Genetic diversity analysis among genotypes of bread wheat (*Triticum aestivum* L.) for yield and its component traits under timely sown condition

ABSTRACT

Genetic diversity analysis for yield and its component traits among 60 genotypes of bread wheat (*Triticum aestivum* L.) under timely sown condition distributed into seven clusters via D² statistics using Euclidean distance method which revealed that the cluster IV had maximum number of genotypes followed by cluster II, Cluster VI, cluster I, cluster V and, cluster III and VII. The highest inter-cluster genetic distance existed between cluster IV and VII and the average intra cluster distance between the genotypes of cluster V was maximum. Therefore, genotypes in these clusters may be used to produce the superior hybrids and transgressive segregants. For grain yield and effective tillers had highest mean value in cluster V and cluster VI. Cluster V and VII had highest mean value for 1000-grain weight and plant height respectively. Traits such as by plant height followed by canopy temperature, days to maturity, days to anthesis and grain filling duration contributing total of 50 per cent to the total divergence.

Keywords: Wheat, Genetic diversity, D² statistics

INTRODUCTION

Bread wheat (Triticum aestivum L.) is an annual Kharif season cereal crop belongs to the family Poaeceae (grasses). It is a self-pollinating, hexaploid (AABBDD) plant with chromosome number of 42 (2n = 6x = 42) and estimated genome size of 16 GB (Wicker et al., $\frac{20162018}{2018}$). The global production of wheat during 2020-2021 has been recorded 765 million metric tonne (Shahbandeh, 2022). As per 4th Advance estimates production for major crops during 2020-2021, wheat cultivation acreage were 34.6 million hectares and giving total production of 109.52 million tonne (Anonymous, 2020). During the course of evolution, wheat gained sufficient genetic diversity along the road from einkorn to bread wheat. Today, however, its diversity is weakening due to repeated cultivation of landraces for specific characters, narrow adaptation, farmers' varietal selection and the requirement of uniform varieties in industrial seed grain processing (Bellon, 1996-and; Smale, 1997). This depletion has now encouraged the use of genetic resources in wheat breeding programmes. At the same time, high temperature is one of the major abiotic stresses in tropical countries like India that has adverse impact on development, growth and overall yield of wheat. At some particular stage of life cycle of wheat, even a little increase or rise in temperature can lead to a complete loss of crop yield. Genetic diversity is crucial for adaptability and survival of wheat species against the threat of disease attack (Fu and Somers 2009). Hence, it is beneficial to assess the genetic diversity at a particular level that may facilitate the efficient exploitation of the germplasm. Such assessment programmes are imperative for man advanced breeding lines by identifying genotypes for Formatted: Font: Not Bold, Formatted: Font: Not Bold, Strikethrough hybridization programme. Thus, the present investigation focuses on the analysis of genetic diversity using cluster distance method.

MATERIALS AND METHODS

The experimental material for the present investigation comprised 60 accessions drawn from wheat gene pool maintained at National Bureau of Plant Genetic Resources (NBPGR), New Delhi and procured by the Indian Institute of Wheat and Barley Research (IIWBR) Karnal. The accessions were raised and followed recommended packages and practices at IIWBR research farm Karnal during *Rabi* season, as mentioned below; "2"

Number of accessions/ genotypes—<u>was</u> = 60,

Design of experiment	=	Randomized Block Design
Replications	=	3
Row length	=	3 m length spaced at 0.20 m
Plot size	=	(3m x 0.2m x 2 row)

Observations were recorded for traits namely days to heading, days to anthesis, days to physiological maturity, grain filling duration, plant height, number of effective tillers, thousand grain weight, grain yield, chlorophyll fluorescence and canopy temperature. Genetic divergence was computed through multivariate analysis using D² Statistic as described by Singh & Pawar (2005).

