Original Research Article

Sources of transmission of pathogenic intestinal parasites in humans and vegetables in Omdurman, Sudan - 2015.

ABSTRACT

This study was designed to investigate the possibility of infection via food with pathogenic organisms. It was carried out in the city Omdurman in Khartoum States during the period from December 2015 to November 2019. The objectives of the study were to identify the causative intestinal parasites in the examined individuals. A total of 600 stool specimens and 256 vegetables samples were examined. Faefecal samples were observed macroscopically for the consistency and presence of mucus, blood, worm larvae and cestodes segments. The samples were then examined by wet smear and formal - ether concentration technique. A bout 200 -300 grams of each vegetable and fruit were washed in 50 ml of sterile normal saline and filtrate was centrifuged and then the sediment was examined microscopically. Result showed that tThe overall prevalence of intestinal parasites microscopically was found to be 29.8% (179/600)(29.8%). Entamoeba histolytica cyst was reported observed in 62.2% in mothers 28 (62.2%) as two fold as in children 13 (28.9%), while in food handlers cysts wasere recorded in 4(8.9%)of food handlers. Gardia Lamblia was more dominated in mothers 48(58.5%) as twice as seen in children 24 (29.3%), whereas 12.2% prevalence

Formatted: Font: Italic

Formatted: Font: Italic

in food a handler was noted in food a handler 10(12.2%). Taenia spp was found only in mothers 5 (71.4%) and children 2 (28.6%). Moreover, Ascaris lumbricoides was also seen in mothers 11(61.1%) and children 7 (38.9%). Among the examined vegetables and fruits samples, G. lamblia was found to be the most dominated parasite 26 (66.7%), followed by E. histolytica 8 (20.5%) and A. lumbrucoides 5 (12.8%) respectively. In conclusion, the overall of the prevalence intestinal parasites and bacteria was more pronounced among mothers and their children's. Gardia Lamblia and E histolytica were the most predominanted parasites seen microscopically among participants. Mothers should be examined periodically for their health status regarding intestinal parasites and bacteria and to increase the awareness prompt detection.

Key words:

Intestinal parasites, Food handlers, Mothers, vegetables, fruits, stool examinationsample

Introduction

The chain that starts from harvesting crops, transportation, marketing to consumption by individuals is not without hazards. Food contamination due to in-appropriate and inadequate sanitation that may occur in parts of such chain result in public health effects. Parasites and bacteria are the major sources of contamination of food and consequently causative agents of diseases. The intestinal helminths seldomly occurring in; bBacteria present in food will grow under favorable condition and will

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic
Formatted: Font: Italic

Formatted: Highlight

Comment [RJ1]: Was bacterial infection examined? How this statement made?

Formatted: Font: Italic
Formatted: Font: Italic

Comment [RJ2]: Clarify or delete it

Formatted: Highlight

common in Sudan (1). Intestinal parasites and bacteria are among the main public health problems around the world especially in tropical and subtropical countries (2). Of the nearly 1500 agents known to be infectious to humans, 66 are protozoa and 287 are helminths. Many vegetables are good sources of vitamin C, thiamine (Vitamin B1), Riboflavin and mineral elements (3). The consumption of raw vegetables plays major sources of transmission of parasitic food borne diseases (2). In recent years, there has been an increase in number of reported cases of food borne illness linked to consuming raw fresh vegetables. Several surveys in different parts of the world showed that the vegetables can be agents for transmissions of intestinal parasites such Cryptosporidium spp., Giardia lamblia, Entamoeba histolytica, Ascaris lumbricoides, hookworms, Enterobius vermicularis, Trichuris trichiura, Toxocara spp., Hymenolepis spp., Taeniaspp., Fasciola spp (3). Vegetables can become may be contaminated with enteric parasitic pathogens (2) throughout the process of planting to consumption. The extent of contamination depends on several factors that include use of untreated wastewater and water supplies contaminated with sewage for irrigation, post-harvest handling, and un-hygienic conditions of preparation in food service or home settings. It was found that fresh vegetables can be factors of transmission of protoaza cysts, helminthes ova and larvae (4).

produce toxins in food. Reports indicate that parasitic and bacterial infections are quite

Khartoum, the capital of Sudan is inhibited by more than 7 million people. They rely on the rural areas on the outskirts of the city for securing, vegetables, meat and milk.

