
Characterization of Compact Operators

Abstract

The concept of a compact operator on a Hilbert space, H is an extension of the
concept of a matrix acting on a finite dimensional vector space. In Hilbert space,
compact operators are precisely the closure of finite rank operators in the topology
induced by the operator norm. In this paper we provide an elementary exposition
of compact linear operators in pre-Hilbert and Hilbert spaces. However, whenever
advantageous, we may prove a few results in the general context of normed linear
spaces. It is well known that strong convergence implies weak convergence but
weak convergence does not imply strong convergence. We also show that an
operator T ∈ B(H) is compact if and only if T maps every weakly convergent
sequence in H to a strongly convergent sequence.

Keywords: Compact Operator, Normed linear spaces, Strong convergence, Weak convergence.

Mathematics Subject Classification:

1 Introduction

The notion of a compact or a completely continuous linear operator was motivated by the study of
integral equations and its systematic theory emerged from the discussions of linear integral equations
of the form

(T − λI)x(s) = y(s) where x(s) =

∫ b

a

K(s, t)x(t)dt (1)

where λ ∈ K is a parameter which takes nonzero values and the kernel K and y are given functions
subject to certain conditions [9]. It was discovered by D.Hilbert in 1912 that certain essential results
about the solvability of (1) (”Fredholm’s theory”) do not depend upon the existence of the integral
representation of T in (1) but only on the assumption that T is a compact linear operator [2]. In
1918, F. Riesz put Fredholm’s theory in an abstract form. The theory of compact linear operators
served as a model for earlier work in Functional analysis [5]. The property of such operators closely
resemble those of linear operators in finite-dimensional normed linear spaces [11]. In this paper we
provide an elementary exposition of compact linear operators in Pre-Hilbert and Hilbert spaces.
However, whenever advantageous, we may prove a few results in the general context of normed
linear spaces. Most definitions in this paper can be found in [1], [4], [6], [9], [10], and [12].
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2 Definitions and Consequences

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be relatively compact
if its closure Ā is compact.

Definition 2. Let (X, τ) be a topological space and A be a subset of X. We say that A is
sequentially compact if every sequence (xn) of elements of A has a convergent subsequence with
limit in A.

Definition 3. Let (X, τ) be a topological space. A subset A of X is said to satisfy the Bolzano-
Weierstrasss property (or equivalently, is said to be countably compact) if every infinite subset
of A has a limit point in A.

In Metric spaces the following characteristics are equivalent for any subset A of a metric space
(X, ρ)

(i) A is compact

(ii) A is sequentially compact

(iii) A is countably compact

(iv) A is precompact and complete ( i.e. the metric subspace (X, ρA) is complete.

Definition 4. Let (X, ρ) be a metric space. Let ε > 0 be given. A Set E is called an ε− net with
respect to X if for every x ∈ X, there is a y ∈ E such that ρ(x, y) ≤ ε. (If A ⊂ X, we can have an
ε-net defined with respect to A to be any set E ⊆ X such that for each x ∈ A there is a y ∈ E such
that ρ(x, y) ⩽ ε)

Definition 5. Let (X, ρ) be a metric space. A Subset A of X is said to be precompact (or totally
bounded) if for every ε > 0, A has a finite ε− net

Lemma 1. A is pre-compact implies A is bounded but the converse is not true [3].

Proposition 1. Let (X, ρ) be a metric space. A subset A of X is relatively compact if and only if
every sequence (xn) of points of A has a convergent subsequence. (Note that it is not asserted that
the limit of the convergent subsequence is in A).

Proof. Let A be relatively compact, i.e. Ā is compact. Hence Ā is sequentially compact (equivalent
to compactness in metric space). Let (xn) be any sequence of points of A. Since A ⊆ Ā, so (xn)
is also a sequence of points of Ā. Since Ā is sequentially compact, (xn) has a subsequence (xnk )
converging to a limit in Ā (so this limit need not be in A ).

Conversely, let A have the property that every sequence of elements of A has a convergent subsequence.
We must show that A is relatively compact i.e. Ā is compact, i.e. Ā is sequentially compact (which
is equivalent to compactness in metric spaces).

Let (xn) be any sequence of points of A. Since A is dense in Ā, for each (xn), we can find a yn ∈ A
such that ρ (xn, yn) < 1

n
for all n ∈ N. Since (yn) is a sequence of points of A, it follows from

the hypothesis, there is a subsequence (ynk ) of (yn) such that (ynk ) converges to say y. Clearly,
ρ (xnk , ynk ) <

1
nk

.
Now

ρ (xnk , y) ≤ ρ (xnk , ynk ) + ρ (ynk , y) <
1

nk
+ ρ (ynk , y)

as k → ∞, 1
nk

→ 0 and ynk

ρ−→ y which implies xnk

ρ−→ y.

This limit y ∈ X. Clearly, y ∈ Ā, since Ā is closed. Thus every sequence of points of Ā has a
subsequence converging to a limit in Ā. Therefore, Ā is sequentially compact, i.e. compact.
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Definition 6. Let X, Y be normed linear spaces over K(= R or C ). A linear transformation
T : X → Y is said to be compact (equivalently completely continous) if for every bounded
subset M of X,T (M) is relatively compact, i.e. T (M) is compact.

Proposition 2. Let X,Y be normed linear spaces over K. A linear transformation T : X → Y
is compact if and only if for every bounded sequence (xn) of elements of X there is a subsequence
(xnk ) such that (Txnk ) converges (with limit in Y ).

Proof. Let T be compact. Let (xn) be any bounded sequence of elements of X. Let E =
{Txn : n ∈ N}. Since T is compact, E is compact. {Indeed, since (xn) is bounded, the set
{xn : n ∈ N} is bounded so by compactness of T , the set T ({xn : n ∈ N) is compact i.e. E is
compact }. Hence E is sequentially compact. (Txn) is a sequence of elements of E and E is
sequentially compact. Hence, there is a subsequence (TXnk ) of (TXn) such that (Txnk ) converges
to some limit in Y .

Conversely, let for each bounded sequence (Xn) of elements of (xn) there be a subsequence (xnk )
such that (Txnk ) converges.

Let M be any bounded subset of X. We must show that T (M) is compact. Let (xn) be any
sequence of elements from M , since M is bounded, so (xn) is bounded. By hypothesis, there exists
a subsequence (xnk ) such that (Txnk ) converges to a limit in Y . Since Txnk ∈ T (M) and Txnk is

convergent this limit belongs to T (M) (and need not be in T (M)).