RESULTS AND DISCUSSION

The cluster IV in Table 1 had maximum 19 (HD2967, DBW88, IBWSN1109 WH1124, IBWSN1156, WH711, IBWSN1155, P13648, KRL210, IBWSN1182, IBWSN1138, WH542, IBWSN1205, WH1202, P13644, IBWSN1151, PBW723, WH1227, WH1226) genotypes followed by cluster II with 17 genotypes (KRL19, WH1123, WH283, WH157, WH1228, WH147, WH1232, WH416, HD3086, WH1164, P13643, P13647, WL711, P13649, IBWSN1118, DPW621-50, IBWSN1142), Cluster VI with 14 genotypes (PBW343, IBWSN1145, IBWSN1162, IBWSN1155, IBWSN1152, WH1179, IBWSN1170, IBWSN1213, WH1184, WH1025, IBWSN1207, PBW725, IBWSN1159, IBWSN1171), cluster I with 5 genotypes (WH1021, HD3059, DBW90, Raj3765, WH730), cluster V with 3 genotypes (WH1080, WH1142, WH1105), and cluster III (ATLAS 66) and VII (C306) each having one genotype. The D² values amongst various genotypes within a cluster ranged from 0.000 to 3.228. Under both divergence analysis, genotypes related by their place of origin have shown tendency to group in the same cluster to some extent which may be due to dependence upon the directional selection pressure. Similar results were obtained by Dutamo et al. (2015) (clustered 60 genotypes of bread wheat into six clusters), Kumar et al. (2015) (grouped the 50 genotypes into 10 diverse clusters under both normal and heat stress environment), Kumar et al. (2013) distributed the 30 genotypes into 8 clusters and observed that the distribution pattern of genotype in different clusters was random and Jaiswal et al. (2010) (grouped the genotypes into twenty three different clusters, each cluster bearing different number of genotypes). To get more heterotic and large number of desirable **Formatted:** Indent: Left: 0 cm, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: 1.27 cm, Left + 2.26 cm, Left + Not at 5.08 cm + 5.71 cm

Formatted: Highlight

Comment [A1]: incorporate as text,

write in paragraph

Formatted: Highlight

transgressive <u>segergantssegregates???</u>, selection of parents for hybridization should be properly based on genetic diversity rather than geographic diversity.

a) Intra and inter cluster distances

The intra and inter cluster distance values between seven clusters under timely sown condition are presented in Table 2.The genotypes of cluster IV and VII exhibited maximum divergence (8.905) followed in descending order by the genotypes of II and VII (8.845), V and VII (8.581), III and VII (8.381), I and VII (8.344), III and V (7.653), III and VI (7.255), VI and VII (7.094), I and III (7.077), III and IV (6.706), II and III (6.384), V and VI (6.303), I and V (6.215), II and V (5.834), I and VI (5.752), IV and V (5.591), I and IV (4.891), II and VI (4.623), I and II (4. 270), IV and VI (3.915), II and IV (3.466). The higher inter cluster distance indicated the presence of more diversity among the genotypes included among these clusters. The average intra cluster distance between the genotypes of cluster V was maximum followed in descending order by clusters VI (3.228), II (3.119), I (3.066), IV (2.570), III (0.000) and VII (0.000). With the help of D2 values a cluster diagram between and within clusters is drawn showing the relationship between different genotypes (Figure 1). Therefore, the genotypes of cluster IV and VII exhibited maximum cluster divergence indicated that these genotypes may be used to produce a greater number of the superior heterotic F₁·s and large number of desirable transgressive segregants. The genetic divergence is an outcome of several factors such as exchange of breeding material, genetic drift, natural variation and artificial selection in addition to geographical diversity. Similar finding was also reported by Sharma and Panwar (2007), Mohanty et al. (2017), Arya et al. (2017), Naik et al. (2016), Gupta et al. (2002), Singh et al. (2005), Yashpal et al. (2005), Verma et al. (2006), Ribadia et al. (2007) and Marker and Tripathi (2008). Dutamo et al. (2015) recorded the lowest intra cluster distance in cluster V (0.00), which shows the absence of genetic variability within this cluster. The inter cluster distance was range from 44.83 to 179.72 and cluster IV and VI showed maximum inter cluster distance of 179.72. This indicates that the crossing between superior germplasm of above diverse cluster pair's might provide desirable recombinants for developing high yielding bread wheat varieties.