Formatted: Highlight

Comment [RJ3]: Scientific names of parasites always should be in italic.

Infective agent gain access via various routes, particularly ingestion of contaminated food and water. In Sudan several reports are available (Ref)on the prevalence of parasitic and bacterial infections in humans but the various sources and the modes of transmission of such agents are not fully explored. The possibility of transmission of parasite to young children by infected mothers is an example, similarly, the role of food handlers in dissemination of agents is not fully investigated.—Information on such areas were can aid in control of pathogenic agents.

Methods:

Study setting:

This study was a descriptive community-based study. It was conducted in the city of Omdurman including Umbada, Karari, Sabreen and Althora. The study population was comprised of 200 mothers, 200 their children (5 years or less) and 200 food handlers distributed as follows 86 grocery workers, 23 tea sellers, 15 cafeterias, Restaurant's workers, 16 food industry workers, 13 Bakers, 12 Refreshment sellers, 12 Butchers, 12 milkmen and 11 Vegetables and Fruits sellers. Beside vegetables 32 samples for each kind from vegetables and fruits (Lettuce, Cabbage, Molokhia, Green onion, Tomatoes, and Cucumber) and (Mangoes and Oranges). Before collection of samples the purpose of study was explained to the participants to obtain their consent.

Faecal specimens² collection and examination:

<u>Fa</u>ecal samples were collected from mothers, children and food handlers in a clean plastic container. Before microscopic examination, faecal samples were observed for consistency, mucus, blood and also for the presence of worm larvae and cestodes segments.

Wet mount examination

<u>W</u>wet smear was made by putting a small amount of stool on clean glass slide, mixed with a drop of normal saline-,covered with cover slip and examined microscopically using 10X and 40X objectives.

Formal ether concentration technique

A small portion of about 2 grams was added to 9 ml of formalin and strained through sienve in a tube and 3ml of diethyl-ether was then added and suspension was mixed and centrifuged at 2000 rpm for one minute. A drop of the sediment was transferred to a slide, covered with slip and examined at 10x and 40x lens (Ref..).

Examination of vegetables and fruits

A-bout 200 -300 grams of each vegetable and fruit were washed in_50 ml of normal saline and strained through a sieve to remove un desirable materials—. The filtrate was then centrifuged at 5000 rpm for 5 minutes. The supernatant was then decanted and a drop of the sediment was placed onto a slide, covered with a slip and examined microscopically at 10x and 40x objective lens.

Data collection and analysis

All the questionnaires and stool samples were labeled with the same number to ensure consistency and completeness. Data was entered and cleaned using Statistical Package for Social Sciences (SPSS) version 20. Descriptive statistics was done to assess the prevalence and distribution of intestinal parasites. Logistic regression analysis was performed to determine the independent effect of the independent variables with dependent variable by calculating the strength of the association between intestinal parasites infection and determinant factors using odds ratio (OR) and 95% confidence interval (CI). Crude OR and adjusted OR were estimated by bivariate and multivariate logistic regression analysis with respective 95% CIs respectively. P value less than 0.05 was considered as statistically significant.

Ethical Considerations

Prior to the commencement of the study approval was obtained from Sudan Academy of Sciences. Permission was also obtained from administrative units of the selected settings. Moreover, mothers or/and the head of the household was informed by the study objectives. Then, a written consent was obtained from participants. Confidentiality during the interview and stool collection was maintained

Results

The rate of infection microscopically among participants'

Figure 1. showed that the microscopic detection of stool samples reveled those mothers underscored the highest rate of infection among participants 92/600200(15,346%), followed by their children 73/200(12.236.5%) and food handlers 14/600-200(2,37%) respectively.

