxt 7)  (Boles and the Hollenberg, 1997; Lazar et al., 

2017), the periplasmicinvertase and sucrose H
+
symporterAGT1 gene are associated with yeast isolates 

(Batista et al., 2004). 

Alcohol production 

The non-Saccharomyces yeast isolates B10 (Candida tropicalis), B7 (Candida tropicalis), H4 

(Candida tropicalis), H7 (Clavisporalusitaniae), and CY (Candida tropicalis) are fermenter yeasts but 

possess alcohol production ability(Brooks, 2008). My finding agrees with the report of Matsushikaet 

al. (2009)and Kang and Lee (2015)that yeasts are known for their common characteristic of alcohol 

production from sugars.Sucrose metabolism requires the action ofsucrosesynthases or 

invertases(Santaniello et al., 2014; Zabed et al., 2014)and multiplegenesforthe transportation of 

hexose,Hxt(1-17)(Batista et al., 2004; Boles and Hollenberg, 1997) are associated with 

Candidatropicalis(Chattopadhyay et al., 2020) More than 95% of the ethanol produced 

ismonosaccharideor disaccharides, with low yields of alcohol duetothe formation of end products such 

as acetate, butyrate and CO2 (Jessen and Orlygsson, 2012; Verstrepen et al., 2003). 

Thenoticeable difference in the concentration (%) of alcohol produced from the fermentation of 

fructose, glucose, and sucrose by the respective non-Saccharomyces yeast isolates, could be due to 

strain variation among the non-Saccharomyces species.My observation was in accordance with a 

report that better alcohol yield depends ontheselectionofmicroorganisms(Zabed et al., 2014). 

Although, my findings disagree with the report of greater yields of ethanol using glucose (0.37 gg
-1

) 

than fructose (0.32 gg
-1

)(Díaz-Nava et al., 2017) 

Flocculation ability 



 

 

Flocculation of yeast is an essential oenological property expressed at the end of sugar fermentation 

for yeast cells recovery and wine clarification. Commercial wine yeast (CY) had superior flocculating 

ability comparedto wild yeast isolates.  Flocculation of a yeast strain is absolutely dependent upon the 

presence of calcium on the cell surface (Mill, 1964). Cell-cell interactions have been proposed to be 

facilitated by specific recognition and adhesion factors (Kamada and Murata, 1984). The flocculation 

genes FLO1, FLO5, and FLO8 have been proposed as structural genes that encode proteins (lectins) 

involved in flocculation (Stewart, 2018; Straver et al., 1993). In another study it was revealed that 

flocculation is carried out by FLO-genes, FLO1, FLO5, FLO9, FLO10, and FLO11, located at 

telomeres and regulated by Flo8 and Mss11 (Bernardi et al., 2018) and the degree of flocculation 

induced by these genes expression seem to differ (Rossouw et al., 2015) 

Organic acid production 

The yeast isolates expressed the ability to produce organic acid during fermentation which was 

measured in acid unitage. My result is in agreement with the report that non-conventional yeast, 

Yarrowialipolytic have been identified as organic acids producers(Darvishi et al., 2009), also in a 

study conducted by Klinkeet al. (2009),Candida albican was implicated as organic acid producer. 

Organic acidproduction was regulated by mutations in genes such as GTR1, GTR2, LIP5, LSM1, 

PHO85, PLM2, RTG1, RTG2, and UBP3, and genes related to succinate dehydrogenase such as 

EMI5, SDH1, SDH2, SDH4, TCM62, and YDR379C-A (Yoshida and Yokoyama, 2012). The organic 

acid metabolisms of Candida zemplinina and Candida stellata are different from each other and from 

that of the Saccharomyces species (Chidi et al., 2015, 2018; Magyar et al., 2014).  

Hydrogen sulphide production 

Hydrogen sulphide (H2S) production is a product of amino acid decarboxylation by microorganisms 

during fermentation production, that brings about off-flavour in an alcoholic beverage. The results 

obtained revealed that the yeast isolates are hydrogen sulphide producers, but the amount of hydrogen 

sulphide produced by the wild yeast isolates is within the limit when compared with the commercial 

wine yeast. My observation is in line with the report that H2S is a compulsory intermediate in the 

assimilation of sulphur catalyze by sulphitereductase in yeast through the sulphate reduction sequence 

and wine yeast (Saccharomyces cerevisiae) plays a vital role in volatile sulphur compounds 

production in wine (Cordente et al., 2009; C. Huang et al., 2014). The growth of brown colony on 

BIGGY medium signifying hydrogen sulphide production was also reported by Linderholmet al. 

(2010) and the MET2 and SKP2 genes have been identified as regulators of mild hydrogen sulphide 

metabolism in wine yeasts (Noble et al., 2015).  

Conclusions 

Non-Saccharomyces could be the hope of the wine microbiologist to ease the challenges in the wine 

industry.When the technological properties of wild yeast isolated from bananas and honey are 



 

 

compared to commercial wine yeast, wild yeasts are potential wine yeast waiting for deployment in 

the wine industry. As they could ferment sucrose, fructose, glucose, and carry out alcohol 

fermentation with the sugars. Produce moderate organic acid and a low amount of hydrogen sulphide, 

but, the wild yeasts are inferior to commercial wine yeast inability to flocculate.  
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