Thus we have shown: For any bounded set M of X, any sequence (xn) of elements from M has
a subsequence (xnk ) such that (Txnk ) converges. Thus any sequence (yn) of elements from T (M)

has a convergent subsequence. Thus T (M) is relatively compact( by proposition 1) i.e. T (M) is
compact. Thus for every bounded subset M of X, T (M) is compact i.e. T is compact.

Proposition 3. Let X,Y be normed linear spaces and T : X → Y be compact. Then T ∈ B(X,Y )

Proof. Let M be any bounded subset of X. Since T is compact, so T (M) is compact. Compactness
implies boundedness (in metric spaces). So T (M) is bounded (in Y) and hence T (M) is bounded.
We have proved: For every bounded subset M of X, T (M) is also bounded i.e. T is bounded.

Corollary 1. Let X,Y be normed linear spaces and T : X → Y be a linear operator. Let N =
N(0̄; 1) ⊆ X. Then T is compact if and only if T (N) is compact.

Proof. Let T be compact. Since N is a bounded subset of X and T is compact, so T (N) is compact.
Conversely, let T (N) be compact. To show that T is compact; Let M be any bounded subset of X.
Then there exists a real k > 0 such that ∥x∥ < k ∀x ∈ M . Hence

∥∥ 1
k
x
∥∥ = 1

k
∥x∥ < 1 i.e. 1

k
x ∈ N .

We define
1

k
M =

{
1

k
x : x ∈ M

}
Therefore,

1

k
M ⊂ N

Thus,

T

(
1

k
M

)
=

1

K
T (M) ⊆ T (N)

and

T (M) ⊆ kT (N) = kT (N)( Trivial steps )

Since T (N) is compact. So kT (N) is also compact. So T (M) is a closed subset of a compact set
kT (N) and hence T (M) is compact.
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The last result is seen thus:
Let F be compact E be closed and E ⊆ F . F is compact implies F is bounded.
Let {Gα : α ∈ Λ} be an open cover for E. Since E is closed, Ec(= X − E) is open. Adjoin Ec to
{Gα : α ∈ Λ} and we get an open cover for X and hence an open cover for F for (F ⊂ X).

But F is compact and hence there is a finite subcover (from this cover {Ec, Gα = α ∈ Λ} for F ).
This finite subcover for F is also a finite subcover for E. If this finite subcover contains Ec, delete
Ec from it and thus we get a finite subcover from {Gα : α ∈ Λ} for E. Thus every open cover for
E has a finite subcover. Hence E is compact.

Lemma 2. {Riesz Lemma}
Let X be a normed linear space and M be a proper closed linear subspace of X. Let 0 < a < 1.
Then there exists an xa ∈ X such that ∥xa∥ = 1 and dist (xa,M) > a. (clearly xa /∈ M).

Proof. Since M is a proper subspace of X, there exists x1 ∈ X −M . Clearly, x1 ̸= 0. Since M is
closed, so

d = dist (x1,M) > 0

{Note: dist(x1,M) = inf ∥x1 − y∥ y ∈ M }. Let 0 < a > 1, a given so d
a
> d. There exists an

element x0 ∈ M such that ∥x1 − x0∥ < d
a
(Assume the contrary, then it would imply ∥x1 − y∥ ≥ d

a

∀y ∈ M in which case dist (x1,M) ≥ d
a
> d, a contradiction!)

Also x1 − x0 ̸= 0. So ∥x1 − x0 |̸= 0. Put xa = x1−x0
∥x1−x0∥

; so ∥xa∥ = 1. Also xa /∈ M ( Note

xa ∈ M ⇒ since x0 ∈ M so xa + 1
∥x1−x0∥

x0 ∈ M ⇒ x1
∥x1−x0∥

∈ M ⇒ x1 ∈ M a contradiction!.
Thus xa ∈ M . Therefore,

dist (xa,M) = inf
y∈M

∥xa − y∥ = inf
y∈M

|| x1 − x0

∥x1 − x0∥
− y∥

=
1

∥x1 − x0∥
inf ∥x1 − x0−∥x1⊕x0∥y∥ =

1

||x1 − x0∥
inf∥x1 − {x0 + ∥x1 − x0∥ y} ∥

=
1

∥x1 − x0∥
d >

d

d/a
= a

Thus dist (xa,M) > a.

There are bounded operators which are not compact.

Proposition 4. Let X be a normed linear space of infinite Hamel dimension. The identity operator
I: X → X is not Compact.

Proof. Let X be a normed linear space of infinite Hamel dimension. Pick any countable subset
{xn : n ∈ N} from an infinite Hamel basis (without loss of generality, we may assume that ∥xn∥ = 1).
Let

Mn = [{x1, . . . xn}] for alln ∈ N
Since each Mn is finite- dimensional, Mn is closed for all n ∈ N. Since {x1, x2, · · · } is linearly
independent it follows that

M1 ⊂ M2 ⊂ . . . ⊂ Mn ⊂ Mn+1 ⊂ . . .

(strict containment). Since M1 is strictly contained in M2, by Riesz’s lemma there exists a y2 ∈ M2

such that ∥y2∥ = 1, and dist (y2,M1) >
1
2
Take y1 = x1 ∈ M1 , so

∥y2 − y1∥ >
1

2
. (2)

Since M2 is a proper closed subspace of M3, by Riesz’s lemma there exists a y3 ∈ M3 such that
∥y3∥ = 1 and dist (y3,M2) >

1
2
. Since y1, y2 ∈ M2, so

∥y1 − y3∥ >
1

2
, ∥y2 − y3∥ >

1

2
(3)
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Continuing in this manner, we have yi ∈ Mi, i = 1, . . . n such that ∥yi∥ = 1 and ∥yi − yj∥ >
1
2

∀i ̸= j, i = 1, . . . n, j = 1 . . . n {M3 ⊂ M4 properly therefore there exists y4 ∈ M4 such that
∥y4∥ = 1 and dist (y4,M3) >

1
2
but y1, y2 ∈ M3 therefore

∥y4 − y1∥ >
1

2
∥y4 − y2∥ >

1

2
∥y4 − y3∥ >

1

2

In the next stage since Mn+1 ⊂ Mn properly we would get yn+1 ∈ Mn+1 such that ∥yn+1∥ = 1.
∥yn+1 − y1∥ > 1

2
for all i = 1, . . . , n

and thus

∥yi − yj∥ >
1

2
for alli ̸= j i = 1, · · ·n+ 1, j = 1, · · ·n+ 1

and the induction is complete.

We thus get a sequence (yn)
∞
n=1 of unit vectors in X such that

∥yi − yj∥ >
1

2
∀ i ̸= j

Since I is the identity operator,
Ix = x ∀x ∈ X

So
Iyi = yi ∀i ∈ N.