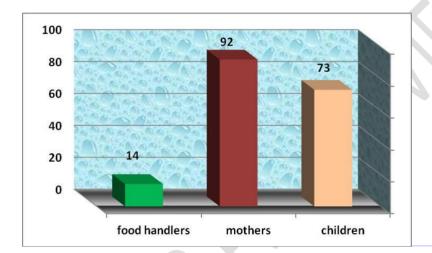


Figure 1: The rate of infection microscopically Prevalence of gastrointestinal parasitic infections among participants!

Comment [RJ4]: Prevalence rate should be represented in per cent prevalence, not in number

Macroscopic Examination of Stool Samples

Table 1. below showed that mucus was found similarly in children 27 (40.9%) compared to their mothers 26 (39.4), and constituted as twice likely as in food handlers 13 (19.7%). Blood was detected in mothers 14 (60.9%) as two folds compared to their children 7 (30.3%), while in food handlers it was seen only in 2 (8.7%) cases. Blood and mucus were most prevailed in children 10 (76.9%), while in mothers 2 (15.4%) as twice as food handlers 1 (7.7%). There was sStatistical association was noted between macroscopic examination and different participants' p value (0.03).

Table 1: Macroscopic examination of stool samples

		Macro	scopic exa	minations	tions Total			
		Mucus	Blood	Mucus and blood				
	Child	27	7	10	44			
	Cilia	40.9%	30.3%	76.9%	43.1%			
	Mother	26	14	2	42	0.03		
Type	Moniei	39.4%	60.9%	15.4%	41.2%			
`	E . 11 11	13	2	1	16			
	Food handlers	19.7%	8.7%	7.7%	15.7%			
	Total	66	23	13	102			
	Total	100.0	100.0	100.0	100.0			

Microscopic examination for the type of the parasite in stool samples of mothers, children and food handlers:

Table 2. showed that the relationship-prevalence of the different parasites detected in participants' stool samples. *Entamoeba histolytica* cyst was reported in 28 mothers 28 (62.2%) as two folds as in children 13 (28.9%), while in food handlers it was recorded in 4(8.9%) persons. *Gardia Lamblia* was more dominated in mothers 48(58.5%) as twice as seen in children 24 (29.3%), whereas in food a handler it was noted in 10(12.2%) persons. *Taenia spp* was found only in 5mothers 5 (71.4%) and 2children 2 (28.6%). Moreover, *Ascaris lumbricoides* was also seen in 11mothers 14(61.1%) and 7children 7 (38.9%). However, *Hymenolepis nana* was only found in 27children 27(100%). Statistically association was reported between participants and types of parasites detected p value (0.00).

Table 2. Microscopic examination for the type of the parasite instool samples of mothers, children and food handlers

			Туре о		Total	P		
		E.histolytica	G.lamblia	Taenia	A.lumbricoides	H.nana		value
				spp				
	Child	13	24	2	7	27	73	
	Cima	28.9%	29.3%	28.6%	38.9%	100.0	40.8%	
Type						%		
	Mother	28	48	5	11	0	92	0.00
	Wiother	62.2%	58.5%	71.4%	61.1%	0.0%	51.4%	0.00
	Food-	4	10	0	0	0	14	
	handlers	8.9%	12.2%	0.0%	0.0%	0.0%	7.8%	
		45	82	7	18	27	179	

Formatted: Font: Italic

Total	100.0%	100.0%	100.0	100.0%	100.0	100.0%]	 Comment [RJ5]: Scientific names of
			%		%			parasites should be in italics.

Table 3. showed that there was no association seen between macro and microscopic examinations for the stool sample with a p value of 0.2. However, macro examination didn't indicate that the presence and/or the absence of organisms by detecting microscopically.

