
 

 

A Review of Drought Tolerance in Safflower  1 

 2 

 3 

ABSTRACT 4 

Safflower (Carthamus tinctorius L.) is a multipurpose crop that can grow in arid and semi-arid environments because of its 5 

tolerance to drought stress, salinity, lower and higher temperatures. Despite safflower’s drought tolerance characteristic, 6 

drought stress can negatively impact its growth and development. Drought stress reduces plant height and biomass, leaf 7 

chlorophyll content and area, photosynthesis rate, yield components, oil content and yield, and fatty acid composition of 8 

safflower. Increased root to shoot ratio and growth of the root are some of the drought adaption mechanisms of safflower. 9 

Recent studies have reported biochemical and molecular drought tolerance mechanisms of safflower, but they are still in 10 

infancy stages. Understanding these mechanisms can help in the management and breeding of cultivars with enhanced 11 

drought tolerance. This review compiles literature on the mechanisms of drought stress tolerance in safflower and 12 

approaches are proposed that can enhance better safflower management under water stress.  13 

Keywords: Antioxidants; Carthamus tinctorius L.; drought stress; tolerance mechanisms; crop management. 14 

1. INTRODUCTION 15 

Safflower is a multipurpose oilseed crop that is of high value due to its high-quality cooking oil composed of 16 

polyunsaturated (linoleic) and monounsaturated (oleic) fatty acids. Safflower is used for food, medicinal, industrial, animal 17 

feed, and floriculture purposes. It is a temperate zone crop that can be grown in the arid and semi-arid climates because it 18 

is cold, drought, and saline tolerant [1], [2]. Compared to other oilseed crops, safflower has remained a minor crop, it is 19 

grown in over 20 countries in an area greater than 1,000,000 ha worldwide [3]. It is the most drought tolerant oil seed crop 20 

which can produce reasonable seed yield in semi-arid climates [4]. Drought stress is one of the most significant 21 

constraints limiting crop production in the semi-arid and arid regions of the world. The recurrence, duration, and severity of 22 

drought in the future are predicted to increase because of decreased regional precipitation but increased 23 

evapotranspiration brought by global warming [5]. The dangers caused by drought stress instigated crop scientists to 24 

develop methods of alleviating drought tolerance in plants. Comprehending how plants respond to drought stress is 25 

important in identifying a crop’s special growth traits that could be used in breeding for tolerance and refinement of 26 

agronomic practices. Drought tolerance in crops is controlled by multiple genes having additive effects and they interrelate 27 
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with genes controlling yield potential, hence limiting improvement in drought tolerance in crops [6]. Plants have developed 28 

intricate techniques of surviving drought stress by changing their metabolic processes resulting in morphological, 29 

physiological, and biochemical changes [7]. Some of the techniques include closure of stomatesstomata, cellular 30 

adaptations, membrane integrity, carbon fixation rate, reactive species scavengers, induction of stress related genes, and 31 

enhanced accumulation of osmoprotectants, plant hormones, enzymatic antioxidants, protective proteins, and functional 32 

proteins [8], [9]. Drought stress tolerant plants naturally biosynthesize and accumulate unique metabolites which help to 33 

alleviate the effects of water stress; however, some plants lack the ability to biosynthesize these unique metabolites [8]. 34 

Thus, this review aims at compiling existing reports on the effects and response of safflower to drought and the 35 

mechanisms that safflower uses to adapt to drought stress. It also provides some management strategies for use 36 

underwater limiting conditions.  37 

2. RAMIFICATIONS OF DROUGHT STRESS ON VEGETATIVE AND REPRODUCTIVE GROWTH, OIL CONTENT 38 

AND FATTY ACID COMPOSITION OF SAFFLOWER 39 

2.1 Plant Height 40 

Plant height is one of the growth variables that indicate the vegetative growth of plants. Depending on the breeding 41 

objectives, safflower genotypes with a higher plant height may be desirable because of increased probability of generation 42 

of more primary branches which may indirectly increase the seed yield due to the high number of capitula per plant. 43 

Drought stress has been reported to significantly reduce safflower plant height [10], [11], [12], [13], [14]. 44 

2.2 Plant Biomass 45 

Many plant responses to water stress are mediated via alterations in plant water relations. Mild water stress can limit the 46 

growth of new roots and shoots, and gas exchange, even before the plant water deficit symptoms are noticeable [15]. 47 