Now M = {y1, y2, . . . , yn . . .} is a bounded subset of X and I(M) (image of M under the linear
operator I) is also M . The distance between any two distinct points in

I(M)is greater than
1

2

(
∥Iyi − Iyj∥ = ∥yi − yj∥ >

1

2
∀i ̸= j

)
.

Hence any sequence of distinct elements of I(M) cannot therefore have a convergent subsequence.
Hence (by proposition 1) I(M) is not relatively compact i.e. I(M) is not compact. Therefore, I is
not compact ( when Hamel dimension of X is infinite).

Remark 1. In the Hilbert space situation, the proof is simpler. Let H be a Hilbert space of infinite
orthogonal dimension. Let {en : n ∈ N} be a subset of an orthonormal basis of H. Clearly if
i ̸= j ∥ei − ej∥2 = ⟨ei − ej , ei − ej⟩

= ∥ei∥2 + ∥ej∥2 since ⟨ei, ej⟩ = 0 ∀i ̸= j = 1 + 1 = 2

Hence ∥ei − ej∥ =
√
2, whenever i ̸= j. Let M = {en : n ∈ N}. Clearly M is bounded and as

before I(M) = M is not relatively compact.

Definition 7. Let X and Y be normed linear spaces over K. The set of all compact operators on
X into Y is represented by the symbol B∞(X,Y ) or (K(X,Y )). Obviously B∞(X,Y ) ⊂ B(X,Y )
(proper). If X = Y , we use the symbol B∞(X) or K(X). Moreover

Proposition 5. Let X and Y be normed linear spaces over K. Then K (X,Y ) is a linear space
over K.

Proof. Suppose S, T ∈ K(X,Y ), i.e. are compact, we shall show that S + T is compact. Let (xn)
be any bounded sequence of elements from X. Since S is compact, by proposition 2 there is a
subsequence (xnk ) of (xn) such that (Sxnk ) converges to some element in Y say

Sxnk

s−→ y (4)

Since (xn) is bounded so is (xnk ). Since T is compact (xnk )
∞
k=1 will have a subsequence

(
xnkr

)∞
k=1

such that
(
Txnkr

)∞
r=1

converges in Y. Since SXnk

s−→ y (by (4)) and
(
xnkr

)
is a subsequence of

(xnk ). So SXnk

s−→ y
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(If a sequence is convergent, then every subsequence of the sequence is also convergent and the limit
to which the subsequence converges is the same as the limit of the sequence). Thus Txnkr

s→ a

limit in Y. Sxnkr

S→ a limit in Y.
Consequently,

(S + T )xnkr

s−→ a limit in Y

and
(
xnkr

)
is a subsequence of a bounded sequence (xn). Therefore, S + T is compact.

The proof that if λ ∈ K and T is compact, then λT is compact is similar. Indeed, if (xn) is any
bounded sequence in X, then, since T is compact, there is a subsequence (xnk ) of (xn) such that

Txnk

s→ some limit y ∈ Y .
Then (λxn) is also bounded and

(λT ) (xnk ) = T (λxnk ) = λT (xnk )
s→ λy ∈ Y

so λT is also compact. Thus K(X,Y ) is a linear space over K.

Proposition 6. Let X be a normed linear space over K and S ∈ B(X) and T ∈ K(X). Then ST ,
TS are also compact i.e. ST , TS ∈ K(X). (of course S, T ∈ K(X) ⇒ ST, TS ∈ K(X)).

Proof. Consider ST. Let (xn) be any bounded sequence of elements of X. Since T is compact,
there is a subsequence (xnk ) of (xn) such that (Txnk ) converges in X. Since S is bounded, it is
continuous and hence STxnk = S (Txnk ) also converges.
Thus every bounded sequence (xn) has a subsequence (xnk ) such that (STxnk) converges in X.
This shows that ST is compact.
Consider TS. If (xn) is a bounded sequence of elements of X, then so is (Sxn) for S is bounded
there exists M > 0 such that ∥xn∥ ≤ M ∀n ∈ N. Therefore, ∥Sxn∥ ≤ ∥S∥∥xn∥ ≤ M∥S∥ ∀n ∈ N.
Since T is compact, there is a subsequence (xnk ) of (xn) such that (TSxnk ) converges in X which
shows that TS is compact.

Remark 2. Thus the linear space K(X) is a two-sided ideal in the algebra B(X) of all bounded
operators.

Example 3. Let X be a normed linear space and T1, . . . , Tn be compact linear operators on X; I
is the identity operator on X. Define T on X by I − T = (I − T1) (I − T2) . . . (I − Tn). Show that
T is compact.

Solution

T = I − (I − T )

=I − (I − T1) (I − T2) . . . (I − Tn) .

=I − [I − (T1 + T2) + T1T2] (I − T3) . . . (I − Tn) .

=I − [I − (T1 + T2 + T3) + (T1T2 + T1T3 + T2T3)− T1T2T3] (I − T4) . . . (I − Tn)

=I −

I −

(
n∑

i=1

Ti

)
+

( ∑
i,j=1,···n

TiTj

)
⊕

 ∑
i<j>k

TiTjTk

+ · · ·+ (−1)nT1 . . . Tn


=

(
n∑

i=1

Ti

)
⊕

( ∑
i,j=1,···n

TiTj

)
+

 ∑
i<j>k

TiTjTk

+ · · ·+ (−1)n+1T1 . . . Tn (5)

Since Ti ∈ K(X) for i = 1, · · ·n and K(X) is a linear space, so
∑n

i=1 Ti ∈ K(X) By the proposition
6, (K(X) is an ideal in B(X) ) it follows that all the rest of the terms in the right hand side of
(5) represents compact operator and once again, using the fact that K(x) is a linear space the
expression on the right side of (5) represent a compact operator. Thus T ∈ K(X).

Proposition 7. Let X be a normed linear space of infinite Hamel dimensional and T ∈ B(X). If
T is invertible then T cannot be compact.
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Proof. Since T is invertible, T−1 exists in B(X) and T−1T = I. If T were compact, then since
T−1 ∈ B(X), so by proposition 6, T−1T must be compact, i.e. I must be compact, which cannot
be so since X is of infinite Hamel dimension. Hence T cannot be compact.

Remark 3. i) Every linear subspace of finite Hamel dimension in a normed linear space is closed

ii) Every bounded sequence in a normed linear space of finite dimension has a subsequence
which converges to a limit in the normed linear space.

Proposition 8. Let X be a normed linear space over K. Then X is of finite dimension if and only
if every closed and bounded subset of X is compact.

Proof. Let X be of finite dimension. If M is a finite set, then clearly every M is closed (finite
subsets of metric spaces are always closed). Also it is clear that every open cover for M has a finite
subcover.