b) Cluster means of different clusters for various characters

Mean values of seven clusters of 60 genotypes under timely sown condition are presented in Table 3. Difference in cluster means existed for all characters. Cluster III had lowest mean values for days to heading and days to anthesis indicating earliness whereas, late genotypes were observed in cluster VII. For days to maturity, lowest mean value was observed in cluster I whereas, cluster VII had higher values. For plant height lowest values were in cluster V indicating these genotypes were shortest while cluster VII had the tallest genotypes. Cluster VI had highest mean values for effective tillers per meter while cluster VII had lowest mean. For chlorophyll fluorescence cluster III, VI and VII had highest mean value while cluster II had lowest mean values. Cluster III had highest mean values for canopy temperature and cluster I had lowest mean values. For grain yield per meter cluster

V had highest whereas cluster VII had lowest mean values. Cluster V had highest and cluster VI had lowest mean values for 1000-grain weight. Similar findings were also observed by Gartan *et al.* (2003), Dwivedi *et al.* (2005), Dobariya *et al.* (2006), Jaiswal *et al.* (2010), Kumar *et al.* (2013), Arya *et al.* (2017), Verma *et al.* (2013), Ahmad *et al.* (2014) and Naik *et al.* (2016).

Table 1: Distribution pattern of 60 bread wheat genotypes under timely sown condition

Clusters	Number of genotypes	Bread wheat genotypes			
I.	5	WH1021, HD3059, DBW90, Raj3765, WH730			
II.	17	KRL19, WH1123, WH283, WH157, WH1228, WH147, WH1232, WH416, HD3086, WH1164, P13643, P13647, WL711, P13649, IBWSN1118, DPW621-50, IBWSN1142			
III.	1	ATLAS 66			
IV.	19	HD2967, DBW88, IBWSN1109 WH1124, IBWSN1156, WH711, IBWSN1155, P13648, KRL210, IBWSN1182, IBWSN1138, WH542, IBWSN1205, WH1202, P13644, IBWSN1151, PBW723, WH1227, WH1226			
V.	3	WH1080, WH1142, WH1105			
VI.	14	PBW343, IBWSN1145, IBWSN1162, IBWSN1155, IBWSN1152, WH1179, IBWSN1170, IBWSN1213, WH1184, WH1025, IBWSN1207, PBW725, IBWSN1159, IBWSN1171			
VII.	1	C306			

Table 2: Average inter- and intra- (diagonal) cluster D² Euclidean distance among different clusters of bread wheat under timely sown condition

	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	Cluster VI	Cluster VII
Cluster I	3.066	4.270	7.077	4.891	6.215	5.752	8.344
Cluster II		3.119	6.384	3.466	5.834	4.623	8.845
Cluster III			0.000	6.706	7.653	7.255	8.381
Cluster IV				2.570	5.591	3.915	8.905
Cluster V					4.726	6.303	8.581
Cluster VI						3.228	7.094
Cluster VII							0.000

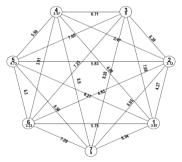


Fig. 1: \mathbf{D}^2 Euclidean distance among different clusters of bread wheat under timely sown condition

Table 3: Cluster mean values of different clusters for yield and its component traits under timely sown condition