Plants first detect water limitation in the root system [16]. Therefore, root development is critical in a plant’s ability to 48 

tolerate drought. Safflower plants develop a strong and deep tap root making them capable to endure long periods of 49 

drought in arid and semi-arid climates [6], [17]. Safflower plants grown under drought stress has been reported to have a 50 

high root to shoot ratio [18], [19]. The high root to shoot ratio under drought stress has been proposed to be the 51 

mechanism by which safflower plants absorb water from deeper soil layers, which is unavailable for most field crops with 52 

less developed root system [15]. Drought stress reduces shoot biomass, and root fresh weight and length of safflower 53 

[11], [20], [21]. Root traits have an important role in plant drought stress tolerance. In safflower, root length tends to 54 

increase more under drought stress. Increased root length in safflower plants occurs under drought stress,stress; 55 



 

 

however, root dry weight was significantly reduced [18]. Knowledge of root traits and how they are related to whole plant 56 

mechanisms to enhance crop productivity under water stress is needed. Root traits associated with maintaining plant 57 

performance under water stress include small fine root diameters, long roots, and high root density [22], [23], [24].  58 

2.3 Leaf Area 59 

Leaf area (LA) is one of the primary factors for photosynthetic activity and photosynthates accumulation. Plants with a 60 

large LA and high chlorophyll content accumulate more photosynthates and produce high biological yield [25]. Leaf area 61 

index (LAI) is a good indicator for crop growth and soil conditions for enhancing crop productivity [19]. Reduced plant size, 62 

LA, and LAI are major attributes for moderating water use and reducing injury under water deficit [26]. Water stress 63 

reduces leaf number, size, color, and vigor in many crops [9]. Thinner stems with fewer, dry, and smaller leaves in 64 

safflower drought stressed plants than unstressed plants have been observed [11]. While severe drought stress slowed 65 

leaf elongation and seized leaf growth and development in safflower [17]. Water stress is consistently reported to reduce 66 

LA of safflower [21], [26-27].  67 

2.4 Chlorophyll content 68 

The leaf chlorophyll content of plants is of significance in determining the photosynthetic rate and dry matter production 69 

[26]. Drought stress decreased leaf chlorophyll content of safflower [21], [26], [27], [28], [29], [30]. Though reduction in leaf 70 

chlorophyll content is a common occurrence in plants grown under limited water, it cannot be solely used to select drought 71 

tolerant genotypes, but it should be used in combination with other drought tolerance indices.  72 

2.5 Photosynthesis  73 

Photosynthesis is the process by which plants capture light energy and transform it into chemical energy in the form of 74 

complex organic compounds that they require as a source of energy. Abiotic stresses (drought, salinity, and unfavorable 75 

temperatures), significantly and negatively impacts on the photosynthetic rate of plants by changing the ultrastructure of 76 

the organelles, and concentration of pigments and metabolites, which prevents carbon assimilation and damages 77 

photosynthetic apparatus [31]. Stomatal closure is one of the drought avoidance mechanisms. It is one of the first steps in 78 

plant’s adaptation to water deficit, allowing the water status to be maintained [32]. Hence, by adjusting stomatal opening, 79 

plants can control water loss by reducing the transpiration flux and limit the diffusion of carbon dioxide (CO2) [16]. The 80 

decline in intercellular CO2 following stomatal closure and the lower light use efficiency under drought stress reduces the 81 

functioning of in the photosynthetic machinery to match the available carbon substrate [33]. Research findings have 82 

demonstrated reduction in photosynthetic ability of safflower plants under water stress [12], [26]. Drought stress at 83 



 

 

vegetative and reproductive developmental stages of safflower plants reduced photosynthetic rate and the reduction 84 

depended on genotype [12], [26]. 85 

2.6 Relative Water Content 86 

The measure of plant water content is referred to relative water content (RWC). A decrease in plant RWC under drought 87 

stress in safflower has been reported [18], [29], [34]. The RWC of two safflower varieties were significantly reduced due to 88 

drought and the rate of decrease depended on the severity of the drought [18]. Drought stress is further reported to 89 

significantly decrease safflower plant RWC irrespective of genotype [35]. The genotypic variation in safflower plant RWC 90 

was attributed to differences in the ability of the genotypes to absorb water [35]. Their results further demonstrated that 91 

safflower genotypes that had higher plant RWC had the lowest yield loss, longer stomata, and larger LAI than plants with 92 

lower RWC. This suggests that plant RWC could be used to screen drought tolerance among safflower genotypes. 93 