Suppose M is infinite. Let (xn) be any sequence of points of M . Since M is bounded so is (xn).
By Remark 3(ii), (xn) has a subsequence (xnk ) converging to a limit say x ∈ X. Clearly, x ∈ M
(for (xn ∈ M for all n ∈ N). But M is closed. So x ∈ M .

Thus every sequence (xn) of points of M has a subsequence which converges to a limit in M . Thus
M is sequentially compact implies M is compact. Thus if X is of finite dimension, M is closed and
bounded implies M is compact.

Conversely, let every closed and bounded subset of a normed linear space X be compact. We
must show that X is of finite Hamel dimension. Hence the unit sphere S(x) = {x ∈ X :
∥x∥ = 1} must be compact (it is closed, bounded). Clearly, if we represent by N

(
x; 1

2

)
the set{

y ∈ X : ∥y − x∥ < 1
2
: ∥x∥ = 1

}
. Then the family

{
N
(
x; 1

2

)
: x ∈ S(x)

}
is an open cover for S(X).

By compactness of S(X), there exists a finite subset {x1, . . . , xn} ⊂ S(X) such that⋃n

i=1
N

(
xi;

1

2

)
⊃ S(X)

.
Let M = [{x1, · · · , xn}]. Either M = X or M is a proper linear subspace of X. Suppose the later,
that is, M is a proper linear subspace of X. Clearly, M is of finite dimension and hence M is closed.
Thus M is a proper closed linear subspace of the normed linear space X. Hence, by Riesz lemma,
we can find a y ∈ X such that ∥y∥ = 1 and dist (y,M) > 2

3
. Since ∥y∥ = 1, so y ∈ S(X). Hence

∥y − xi∥ >
2

3
∀i = 1, . . . n

since M = [(x1, · · · , xn)] i.e. y /∈ N
(
xi,

1
2

)
∀i = 1, 2, · · · , n and y ∈ S(X). This gives a

contradiction!! since y is not covered by the finite subcover
{
N
(
xi;

1
2

)
: i = 1, . . . , n

}
.

Hence the supposition that M is a proper linear subspace of X is incorrect and hence unacceptable.
Therefore,
M = X i.e. X = [{x1, . . . , xn}] i.e. X is of finite dimension.

Corollary 2. Let X be a normed linear space. Then X is of finite dimension if and only if S(X) =
{x ∈ X : ∥x∥ = 1 or N̄(x) = {x ∈ X : ∥x∥ ≤ 1} is compact.

Proposition 9. Let X,Y be normed linear space over K and T : X → Y be a linear operator.

(i) If T ∈ B(X,Y ) and dimRT < +∞ (i.e. T is of finite rank) then T is compact.

(ii) If X is of finite Hamel dimension, then T is compact.

Proof. (i) Let M be any bounded subset of X. We must show that T (M) is compact. Since T is
bounded, and M is a bounded subset, so T (M) ) is bounded. Hence T (M) is bounded. Since T is
linear, RT is a linear subspace of H. Since dimRT < +∞, so RT is closed and T (M) ⊆ RT . So

T (M) ⊆ R̄T = RT .
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We thus see that T (M) ) is a closed bounded subset of a finite dimensional normed linear space
RT . So T (M) is compact (by proposition 8). Hence T is compact.

(ii) If dimX < ∞. Then dimT (X) = dimRT < ∞. Since T is a linear operator on a finite
dimensional normed linear space, so T is bounded. Hence by (i) T is compact.

Proposition 10. Let X be a normed linear space and Y be a Banach space and (Tn) be a sequence
of compact operators on X into Y such that Tn → T uniformly in B(X,Y ), i.e. ∥Tn − T∥ → 0 as
n → ∞ (in the norm of B(X,Y ). Then T is compact.

Proof. Since T1 is compact, if (xn) is any bounded sequence of elements of X1 say ∥xn∥ ≤ c ∀
n ∈ N, then there exists a subsequence

(
x
(1)
n

)
of (xn) such that

(
T1(x

(1)
n )
)
converges strongly in Y .

Since T2 is compact , there exists a subsequence
(
x
(2)
n

)
of
(
x
(1)
n

)
such that

(
T2(x

(2)
n )
)
converges

strongly in Y . Continuing in this manner we get subsequences
(
x
(r)
n

)
of (xn) such that for any

r, s ∈ N, r ≤ s,
(
x
(r)
n

)
is a subsequence of

(
x
(r)
n

)
. We can list these subsequences as below in

order
(x(1)

n ) ⊂ (x(2)
n ) ⊂ (x(3)

n ) ⊂ · · · ⊂ (x(r)
n ) ⊂ . . .

General picture:

x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
4 · · ·

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 · · ·

x
(3)
1 x

(3)
2 x

(3)
3 x

(3)
4 · · ·

...
...

...
...

Consider the sequence consisting of the principal diagonal in the above array, i.e. the sequence(
x
(n)
n

)∞
n=1

. This sequence is bounded since (xn) is bounded. Since Tn → T uniformly, for each

ε > 0 we can find an nε ∈ N such that

∥Tn − T∥ <
ε

3c
∀n ≥ nε.

It is clear that each one of the Tn’s converges strongly on the diagonal subsequence
(
x
(r)
r

)
. In

particular, Tnε converges strongly on
(
x
(r)
r

)
i.e. there exists n0 ∈ N such that∥∥∥Tnrx

(s)
s − Tnεx

(r)
r

∥∥∥ <
ε

3
, ∀r, s ≥ n0

Now if r, s ≥ n0∥∥∥Tx(s)
s − Txr

(r)
∥∥∥ ⩽

∥∥∥Tx(s)
s − Tnεx

(s)
s

∥∥∥+ ∥∥∥Tnεx
(s)
s − Tnεx

(r)
r

∥∥∥+ ∥∥∥Tnεx
(r)
r − Tx(r)

r

∥∥∥
< ∥T − Tnε∥

∥∥∥x(s)
s

∥∥∥+ ε

3
+ ∥Tnε − T∥ ∥xr

(r)∥

<
ε

3c
c+

ε

3
+

ε

3c
c = ε

Thus
(
T (x

(n)
n )
)
is strongly Cauchy in Y and Y is a Banach space. Hence

(
T (x

(n)
n )
)
converges in

Y . Thus for each bounded sequence (xn) of elements of X, there is a subsequence
(
xn

(n)
)

such

that
(
Tx

(n)
n

)
converges in Y . i.e. T is compact.

Corollary 3. If X is a Banach space and (Tn) is a sequence of compact linear operators in X such
that Tn → T uniformly, then T is compact
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Remark 4. The result would not be valid if we replace uniform convergence by strong convergence
i.e. Tn compact, Tn

s−→ T does not imply T is compact.