Table 3. Cross tabulation between macroscopic and microscopicexaminations

	Microscopic examination						Total	P value
		E.histolytica	G.lamblia	Taenia spp	A.lumbricoides	H.nana		
Macroscopic	Mucus	13	17	2	1	4	37	0.2
examination	Blood	2	8	1	1	3	15	
	Mucus and blood	2	0	0	I	2	5	
Total		17	25	3	3	9	57	

Comment [RJ6]: Scientific names of parasites should be in italics.

Table 4. showed that the rate of infection concerning age groups of children and it was increased gradually with augmenting of the age. eEspecially among those of more than 2 years, 29 cases were detected and 25 cases were recorded in children between 1-2 years old—25 cases. However, the predominated parasites were found to be Hymenolepis nana, Gardia Lamblia and Entamoeba histolytica respectively. There was no significant association seen-between increasing age of child age and type of the parasite (p-value <0.83).

Table 4. Age groups of children in relation to parasitic infection

			Type of the parasite						
		Entamoeba	Gardia	Taenia	Ascaris	Hymenolep			
		histolytica	Lamblia	spp	lumbricoid	is nana			
		cyst			es				
	< 6	1	2	0	1	1	5		
	months								
Age	6-12	4	4	1	1	4	14		
group of								0.83	
the	13-	2	9	1	3	10	25		
children	24months								
	<24Month	6	9	0	2	12	29		
	S								
T	otal	13	24	2	7	27	73		

Comment [RJ7]: Scientific names of parasites should be in italics.

Table 5. showed that no statistically association noted between age of mothers and parasitic infections with a p value of 0.31. The highest age group posed to infection was seen between 20-29 years, followed by 30-39 years.

Table 5. Cross tabulation between parasites infection and mothers' age group

Age of mothers			Total	P			
		Entamoeba histolytica cyst	Gardia Lamblia	Taenia spp	Ascaris lumbricoides		value
	<20	3	5	0	0	8	0.21
Age group	20-29	14	26	3	2	45	0.31
	30-39	10	12	1	7	30	
	40-49	4	5	1	0	9	
Total		31	48	5	11	92	

Comment [RJ8]: Scientific names of parasites should be in italics

Formatted: Font: Not Bold

Table 6. showed the presence of intestinal parasites in different fresh vegetables.

Intestinal parasites were recorded in 11Lecttuce 11 (4.3%), 10cabbage 10 (3.9%)

followed by, 7molokhia 7 (2.7%), 6 green onions 6 (2.3%), 4 tomatoes 4 (1.6%),

1cucumber 1 (.4%) and 3mangoes 3 (1.2%) respectivelysamples.

Table 6. Availability of intestinal parasites in fresh vegetables and fruits

Vegetable's type	No. of examined samples				
	Frequency	Percentage			
Lettuce	32	11 (4.3%)			
Cabbage	32	10 (3.9%)			
Molokhia	32	7 (2.7%)			
Green onion	32	6 (2.3%)			
Tomatoes	32	4 (1.6%)			
Cucumber	32	1 (.4%)			
Mangoes	32	3 (1.2%)			
Oranges	32	0 (0%)			

Table 7. showed that different types of intestinal parasites in fresh vegetables and fruits. Intestinal parasites detected in vegetables and fruits were *G.lamblia* and which was found to be the most dominated parasite 26 (66.7%), followed by *E. histolytica* 8 (20.5%) and *A. lumbrucoides* 5 (12.8%) respectively.

Formatted: Font: Not Bold

Formatted: No underline

Formatted: No underline

Formatted: No underline
Formatted: No underline

(12.8%) respectively.