2.7 Seed Yield  94 

Drought stress is reported to significantly reduce safflower seed yield [6], [13], [36], [37]. The diminution of crop yield 95 

caused by drought stress is a major concern for agronomists and plant breeders because of scarce water resources to 96 

sustain crop productivity in  arid and semi-arid regions of the world in the context of climate change [6], [33-34], [38]. 97 

Drought stress during the seed filling stage of safflower plants significantly decreases capitulum size, seed number per 98 

capitulum, 1000-seed weight, and seed yield [34]. Seed yield of safflower was significantly reduced by 17.2% under 99 

drought conditions compared to normal conditions [14]. However, the genotype ‘Parnian’ consistently had high seed yield 100 

in both normal and drought stress conditions [14]. This indicated the importance of using or breeding superior genotypes 101 

with acceptable performance under drought for the sustainability of production in view of climate change.  102 

2.8 Oil Content and Composition 103 

Safflower seed contains high quality oil use for cooking and in the food industry. The oil is rich in polyunsaturated (linoleic, 104 

γ-linolenic, and α-linolenic acids) and monounsaturated (oleic, palmitoleic, and eicosenoic acids) fatty acids [39]. Drought 105 

stress decreases safflower oil content, yield, and fatty acids composition [12], [14], [34], [40], [41]. Occurrence of drought 106 

stress at the vegetative, flowering, and/or seed filling stages significantly decreases safflower oil content [14], [34]. 107 

Drought stress affects the fatty acid composition of safflower oil by significantly decreasing linoleic acid, but increasing 108 

palmitic, stearic, and oleic acid contents, respectively, in all genotypes evaluated [14], [42]. The growing season also 109 

affects the fatty acid composition of safflower oil [39]. In Botswana, safflower grown in winter has significantly higher 110 

linoleic fatty acid content than summer [39].  On the contrary oleic acid (monounsaturated), and total saturated fatty acid 111 



 

 

content (stearic, palmitic, and arachidic) were lower in winter grown safflower than summer [39]. The differences in fatty 112 

acid composition due to the growing season was attributed to changes in seasonal temperature after flowering [39]. The 113 

variation in the fatty acid composition of oil crops including safflower is influenced by environmental factors temperature 114 

and humidity [43], [44], precipitation [45], and genes [46], [47]. Among these factors, temperature plays a greater role in 115 

safflower fatty acid composition [9], [39], [43], [48]. 116 

Other studies have reported increase [30] or no influence [13] of drought stress on safflower oil content. Drought stress 117 

increased safflower oil content [30]. The increase in safflower oil content due to drought stress was attributed to alteration 118 

of plant dynamics, which prioritized the partitioning and translocation of photoassimilates to the seeds in comparison to 119 

other plant parts [30]. However, no significant influence of drought stress on safflower oil content has also been reported 120 

[13]. 121 

3. DROUGHT TOLERANCE MECHANISMS 122 

Drought stress is one of the main abiotic biotic factors that adversely limits growth, development, and yield of crops in arid 123 

and semi-arid climates [6], [13], [24], [36-37]. Plants have evolved defense mechanisms to adapt, cope, escape or tolerate 124 

drought stress by changing their metabolic activities, morphological, physiological, molecular, and biochemical traits [24], 125 

[37]. Climate change has made drought a significant threat to sustainability of crop and animal productivity, hence food 126 

security in the world. 127 

3.1 Accumulation of Osmoprotectants  128 

Plants growing under water limiting conditions maintain the water potential below that of the soil by producing compatible 129 

organic solutes to avoid dessication [9], [49]. These organic solutes accumulate in the cytoplasm to cause the osmotic 130 

potential to decrease below that of the soil to facilitate water uptake, maintain cell membrane integrity and water potential 131 

equilibrium with the cells of drought stressed plants [50]. The major osmoprotectants are sugars, betaines, and amino 132 

acids [51]. Proline is one of the widely studied osmolyte in relation to abiotic stresses in plants. High levels of proline have 133 

been associated with heat shock proteins which assist in protection against stresses by controlling the proper folding and 134 

conformation of the cell membrane and enzymatic proteins. Proline and soluble proteins have been hypothesized to 135 

protect plants from drought stress by osmoregulation, reduced production of reactive oxygen species (ROS), and stabilize 136 