Counter Example:
Let H = ℓ2(N) and for each n ∈ N and x = (x1, x2, . . .) ∈ ℓ2(N) define Tn by

Tnx = (x1, x2, · · · , xn, 0, 0, . . .)

i.e. xi = 0 ∀i > n. Each Tn has RTn of finite dimension n. Also, for all x = (xn) ∈ ℓ2(N).

∥Txn∥2 =

n∑
i=1

∥xi∥2 ⩽
∞∑
i=1

∥xi∥2 = ∥x∥2.

So each Tn is bounded (∥Tn∥ < 1). Therefore, each Tn is compact by proposition 9(i). Also, for
each x = (xn) ∈ ℓ2(N), we have

∥Tnx− Ix∥ = ∥ (x1, x2, · · ·xn, 0, 0, . . .)− (x1x2, . . . xn, xn+1, · · · ) ∥
= ∥ (0, 0, . . . 0, xn+1, xn+2, · · · ) ∥.

=

∞∑
i=n+1

|xi|2 → 0 as n → ∞

for each
∑∞

i=n+1 |xi|2 is the ”tail” of the convergent series
∑∞

i=1 |xi|2 · Thus Tn
s→ I. But since

ℓ2(N) is infinite-dimensional, the identity operator I is not compact. Thus the strong limit of (Tn)
is not compact.

Example 4. Consider H = ℓ2(N) and let T : H → H be defined by Ten = 1
n
en ∀ n ∈ N, given that

(en) is a complete orthonormal set in H. The matrix of T is the diagonal matrix
1 0

1
2

1
3

0 1
4

. . .

 (6)

(1, 1
2
, 1
3
, 1
4
, · · · are in Pσ(T )). Show that T is compact.

Solution

If x = (xn)
∞
n=1 ∈ ℓ2, then

Tx =
(
x1,

x2

2
,
x3

3
,
x4

4
, . . .

)
{For

Tx = T

(
∞∑

n=1

xnen

)
=

∞∑
n=1

xnTen =

∞∑
n=1

xn
en
n

=

∞∑
n=1

xn

n
en =

=
(
x1,

x2

2
,
x3

3
, . . .

)
Note

∞∑
i=1

|xi|2 < +∞ ⇒
∞∑
i=1

1

i
∥xi|2 < ∞.(

x1,
x2

2
, · · ·

)
∈ ℓ2(N)}

Define for each n ∈ N; operators Tn by Tnx =
(
x1,

x2
2,
, . . . , xn

n
, 0, 0,

)
, for x = (xk) ∈ ℓ2(N). Each

Tn ∈ B
(
ℓ2(N)

)
and has finite dimensional range. Therefore, each Tn is compact.

Now ∥Tn − T∥ = sup
{
∥(Tn − T )x∥ : x ∈ ℓ2(N) and ∥x∥ = 1} and

=

{
sup

{
∥(x1,

x2

2
, . . . ,

xn

n
, 0, 0, . . .

)
−
(
x1,

x2

2
, . . . ,

xn

n
,
xn+1

n+ 1

)}
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= sup

{∥∥∥∥(0, 0, · · · , xn+1

n+ 1
,
xn+2

n+ 2
, . . .

)∥∥∥∥ : ∥x∥ = 1

}

= sup

{
∞∑

i=n+1

1

i2
|xi|2

, where
∑∞

i=1 |xi|2 = 1
}
≤ sup

{
1

(n+1)2

∑∞
i=n+1 |xi|2 :

∑∞
i=1 |xi|2 = 1

}
⩽

1

(n+ 1)2

∞∑
i=1

|xi|2 =
1

(n+ 1)2
.

If we let n → +∞, we get, ∥Tn − T∥ → 0. i.e. Tn → T uniformly. Each Tn is compact.
Therefore, T is compact (by proposition 10).

Proposition 11. Let X be a Banach space and DT be a linear subspace of X. Suppose T = DT → X
is compact. Then its closure T is compact. (If T is closable and compact, then its closure T is
compact).

Proof. We can extend T by continuity to all of DT (If x ∈ DT , (xn) is any sequence of points of D
and such that xn

s→ x, then we define the extension T of T by T x = strong limit Txn. Moreover,
∥T∥ = ∥T∥. So DT = DT . Moreover, T is closed). Let (xn) be any bounded sequence in DT = DT .
Hence for each n ∈ N, we can find a yn ∈ DT such that ∥yn − xn∥ ⩽ 1

n
. Clearly, (yn) is bounded;

since (xn) is bounded. Indeed,

∥yn∥ = ∥(yn − xn) + xn∥
⩽ ∥yn − xn∥+ ∥xn∥

⩽
1

n
+ ∥xn∥

Therefore (yn) is bounded. Since T is compact, and (yn) is a bounded sequence in DT so there
exists a subsequence (ynk ) of (yn) such that (Tynk ) converges strongly in X to y, say.
Consider the corresponding subsequence (xnk) of (x0). Then

Txnk − y = Txnk − T ynk + Tynk − y

Therefore
∥∥Txnk − y

∥∥ ≤ ∥F∥ ∥xnk − ynk∥+
∥∥Tynk − y

∥∥
⩽ ∥T∥ 1

nk.
+ ∥Tyk − y∥

Therefore Txnk

s→ y

This shows that for any bounded sequence {xn} there is a subsequence {xnk} such that {Txnk}
converges strongly in X. So T is compact.

Definition 8. Let X and Y be normed linear spaces and T : X → Y a linear operator. We say
that T is of finite rank m (where m ∈ N) if the Hamel-dimension of the range RT of T is m.

Proposition 12. Let H and K be Hilbert spaces and T : H → K be a bounded linear operator. T
is of finite rank m if and only if there exists linearly independent subsets {x1, x2, . . . , xm} ⊂ H and
{y1, y2, . . . , ym} ⊂ K such that

Tx =

m∑
j=1

⟨xj , xj⟩ yj ∀ x ∈ H.