Yield and its component traits	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	Cluster VI	Cluster VII
Days to heading	86.80	87.49	85.66	90.36	88.00	95.19	97.33
Days to anthesis	91.73	92.22	90.00	95.19	93.00	100.07	102.00
Days to maturity	137.27	139.41	150.00	138.97	144.11	141.83	150.33
Plant height (cm)	106.03	105.98	110.11	106.71	105.37	110.32	121.44
Effective tillers per meter	96.53	111.49	94.66	128.98	133.44	115.07	72.66
Chlorophyll fluorescence	0.70	0.69	0.72	0.72	0.70	0.72	0.72
Canopy temperature	21.06	27.11	27.70	26.75	22.67	27.25	21.72
Grain yield per meter (g)	95.51	116.15	100.44	134.35	138.89	119.85	74.25
1000-Grain weight (g)	43.64	43.26	41.76	44.24	44.37	40.98	43.20
Grain filling duration	32.00	31.49	32.33	30.93	51.11	33.59	48.33

c) Per cent contribution towards total divergence

Per cent contribution towards total divergence was calculated as per Mahalanobis D² statistic (Mahalanobis, 1936). The maximum contribution towards the total divergence under timely sown condition (Table 4-) was exhibited by plant height (15.25%) followed by canopy temperature (13.19%), days to maturity (11.48%), days to anthesis (11.28%), grain filling duration (10.30%), 1000-grain weight (8.74%), days to heading (8.14%), chlorophyll fluorescence (8.07%), effective tillers per meter (7.89%) and grain yield per meter (5.68%). The traits viz., plant height followed by canopy temperature, days to maturity, days to anthesis, grain filling duration, contributed more than 60% per cent towards total divergence. Hence, these characters should be given importance during hybridization and selection in the segregating population for improvement of yield and its component traits. Similar results for traits contributing maximum to the total divergence obtained by Singh et al. (2002) for days to 50 per cent, flowering, plant height, spikelet's per ear, biological yield per plant, Dobariya et al. (2006) for days to flowering, number of tillers per meter, days to maturity and 1000 grain weight, Peshattiwar et al. (2009) for days to maturity, days to 50 per cent flowering, plant height and number of spikelet's per ear and Naik et al. (2016) for plant height, grain yield and sedimentation value and Singh et al. (2005) for days to 50 per cent flowering, plant height, spikelet's per ear, biological yield per plant and 1000 grain weight.

Table 4: Per cent contribution of yield & its component traits towards total divergence under timely sown condition

Sr. No.	Yield and its component traits	Contribution (%)
1	Days to heading	8.14
2	Days to anthesis	11.27
3	Days to maturity	11.48
4	Plant height (cm)	15.25
5	Effective tillers per meter	7.89
6	Chlorophyll fluorescence	8.07

7	Canopy temperature	13.19
8	Grain yield per meter (g)	5.68
9	1000-Grain weight (g)	8.74
10	Grain filling duration	10.30

I suggest the authors incorporate the suggested paragraphs, in this way it would improve the scientific quality of the manuscript:

Studies in cereals establish that the vegetative cycle of the crop (Wheat and Corn) was reduced in late sowings due to the reduction of phenological stages as an effect of high temperatures and long days (Martínez et al. 2015; Olivares et al. 2018a). In the plant-climate relationship, the tillering stage was detected as more sensitive to climate.

In basic studies of planting dates, not only should the yield be observed in response to the latter, but also other characteristics that are affected. The higher yield of plants depends largely on their ability to make better use of water (Olivares and Hernández, 2019), light energy (Olivares and López, 2019), soil nutrients (Olivares et al. 2021) and in general the environmental conditions (Montenegro et al. 2021).

According to Olivares and Hernández (2020), the most important factors in planting dates are the ecological factors that definitively influence the climatic factors: atmospheric humidity, wind, evaporation, temperature and light, and the biotic ones (vegetation, fauna, parasites). and man); edaphic soil water, soil solutes, pH, structure and oxygenation are also involved, although less importantly (Olivares et al. 2022) and of course the action of each of them is not independently, but they interact.