membrane integrity, structural properties of proteins and enzymes [52]. Reports in literature have demonstrated that 137 

drought stress increases proline content in safflower plants [13], [20], [28-29], [37], [53]. An increase in proline levels in 138 

drought stressed safflower cultivars was observed and the proline levels were influenced by cultivar or genotype [28]. The 139 
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proline content in the roots and leaves of drought stressed safflower plants were five times higher than in non-stressed 140 

plants [53]. The accumulation of proline in plant tissues under water deficit conditions is attributed to the expression of a 141 

specific genes responsible for proline and pyrroline-5-carboxylate synthase biosynthesis [37], [54], [55] and inhibition of 142 

proline dehydrogenase. Carbohydrate sugars as osmoprotectants control the osmotic adjustment, maintain cell 143 

membrane integrity, and scavenge toxic ROS in drought stressed safflower plants [13], [29], [40]. Evidence shows a 144 

higher accumulation of reducing sugars as osmoprotectants in the leaves and roots of drought stressed safflower plants 145 

[29], [40], [53]. A large genetic variation in the accrual of osmoprotectants in drought stressed safflower plants has been 146 

reported in literature [13], [20], [28-29], [53].  This implies that genotypes which exhibit low levels of osmoprotectants 147 

could be improved by genetic engineering for increased accumulation of osmoprotectants.  148 

3.2 Production of Enzymatic Antioxidants to Scavenge Reactive Oxygen Species  149 

The ROS are produced in reasonable amounts in different cell compartments during normal plant growth, but the 150 

production increases due to the occurrence of stress. Drought stress increases the synthesis of ROS which can oxidize 151 

cellular components such as lipids, carbohydrates, DNA, and proteins [56], [57]. Uncontrolled oxidation of these cellular 152 

components will lead to death of cells [56-57]. Plants have complex antioxidant defensive techniques consisting of non-153 

enzymatic and enzymatic components to scavenge ROS [56], [58]. The non-enzymatic antioxidants consist of 154 

carotenoids, tocopherols, glutathione, and ascorbate which serve as defense agents for protecting plant cells from 155 

oxidative damages [59], [60]. The main ROS scavenging techniques consist of glutathione reductase (GR), ascorbate 156 

peroxidase (APX), superoxide dismutase (SOD), peroxidases (POX), peroxiredoxin (PrxR), catalase (CAT), 157 

monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR) [37], [56], [59], [61]. These ROS 158 

scavenging defensive apparatus are in various cell organelles with exception of CAT that is exclusively located in 159 

peroxisomes. These antioxidant enzymes reduce the uncontrolled oxidation caused by ROS [59], [62]. Research in 160 

safflower grown under limited water conditions demonstrate increased activities of SOD, CAT, APX, APX, and GR [13], 161 

[18], [20], [26], [37], [63]. Safflower genotypes with high activity of SOD, CAT, APX, POX, and GR are reported to be more 162 

drought tolerant than those low in the activity of the same enzymes [18], [26], [37], [63]. Under severe water stress, ROS 163 

are not scavenged, therefore they accumulate in plant cells becoming phytotoxic and disrupting cellular metabolism 164 

leading to damage of cells and expression of new genes [56-57], [63]. 165 

3.3 Proteins Induced by Drought Stress 166 

Drought stress induces or represses various genes with different functions or regulatory at cellular level. The functional 167 

proteins include heat shock chaperones and late embryogenesis abundant (LEA) proteins [51]. The LEA are a complex 168 



 

 

group of proteins that are usually expressed during embryogenesis, or in vegetative tissues, in response to abscisic acid 169 

induced by biotic and abiotic stresses [51]. Studies on the response of these proteins under drought stress are still lacking 170 

in safflower. However, drought ESTs encoding LEA proteins in safflower have been identified [28] and these results may 171 

serve as a platform in further studies related to drought stress tolerance in safflower. Heat shock proteins (HSPs) are 172 

functional proteins, and they are known to show a high level of expression in stressed cells. Their accumulation is 173 

reported to confer protection against several stresses [65]. They are usually undetectable in vegetative tissues under 174 

normal growth conditions but can be induced by environmental stress and developmental stimuli [66]. Recently seven 175 