Then T ∗y =
∑m

j=1 ⟨yj , yj⟩xj and ∥T∥ ⩽
∑m

j=1 ∥xj∥ ∥yi∥, T ∗ is of rank m if and only if T is of rank
m. We can without loss of generality, take {x1, x2, · · · , xm} or {y1, y2, . . . ym} to be an orthonormal
system.
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Proof. Take {y1, . . . , ym} to be an orthonormal system in RT . Then for any x ∈ H, we have

Tx =

m∑
j=1

⟨Tx, yj⟩ yj

=

m∑
j=1

⟨x, T ∗yj⟩ yj

Put T ∗yj = xj for each j = 1, . . . ,m so

Tx =

m∑
j=1

⟨x, xj⟩ yj

We need to show that {x1, . . . , xm} is linearly independent. Assume the contrary then without loss
of generality, we may suppose that x1 is a linear combination of x2, . . . , xm say x2 =

∑m
j=2 ajxj for

scalars aj ∈ C, therefore

Tx =

m∑
j=2

⟨x, xj⟩ yj + ⟨x, x1⟩ y1

=

m∑
j=2

⟨x, xj⟩ yi +

〈
x,

m∑
j=2

ajxj

〉
y1

=

m∑
j=2

⟨x, xj⟩ yj +

(
m∑

j=2

aj ⟨x, xj⟩

)
y1

=

m∑
j=2

⟨x, xj⟩ (yj + ājy1)

= linear combination of (m− 1) vectors {y2 + ā2y1, y3 + ā3y2, . . . , ym + āmy2}
which implies dim RT is at most (m− 1), a contradiction since

RT = m

Hence {x1, . . . , xm} cannot be linearly dependent. Therefore, {x2, . . . , xM} is linearly independent.
It is clear that

RT ⊆ [{y1, · · · · ym}]
Since {x1, . . . xm] is linearly independent;

x1 ̸= 0̄ and x1 /∈ [{x2, . . . , xm}]

so x1 ∈ [{x2, . . . , xm}]⊥

Hence we can find an z1 ∈ H such that z1 ⊥ x1 and z1 ⊥ x2, . . . , xm.
This can be done in general, that is for any k ∈ {1, 2, . . . ,m} we can find a zk ∈ H such that
⟨zk, xk⟩ ̸= 0 and ⟨zk, xj⟩ = 0 ∀ j ̸= k. Putting x = zk, we get

Tzk =

n∑
j=1

⟨zk, xj⟩ yj = ⟨zk, xk⟩yk.

which implies that yk ∈ RT and this is true for k = 1, 2, . . . ,m. Thus RT = [{y1, . . . , ym}].
Also from

Tx =

m∑
j=1

⟨x, xj⟩ yj

we get

∥Tx∥ ≤
m∑

j=1

|⟨x, xj⟩|∥yj∥ ⩽ ∥x∥
m∑

j=1

∥xj∥ ∥yj∥
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which shows that

∥T∥ ⩽
m∑

j=1

∥xj∥ ∥yj∥

For all y ∈ K

⟨T ∗y, x⟩ = ⟨y, Tx⟩ =

〈
y,

m∑
j=1

⟨x, xj > yj⟩

〉
=

m∑
j=1

〈
{x, xj}

〉
⟨y, yj⟩

=

m∑
j=1

⟨y, yj⟩ ⟨xj , x⟩ =

〈
m∑

j=1

⟨y, yj⟩xj , x

〉
As this is true for all x ∈ H, we get

T ∗y =

m∑
j=1

⟨y, yj⟩xj

and rank T ∗ = m.
Conversely, if rank T ∗ = m, we may assume that x′

js are orthonormal and show that T ∗∗ is of rank
m i.e. T is of rank m.

Proposition 13. Let (X, ρ) be a metric space. If a subset A of X is totally bounded, then A is
separable.

Proof. Since A is totally bounded, for each ε > 0, there exists a finite ε − net Nε for A. (i.e. for
each x ∈ A there existsy ∈ Nε such that ∥x − y∥ < ε. Let ε = 1

k
where k ∈ N and let k run

through N. Let N =
⋃

k∈N N 1
k
. Clearly, N is at most countable and dense in A. For if x ∈ A,

and ε > 0 choose a k ∈ N such that 1
k
< ε. Then there exists y ∈ N 1

k
such that ∥y − x∥ < 1

k
< ε.

So N(x; ε) has a point y ∈ N 1
k
⊆ N . Thus N is an atmost countable set which is dense in A. Thus

A is separable.

We have seen earlier in proposition 1 that:
Let (X, ρ) be a metric space and A ⊆ X. Then A is relatively compact (i.e. Ā is compact) if and
only if every sequence (xn) of points of A has a convergent subsequence (It’s limit need not be in
A ). We now show:

Proposition 14. Let (X, ρ) be a metric space and A a subset of X which is relatively compact.
Then A is totally bounded.

Proof. Assume the contrary i.e. suppose A was not totally bounded. Then there exists an ε > 0
for which A does not have a finite ε in X. In particular, A does not have a finite ε-net in A.
(i.e. consisting of points of A). Choose x1 ∈ A. Then there exists a points x2 ∈ A such that
ρ (x1, x2) ≥ ε for if no such point x existed in A then ρ(x, y) < ε ∀y ∈ A which means that {x1} is
an (finite) ε− net for A, a contradiction!

There exists a point x3 ∈ A such that ρ (x3, x1) ≥ ε and ρ (x3, x2) ≥ ε, for if no such point x3

existed, it would mean that {x1, x2} is a finite ε− net for A in (A), a contradiction!

Proceeding in this manner, we get a sequence (xn) of distinct points of A such that ρ (xi, xj) ≥ ε
for all i ̸= j. This sequence (xn) of points of A clearly has no convergent subsequence. Hence A
cannot be relatively compact. Thus A is not totally bounded implies A not relatively compact. A
is relatively compact implies A is totally bounded.

Proposition 15. Let (X, ρ) be a metric space and A be relatively compact. Then A is separable.

Proof. A is relatively compact implies A is totally bounded which implies A is separable.
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Proposition 16. Let X and Y be normed linear spaces and T : X → Y be compact. Then the
range RT of T is separable.

Proof. Denote an open neighborhood of 0̄ of radius n by N(0̄;n). Then

x =
⋃
n∈N

N (0̄;n)

Clearly, x ⊇
⋃

n∈N N(0;n). On the other hand, if x ∈ X, then ∥x∥ is a non-negative real. Hence
∃n0 ∈ N such that ∥x∥ < n0 i.e.

x ∈ N (0̄;n0) ⊆
⋃
n∈N

N(0̄;n) i.e. X ⊆
⋃
n∈N

(0, n).

Now RT = T (x) = T
(⋃

n∈N N(0̄;n)
)
=
⋃

n∈N T (N(0̄;n)
(Note:The last step would not be true if we had an intersection of a family of set.) Since each
N(0 : n) is bounded and T is compact, so T (N(0;n)) is relatively compact and hence separable.
Thus RT being a countable union of separable sets is separable.

3 Compact Operators in Hilbert Spaces

We now investigate the action of a bounded linear operator on weakly convergent sequence. We
shall work with Hilbert spaces as our main interest lies in these spaces.