Various researchers establish that when studies of planting dates are carried out with different genotypes, as a consequence, there are changes in the rates of vegetative and reproductive development in the plants (Olivares et al. 2020), for which they consider that the studies of planting dates planting (Olivares et al. 2018b), they also serve to define the genotypes that have better responses to different conditions, that is, less genotype-environment interaction, for which it is mentioned that the cultivation work, none is perhaps as important as the planting dates.

CONCLUSION

The sufficient genetic diversity found in present study, showed considerable scope for genetic improvement through hybridization between the genotypes from divergent clusters. The genotypes of cluster IV and VII followed by cluster II and VII condition exhibited maximum cluster divergence

Formatted: Highlight

indicated that these genotypes may be used to produce the superior hybrids and transgressive segregants. The traits viz., plant height followed by canopy temperature, days to maturity, days to anthesis, grain filling duration, under timely sown condition contributed maximum to the total variability, thus, these characters should be given importance during hybridization and selection in the segregating population for improvement of yield and its component traits.

REFERENCES

I suggest adding recent references which address the issue in question in Latin American territories. Suggested citations are for genuine scientific reasons that emphasize the current topic of study in context:

- Ahmad, H.M., Awan, S.I., Aziz, O. and Ali, M.A. (2014) Multivariative analysis of some metric traits in bread wheat (*Triticum aestivum* L.). European Journal of Biotechnology and Bioscience, 1(4): 22-26.
- Anonymous, 2020. Fourth Advance Estimates of Production of Food grain, Oil seeds and other commercial crops for 2019-20. Department of Agriculture, Cooperation and Farmer Welfare. www.agricoop.nic.in
- Arya, V.K., Singh, J., Kumar, L., Kumar, R., Kumar, P. and Chand, P. (2017) Genetic variability and diversity analysis for yield and its components in wheat (*Triticum aestivum* L.). Indian J. Agric. Res., 51 (2): 128-134.
- Bellon, M.R. (1996) The dynamics of crop infraspecific diversity: A conceptual framework at the farmer level. Economic Botany, 50: 26-39.
- Dobariya, K.L., Ribadia, K.H., Padhar, P.R. and Ponkia, H.P. (2006) Analysis of genetic divergence in some synthetic lines of breadwheat (*Triticum aestivum* L.). Advances in Plant Sciences. 19(1): 221-225.
- Dutamo, D., Alamerew, S., Eticha, F. and Assefa, E. (2015) Genetic Variability in Bread Wheat (*Triticum aestivum* L.) Germplasm for Yield and Yield Component Traits. Journal of Biology, Agriculture and Healthcare, 5:140-147.
- Dwivedi, A.N. and Pawar, I.S. (2005) Evaluation of genetic diversity among wheat germplasm lines for yield and quality attributing traits in bread wheat. Haryana Agriculture university Journal of Research, 34(1):35-39.
- Fu, Y. and Somers, D. (2009) Genome wide reduction of Genetic Diversity in Wheat Breeding Crop Science, 49: 161-168.
- Garten, S.L. and Mittal, R.K. (2003) Genetic divergence in bread wheat. Crop improvement, 30(2):185:188.
- Gupta, R.S., Tiwari, D.K., Deol, S.S. and Singh, R.P. (2002) Genetic divergence in bread wheat (*Triticum aestivum* L.em. Thell). New Botanist, 29(1/4):1:7.