HSPs have been identified in safflower drought tolerant genotype EST [67]. All the identified HSPs were expressed in 176 

response to heat, cold, and cadmium stresses [67]. Although the HSPs are known to be upregulated under drought stress 177 

in other crops, the significance of chaperon in drought tolerance of safflower is not well understood [67]. Therefore, more 178 

studies with safflower should be undertaken to elucidate the role of HSPs and LEA proteins in combating the deleterious 179 

ramifications of abiotic stresses in arid and semi-arid regions of the world which experience extreme of temperatures, 180 

salinity, and frequent droughts, since genes encoding LEA and HSPs have been demonstrated to improve drought 181 

tolerance in genetically engineered plants [68]. 182 

The regulatory proteins play a role in the modulation of signal transduction and gene expression [69]. Transcription factors 183 

(TFs) are regulatory proteins that are critical regulators in the changes of gene expression induced by abiotic stresses 184 

[70]. There are many types of TFs that regulate plant response to abiotic stresses. Some of the TFs that have been 185 

recognized in safflower induced by drought stress are WRKY (WRKY domain binding transcription factors) [71], bZIP 186 

(basic leucine zipper), ERF (ethylene-responsive factors) [28] and bHLH [72]. Other TFs such as dehydration responsive 187 

element binding (DREB) which is a member of the ERF (ethylene-responsive factor) family of transcription factor is not yet 188 

fully studied in safflower. Generally, molecular mechanisms of drought tolerance in safflower are still largely unknown. 189 

3.4 Management of Drought  190 

Drought stress management begins with the selection of drought tolerant genotypes and changes in agronomic practices 191 

such as planting time, plant population per unit area, and better soil management. Safflower genotypes vary in their 192 

response to drought stress and thus genotypes that exhibit excellent drought tolerance characteristics are better suited to 193 

be used by farmers because they will save the costs of implementing other drought management strategies. Elucidating 194 

genotypes with drought tolerance characteristics aids in the identification of genotypes with desirable traits that could be 195 

used for breeding purposes. Plant breeding has contributed to a large extent in tackling the challenges of food security at 196 

a global level [73]. In safflower, breeding for drought tolerance has been achieved through conventional breeding which is 197 



 

 

time consuming. Other breeding methods such as marker assisted breeding and transgenic approach could offer much 198 

more benefits in the improvement of drought tolerant safflower genotypes [73]. Other drought stress management 199 

approaches are the exogenous application of micro-nutrients (zinc, boron, and iron) which results in enhanced growth, 200 

yield, enzymatic and non-enzymatic antioxidant activity [74], [75], osmoprotectants such as ascorbic acid [20] and 201 

putrescine [76] and signaling molecules (sodium nitroprusside and salicylic acid) [53]. Supplemental irrigation is an 202 

important management practice for increased productivity of safflower especially, under arid and semi-arid conditions [17]. 203 

4. CONCLUSIONS AND PERCEPTIVE 204 

 Safflower growth and development are greatly reduced under drought stress due to production of smaller organs, 205 

inhibited flower and capitula production, and achene filling. Drought stress results in reduced yield and yield components, 206 

oil content and yield, and fatty acid composition especially oleic and linolenic acids which determines safflower oil quality. 207 

Studies on safflower drought tolerance mechanisms such as biosynthesis of osmoprotectants, enzymatic antioxidants, 208 

protective proteins, and transcription factors are still at emerging stages. There are many transcriptional factors and 209 

functional proteins that are known to induce drought stress genes in the regulation of plant tolerance to stress, but only a 210 

few of them have been studied in safflower. More studies need to be conducted in this area under field conditions where 211 

multiple stresses occur at the same time. Such broad knowledge will help to understand the role transcription factors and 212 

functional proteins play in the modulation of safflower drought tolerance. Plant drought tolerance techniques are very 213 

complex and cannot just be associated with a single metabolic pathway, but a combination of pathways either working 214 

independently of each other and/or having a synergistic relationship. The complexity of drought tolerance mechanisms 215 

has slowed genetic engineering of drought-tolerant crops. The use of genomics, proteomics, and transcriptomic strategies 216 

to better know the molecular control of drought tolerance in safflower plants and efficient water use in water deficit 217 

conditions are important. Molecular knowhow of the response and tolerance techniques can pave ways for genetic 218 

engineering of safflower plants that can cope and tolerate drought stress leading to sustainable economic yield and fatty 219 

acid composition. The use of marker selected breeding and transgenics is suggested to be employed in safflower 220 

improvement programs. Exogenous application of plant bioregulators and osmoregulators to plants at different stages of 221 

growth and development or seeds may alleviate ramifications of water stress. 222 
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