Table 7. Different types of intestinal parasites in fresh vegetables and fruits

Vegetable	E.histolytica	G.lamblia	T.saginata	A.lumbricoides	H.nana	Total
type	(cyst)	(cyst)	<u>(egg</u>)		(egg)	
Lettuce	2	7	0	0	0	9
Cabbage	1	6	0	2	0	9
Molokhia	1	5	0	1		7
Green onion	1	3	0	02	0	6
Tomatoes	2	2	0	o	0	4
Cucumber	0	10	0	0	0	1
Fruits						
Mangoes	1	2	0	0	0	3
Oranges	0	0	0	0	0	0
Total	8 (20.5%)	26 (66.7%)	0	5 (12.8%)	0	39
						(15.2%)
		<u> </u>				

Comment [RJ9]: Scientific names of parasites should be in italics but no underline..

Discussion

In this study it was found that the percentage of about 15.3% of motherswomen, and 12.2% of children having intestinal parasites in their stool. It also showed 2.3% of Food handles and 15.2% of the vegetables were contaminated with intestinal parasites. This indicate that infected mothers can become a source of infection to their children. Similarly, contaminated vegetables and fruits constitute an important source of infection particularly those fruits which are eaten fresh. Based on these findings, it seems reasonable to conclude that infected mothers are as well as vegetables and fruits can convey internal parasites to their children. In a study conducted in Khartoum by Salim in 1999 showed that the rate of intestinal parasitesi\(\frac{1}{4}\)n the school children in Khartoum was 37.5\(\frac{6}{4}\) and such rate was higher that obtained in the present study (5). As the author used same techniques then such differences may be attributed to the fact that Salim conducted his study among school children who are older and definitely more than 5 years and the numbers of children examined. This can render them more resistant to infection. Similarly, the occurrence of parasites in food handlers was found by Babiker et al., in (2009) to be such higher that the present result (6). The only explanation for much such differences is that the higher number of examined very many individuals examined (n = 1500) compared to those screened here. Elsewhere similar trials generated different results. For example, the rate in village people in Korea was 44% (7). In preschool children in India was 64%, 20% in U.S.A and 9.3% in Saudi Arabia (8-10). This differences in prevalence rates whether higher or lower than we obtained might be attributed to environmental factors. It is clear that mothers have a high prevalence of

intestinal parasites compared to them their under five children and food handlers (8). This fact might be attributed to the negligence of mothers by their health status and/or the absence of regular checkup. Moreover, many mothers have behavior and tendency of treating themselves by using herbs rather to visit doctors. This behavior might be resulted in increasing the infection of intestinal parasites compared to food handlers, because of food handlers should be performed mandatory regular check up every six months to have their good health certificate for continuation their work.

This study found that there was no statistical association between macro and microscopic examinations of stool. This result might be attributed to other confounder factors, where mucus could as result of cancer, whereas blood also might be attributed to cancer and ulcers. The results obtained showed that G.lamblia and E.histolytica were the predominant species in stood stool sampls of mother, children, and food remainder having scored the highest in the 3 categories. Other species such as A. lumbricoides and T. saginata were detected in mothers, children and food handlers and H._nana in children only. In vegetables and fruits E._histolytica and G._lamblia were also presented in almost all the varieties and A. lumbricoidesscaris in 3 vegetables only. In our study there was significant association seen between the infection of mothers and their children regarding intestinal paraites. This fact might be suggested that the transmission of the parasites from mothers to their children occurred miecanically. G. lamblia and E. histolytica were the prevailed species of intestinal parasites in this study in mothers, children, food handlers, vegetables and fruits. This results in compatible with other studies which found that G._lamblia and E. histolytica were highly frequent species parasites in his studied population (6), also compatible with study in Nigeria by Odongo in 1994 who found that G. lamblia was the most dominated parasite, followed by E._histolytica in