Proposition 17. Let H be a Hilbert space and T ∈ B(H). Let (xn) be a sequence of points of H
such that xn

ω−→ x. Then Txn
ω−→ Tx

Proof. Since T ∈ B(H), T ∗ ∈ B(H). Also xn
w→ x implies limn→∞ ⟨xn, T

∗y⟩ = ⟨x, T ∗y⟩ ∀ y ∈
H. i.e. limn→∞ ⟨Txn, y⟩ = ⟨Tx, y⟩ ∀y ∈ H, which implies Txn

ω−→ Tx

Remark 5. The result goes through if T ∈ B(H,K)( then T ∗ ∈ B(K,H)). We also know that strong
convergence implies weak convergence but weak convergence does not imply strong convergence.

Example 5. Consider ℓ2(N) and take (en) to be the orthonormal basis.

en = (0, 0, . . . , 0, 1, . . .)(n ∈ N)

Now ∥en − em∥2 = 2 ∀ n ̸= m. So ρ (en, em) =
√
2 ∀ m ̸= n. So (en) cannot be strongly

convergent. For every x ∈ ℓ2 we have
x =

∑
n∈N ⟨x, en⟩ en and ∥x∥2 =

∑∞
n=1 |⟨x, en⟩|

2 (Parseval’s equality)

So
∑∞

n=1 |⟨x, en⟩|
2 < ∞ i.e.

∑
n∈N |⟨x, en⟩|2 is convergent in R and hence

lim
n→∞

|⟨x, en⟩| = 0 i.e. lim
n→∞

⟨x, en⟩ = 0.

Thus

lim
n→∞

⟨en, x⟩ = ⟨0, x⟩ ∀x ∈ H. i.e. en
ω−→ e

Hence in example 1, for T ∈ B(H), Txn
ω−→ Tx does not imply strong convergence i.e. (Txn)

is not strongly convergent. In distinction to this, we get a surprising result:

Proposition 18. Let H and K be Hilbert spaces and (xn) be a weakly convergent sequence in H.
T ∈ B(H,K) is compact if and only if T maps every weakly convergent sequence in H to a strongly
convergent sequence.
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Proof. Let xn
ω−→ x. So (xn) is bounded (earlier result). Consider the set M = {Txn : n ∈ N}.

This is bounded and also relatively compact. If (Txn) is not strongly convergent, then there exist at
least two subsequences (x′

n), (x
′′
n) of (xn) such that (Tx′

n) , (Tx
′′
n) converge to distinct limits y′, y′′

respectively. Now ∀x ∈ H 〈
y′, x

〉
=
〈
s. lim

n→∞
Tx′

n, x
〉

= lim
n→∞

〈
Tx′

n, x
〉

= lim
n→∞

〈
x′
n, T

∗x
〉

= lim
n→∞

〈
x′′
n, T

∗x
〉

{ Reason: Since xn
ω−→ x (note the weak limit is unique) so (x′

n) , (x
′′
n) being subsequences of (xn)

also converges weakly to x, i.e.
limn→∞ ⟨x′

n, y⟩ = ⟨x, y⟩, limn→∞ ⟨x′′
n, y⟩ = ⟨x, y⟩ etc. }. Thus〈

y′, x
〉
= lim

n→∞

〈
x′′
n, Tx

∗〉 = lim
n→∞

〈
Tx′′, x

〉
=
〈
s. lim

n→∞
Tx′′

n, x
〉
=
〈
y′′, x

〉
That is

〈
y′, x

〉
=
〈
y′′, x

〉
∀x ∈ H.

Thus ⟨y′ − y′′, x⟩ = 0 ∀x ∈ H

Therefore, y′ − y′′ ⊥ H i.e. y′ − y′′ = 0.

i.e. y′ = y′′! a contradiction.

Hence the assumption that (Txn) is not strongly convergent is unacceptable. Hence (Txn) must
converge strongly.
Conversely, let (xn) be a bounded sequence of elements of H. Then (xn) has a subsequence (xnk )
which convergent weakly to H [9]. By hypothesis, (Txnk ) converges strongly in K. Thus every
bounded sequence (xn) of elements in H has a subsequence (xnk ) such that (Txnk ) converges
strongly in K. Therefore, T is compact. (By proposition 2)

Proposition 19. Let H,K be Hilbert spaces. Let T : H → K be compact. If xn
ω−→ x then

Txn
s−→ Tx.

Proof. Since T ∈ B(H,K) we have already seen by proposition 17 that
xn

ω−→ x implies Txn
ω−→ Tx. Now since T is compact, (xn) is weakly convergent implies (Txn)

is strongly convergent, say to y ∈ K. Thus Txn
s−→ y. But strong convergence implies weak

convergence, so Txn
s−→ y implies Txn

w−→ y. By uniqueness of weak limit (of a weakly convergent
sequence) we have

Txn
ω−→ y, Txn

ω−→ Tx implies Tx = y

Therefore, Txn
S−→ y = Tx

i.e. Txn
S−→ Tx

Proposition 20. Let H and K be Hilbert spaces and T ∈ B(H,K). The following statements are
equivalent.

(i) T is compact

(ii) T ∗T is compact

(iii) T ∗ is compact.

Proof. (i) ⇔ (ii)
T ∈ B(H,K) implies T ∗ ∈ B(K,H). T is compact and T ∗T is meaningful. T is compact, T ∗ is
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bounded implies T ∗T is compact.

(ii) ⇔ (i)
Let (xn) be a weakly convergent sequence in H such that xn

ω−→ x. Since T ∗T is compact we
have by proposition 19 T ∗Txn

s−→ T ∗Tx i.e. T ∗T is strongly Cauchy in H. Since (xn) is weakly
convergent, (xn) is bounded, hence there exists c > 0 such that ∥xn∥ ≤ c ∀ n ∈ N.
Now for all m,n ∈ N,

∥Txn − Txm∥2 = ⟨T (xn − xm) , T (xn − xm)⟩
= ⟨T ∗T (xn − xm) , (xn − xm)⟩
= |⟨T ∗T (xn − xm) , (xn − xm)⟩| (∵ T ∗T ≥ 0)

≤ ∥T ∗T (xn − xm)∥ ∥xn − xm∥

Since T ∗T is strongly Cauchy in H, ∥T ∗T (xn − xm) ∥ → 0 as both m, n −→ ∞. Since ∥xk∥ ≤
c ∀ k ∈ N, so ∥xn − xm∥ ⩽ ∥xn∥ + ∥xm|| ⩽ 2c. Therefore, ∥Txn − Txm∥ → 0 as both m,n → ∞
i.e. (Txn) is strongly Cauchy in K. But K is strongly complete. Therefore, Txn converges strongly
in K. So T maps weakly convergent sequences to strongly convergent sequences. Therefore, T is
compact.