Formatted: Highlight

- Jaiswal, J.P., Arya, Mamta., Kumar, Anil., Swati. and Rawat, R.S. (2010) Assessing Genetic Diversity for Yield and Quality Traits in Indigenous Bread Wheat Germplasm. Electronic Journal of Plant Breeding. 1; No 4.
- Kumar, R., Gaurav, S.S., Bhushan, B. and Pal, R. (2013) Study of genetic parameters and genetic divergence for yield and yield components of bread wheat (*Triticum aestivum* L.). J. of Wheat res. 5(2): 39-42.
- Kumar, R., Prasad, B.K., Singh, M.K., Singh, G. and Verma, A. (2015) Genetic divergence analysis for morpho-physiological traits, under timely and late sown condition in bread wheat (*Triticum aestivum* L.). Journal of wheat research, 7(1):27-30.
- M. Shajbandeh, 2022. Wheat: production volume worldwide 2011/2012-2021/22. www.statista.com
- Marker, S. and Tripathi, Atul. (2008) Estimation of genetic divergence among durum wheat (Triticum durum L.) genotypes for yield and yield contributing traits. Indian Journal of Plant Genetic Resources, 21(1): 99-106.
- Martínez, JM; Galantini, JA; Duval, M E; López, FM. 2015. Indicadores edáficos de la calidad de suelos contrigo bajo siembra directa en el sudoeste bonaerense; Universidad Nacional de Rosario; Revista de Investigaciones de la Facultad de Ciencias Agrarias; 15; 26; 23-31
- Mohanty, S., Mukherjee, S., Dash, A.P. and Mandal, A.B. (2017) Genetic analysis for identification of terminal heat tolerance genotypes in wheat. Indian Journal of Genetics and Plant Breeding, 77(1): 160-162.
- Montenegro, E; Pitti, J; Olivares, B. 2021. Identification of the main subsistence crops of Teribe: a case study based on multivariate techniques. Idesia. 39 3, pp. 83 94. http://dx.doi.org/10.4067/S0718-34292021000300083
- Naik, V.R., Biradar, S.S., Yadawad, A., Desai, S.A. and Veeresha, B.A. (2016) Assessing genetic diversity for yield and quality traits in germplasm lines of bread wheat (*Triticum aestivum*).
- Olivares, B. Hernández, R; Arias, A; Molina, JC., Pereira, Y. 2018a. Agroclimatic zoning of corn cultivation for the sustainability of agricultural production in Carabobo, Venezuela, Revista Universitaria de Geografía. 27 (2): 139-159. https://n9.cl/i0upn
- Olivares, B., Hernández, R. 2019. Ecoterritorial sectorization for the sustainable agricultural production of potato (*Solanum tuberosum* L.) in Carabobo, Venezuela. Agricultural Science and Technology. 20(2): 339-354. https://doi.org/10.21930/rcta.vol20_num2_art:1462
- Olivares, B., Hernández, R. 2020. Application of multivariate techniques in the agricultural land's aptitude in Carabobo, Venezuela. Tropical and Subtropical Agroecosystems, 23(2):1-12.
- Olivares, B., Hernández, R; Arias, A; Molina, JC., Pereira, Y. 2018b. Identification of potential agroclimatic zones for production of onion (*Allium cepa* L.) in Carabobo, Venezuela. Journal of the Selva Andina Biosphere. 6 (2): 70-82. http://www.scielo.org.bo/pdf/jsab/v6n2/v6n2_a03.pd

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: No Spacing, Indent: Left: 0 cm, Hanging: 1.27 cm, Space After: 6 pt, Line spacing: 1.5 lines

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: No Spacing, Indent: Left: 0 cm, Hanging: 1.27 cm, Space After: 6 pt, Line spacing: 1.5 lines

Formatted: Font: (Default) Times New Roman, 10 pt, No underline, Font color: Auto

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: No underline, Font color: Auto, English (U.S.)