(i) ⇔ (iii).
Since T is compact and T ∗ ∈ B (K,H), so TT ∗(∈ B(K)) is compact i.e. (T ∗)T ∗ is compact. From
(i) ⇔ (ii), we conclude, T ∗ is compact. Now T ∗ ∈ B(H) and (T ∗)∗ = T . So T ∗ is compact ⇒ (T ∗)∗

is compact ⇒ T is compact

Proposition 21. Let H be an infinite dimensional Hilbert space. If T is compact, then 0 ∈ σ(T ).

Proof. Since T is compact and H is infinite dimensional so T is not invertible (by proposition 7).
{For if T−1 existed in B(H) then T−1T would be compact i.e. I would be compact which is not
possible when H is infinite dimensional}. i.e. T − 0I is not invertible. Therefore, 0 ∈ σ(T ).

Proposition 22. Let T : H → K be compact. Then η⊥
T is separable.

Proof. Let {eα : x ∈ Λ} be an orthonormal basis for η⊥
T . For any sequence (eαi) from {eα : α ∈ Λ]

with eαi ̸= eαj if i ̸= j, we know that eαi
ω→ 0̄ i.e. (eαi)

∞
i=1 converges weakly. Since T is compact,

(Teαi)
∞
i=1 converges strongly to 0̄.

Hence for each real ε > 0 there can be at most a finite number of α ∈ Λ such that

∥Teαi∥ ⩾ ε.

(For if {α ∈ Λ : ∥Teαi∥ ≥ ε} is of infinite cardinality, then we would select from this bounded
sequence {eαi ] a subsequence

{
e′αi

}
which converges weakly to 0; therefore Te′αi

s−→= 0 (for T is
compact) and this is a contradiction! since ∥Teαi∥ ≥ ε ∀i ∈ N.
It now follows that the set

{α ∈ Λ : ∥Teα∥ > 0}

is at most countable. To see this, put ε = 1
k
and let k run through N. Then

{α ∈ Λ : ∥Teα∥ > 0} =
⋃
k∈N

{αi : ∥Teαi∥ ≥ 1

k
}

Hence the orthormal basis spanning η⊥
T is at most countable. This shows that η⊥

T is separable.

We use: A normed linear space X is separable if and only if there exists an atmost countable family
F of linearly independent elements of X such that [F ] = X. (For if Q = {α ∈ Λ : ∥Teα∥ ≥ ε} is
of infinite cardinality We would select a sequence (αn) of elements of Q and for this sequence we
would have (as already above) Tαn

s−→0 which contradicts the condition ∥Teα∥ ≥ ε ∀ α ∈ Q
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Proposition 23. Let T ∈ B(H). Then T is compact if and only if there is a sequence (Tn) of

elements of B(H) which are of finite rank such that Tn
∥.∥−→ T i.e. Tn converges to T uniformly.

Proof. By proposition 10 we have seen that: If (Tn) is a sequence of compact linear operators in
H and Tn → T in the norm of H, then T is compact. If each Tn ∈ B(H) is of finite rank, then we
have, seen that Tn is compact and then we apply proposition 22 to conclude the proof of the given
theorem in one direction.

Conversely, let T be compact. Hence, by proposition 22, η⊥
T is separable. Let {en : n ∈ N} be an

orthonormal basis for η⊥
T . Let Pn be the orthoprojector on H onto Mn = ∨n

i=1 {ei} and let P be
the orthoprojector on H onto ∨∞

i=1 {ei} = η⊥
T . Let Tn = TPn∀ n ∈ N, i.e. Tnx = TPnx ∀x ∈ H.

So domain of Tn is Mn = RPn and is of orthogonal dimension n and hence dimension of RTn is at
most n. (Note that

Tnx =

n∑
i=1

⟨x, ei⟩Tei ∀x ∈ H

Therefore, Tnx = TPnx = T (Pnx)

= T

(
n∑

i=1

⟨x, ei⟩ ei

)
for RPn = Mn = ∨n

i=1 {ei}

=

n∑
i=1

⟨x, ei⟩Tei

Since Mn ⊆ Mn+2 ∀ n ∈ N. So Pn ≤ Pn+1 ⩽ P ∀n ∈ N i.e. P1 ≤ P2 ≤ . . . ≤ Pn ⩽ . . . ≤ P
Hence Pn

s−→ P .
Consider the operators T−Tn ∈ B(H). There exists a sequence (xn) of element ofH such that ∥xn∥ =
1 and

∥(T − Tn)xn∥ ≥ 1

2
∥T − Tn∥ (7)

(for ∥T − Tn∥ = sup{∥(T − Tn)x∥ : x ∈ H} and ∥x∥ = 1).

For all y ∈ H, we have ⟨(P − Pn)xn, y⟩ = ⟨xn, (P − Pn) y⟩ → 0 as n → ∞ since Pn
s→ P ⇒

Pny
s−→ Py i.e. (Pn − P )y

s−→ 0.

Therefore ⟨(P − Pn)xn, y⟩ → 0 = ⟨0, y⟩ ∀y ∈ H
i.e. (P − Pn)xn

ω−→ 0.
Since T is compact,

T (P − Pn)xn
s−→ 0 (8)

Now from (7)

∥T − Tn∥ ⩽ 2 ∥(T − Tn)xn∥ = 2 ∥Txn − Tnxn∥ = 2 ∥Txn − TPnxn∥

Noting that (by projection theorem), we can write each xn as xn = x′
n + x′′

n where x′
n ∈ η⊥

T and
x′′
n ∈ ηT , we have

Txn = Tx′′
n + Tx′′

n = Tx′
n

since x′′
n ∈ ηT , so Tx′′

n = 0̄. But x′
n = component of xn in η⊥

T = range P. So x′
n = Pxn. Therefore

Tx′
n = TPxn i.e. Txn = TPxn. Hence ∥T − Tn∥ ⩽ 2∥TPxn − (Pnxn)∥ = 2∥T (P − Pn)xn∥.

By (8) T (P − Pn)xn
s−→ 0 and thus we obtain limn→∞ ∥T−Tn∥ = 0

i.e. Tn −→ T uniformly.

Lemma 6. Let T be a compact operator in H and (en) be any infinite orthonormal sequence in H.
Then limn→∞⟨|Tαn, en|⟩ = 0.

Proof. For en
ω−→ 0̄ and T being compact Ten

s−→ 0.
Now by Cauchy-Bunyakovsky-Shwarz inequality,

|⟨Te1, en⟩| < ∥Ten∥ ∥en∥ = ∥Ten∥ ∀n ∈ N
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But Ten
s−→ 0, therefore,

∥Ten∥ → ∥0∥ = 0

thus lim
n→∞

|⟨Ten, en⟩| = 0
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