Formatted: Font: 10 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: Font: 10 pt, No underline, Font color: Auto, Spanish (International Sort)

Formatted: Font: 10 pt, No underline, Font color: Auto

- Olivares, B., López, M. 2019. Normalized Difference Vegetation Index (NDVI) applied to the agricultural indigenous territory of Kashaama, Venezuela. UNED Research Journal. 11(2): 112-121. https://doi.org/10.22458/urj.v11i2.2299
- Olivares, B., Paredes, F., Rey, J., Lobo, D., Galvis-Causil, S. 2021. The relationship between the normalized difference vegetation index, rainfall, and potential evapotranspiration in a banana plantation of Venezuela. SAINS TANAH - Journal of Soil Science and Agroclimatology, 18(1), 58-64 http://dx.doi.org/10.20961/stjssa.v18i1.50379
- Olivares, B.; Hernandez, R.; Arias, A; Molina, JC., Pereira, Y. 2020. Eco-territorial adaptability of tomato crops for sustainable agricultural production in Carabobo, Venezuela. Idesia, 38(2):95-102. http://dx.doi.org/10.4067/S0718-34292020000200095
- Olivares, B.O., Calero, J., Rey, J.C., Lobo, D., Landa, B.B., Gómez, J. A. (2022). Correlation of banana productivity levels and soil morphological properties using regularized optimal scaling regression. Catena, 208: 105718. https://doi.org/10.1016/j.catena.2021.105718
- Peshattiwar, P.D., Ghorpadi, P.B., Dandge, M.S., Archana, Thorat., Gomase, D.G. (2009) Genetic divergence in durum wheat cultivars. International Journal of Agricultural Sciences, 5(1):243-247.
- Ribadia, K.H., Dobariya, K.L., Ponika, H.P. and Jivani, L.L. (2007) Genetic diversity in macroni wheat (Triticum durum Desf.). Journal of Maharashtra Agriculture University, 32:32-34.
- Sharma, V. and Pawar, I.S. (2007) Genetic divergence for yield, its components and quality traits in bread wheat. Haryan agric. Univ. J. Res, 37: 27-31.
- Singh, S. and Pawar, I.S. (2005) Theory and Application of Biometrical Genetics. CBS Publishers, New Delhi, pp: 467.
- Singh, S.P. and Dwivedi, V.K. (2002). Genetic Divergence in Wheat (Triticum aestivum L.). New Agriculturist, 13(1/2):5-7.
- Singh, S.P. and Dwivedi, V.K. (2005) Genetic divergence in wheat (Triticum aestivum L.). Agricultural Science Digest. 25(3):201-203.
- Smale, M. (1997) The green revolution and wheat genetic diversity: some unfounded assumptions, world development, 25: 1257-1269.
- Verma, A.K., Singh, P.K., Vishwakarma, S.R. and Tripathi, R.M. (2006) Genetic divergence in wheat (Triticum aestivum L.). Farm Science Journal .15(1): 32-34.
- Verma, P.N., Singh, B.N. and Yadav, R.K. (2013) Genetic variability and divergence analysis of yield and its contributing traits under sodic soil condition in wheat (T. aestivum L.). International Journal of Agricultural Sciences, 3(2): 395-399
- Yashpal, Porwal., Mridula, Billore., Prasad, S.V.S. (2005) Morphological variability and genetic in relation to grain yield and its component traits in wheat. National Journal of Plant Improvement, 7(2): 69-72.

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: Font: 10 pt, No underline, Font color: Auto, English (U.S.)

Formatted: Font: 10 pt, No underline, English (U.S.)

Formatted: Font: 10 pt, No underline

Formatted: Font: 10 pt, No underline, English (U.S.)

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: Font: 10 pt

Formatted: Font: 10 pt, Not Italic

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: Font: 10 pt, No underline, Font color: Auto

Formatted: Portuguese (Brazil)

Formatted: Font: 10 pt, No underline, Font color: Auto, Spanish (International Sort)

Formatted: Font: 10 pt, No underline,

Wicker, T., Gundlach, H., Spannagl, M., Uauy, C., Borrill, P., Ramírez-González, R. H., De Oliveira, R., Mayer, K.F., Paux, E. and Choulet, F. (2018). Impact of transposable elements on genome structure and evolution in bread wheat. *Genome biology*, 19(1), 1-18.