Formatted: No underline
Formatted: No underline

or matecar ito undermie

Formatted: No underline
Formatted: No underline

Formatted: Font: Italic

Formatted: No underline

fruits and vegetables samples (12). When the results were compared with other studies found lower rates Kappus etal in 2003 and Auta etal in 2017 found that other types of intestinal parasites such as A. lumbricoides was the most common parasites found, whereas G. lamblia and E._histoyica were least (8,13). This variation in contaminations may be attributed to geographical location, type and number of samples examined, mothers methods used for detection, different laboratory techniques used, type of water used for irrigation, post harvesting handling methods of such vegetables and even the type of water used to wash vegetables can play an instrumental role in the epidemiology of transmission of parasitic disease Furthermore the highest prevalence found of G._lamblia_may be as a result of the viability of their eggs_cysts_in the soil for months and being the commonest parasites in the tropic. This may be due to the rough surface and leaf folds of this vegetable which may retain dirt that can be easily washed (14).

Conclusions:

The overall prevalence of intestinal parasites and bacteria was more pronounced among mothers and their children's. Food handlers, vegetables and fruits showed lower prevalence of infections. *Gardia Lamblia* and *E histolytica* were the most predominated parasites seen microscopically among participants. There was significant association between mothers and their children concerning intestinal parasites.

Formatted: No underline
Formatted: No underline
Formatted: No underline
Formatted: No underline

Formatted: No underline

Formatted: No underline

References

- 1- Goja AM, Mahmoud MS. Microbial quality of some vegetables sold in ED DueimTwon, Sudan. *Pak J Biol Sci.* 2013;16(12):585-588.
- 2- Wakid MH .Improvement of Ritchie technique by identifying the foodthat can be consumed pre-analysis," Journal of Applied Sciences Research. 2009; 5 (3):293–296.
- 3- Frazier WC, and Westhoff DC. "Food Microbiology", T. M. H.Edition. Chapman & Hall, New York, 1998; pages: 198 209.
- 4- Amoah P, Drechsel P, Abaidoo RC, Klutse A. Effectiveness of common and improved sanitary washing methods in selected cities of West Africa for the reduction of coliform bacteria and helminth eggs on vegetables. *Trop Med Int Health*. 2007;12 Suppl 2:40-50. doi:10.1111/j.1365-3156.2007.01940.x
- 5- Salim MI. Prevalence of intestinal parasitic infection in school childrenin Khartoum State. MD Thesis. University of Khartoum; Sudan: 1999.Saudi Med J; 22(10): 857-59.
- 6- Babiker MA, Ali MS, Ahmed ES. Frequency of intestinal parasites among food-handlers in Khartoum, Sudan. *East Mediterr Health J.* 2009;15(5):1098-1104.
- 7- Lee KJ, Bae YT, Kim DH, et al. Status of intestinal parasites infection among primary school children in Kampongcham, Cambodia. *Korean J Parasitol.* 2002;40(3):153-155.
- 8- Kappus KD, Lundgren RG Jr, Juranek DD, Roberts JM, Spencer HC.

- Intestinal parasitism in the United States: update on a continuing problem. Am J Trop Med Hyg. 1994;50(6):705-713. doi:10.4269/ajtmh.1994.50.705
- 9- Khurana S, Taneja N, Thapar R, Sharma M, Malla N. Intestinal bacterial and parasitic infections among food handlers in a tertiary care hospital of North India. *Trop Gastroenterol*. 2008;29(4):207-209.
- 10- Megrm W. Prevalence intestinal parasites in leafy vegetables in Riyadh, Saudi Arabia," International Journal of Tropical Medicine, 2010; (5) 2:20–23.
- 11- Odongo-Aginya EI, Lakwo TL, Schweigmann U, et al. Urban Schistosoma mansoni near Enyau river in Arua town, Uganda. East Afr Med J. 1994;71(9):604-606.
- 12- Abua Al-Sad, AS. A Survey of the pattern of parasitic infestationin Saudi Arabia", Saudi Medical Journal, 1983; 4 (2): 117-122.
- 13- Auta T, Kogi EO, KA. Studies on the intestinal helminthes infestation among primary school children in Gwagwada, Kaduna, North Western Nigeria", Jurnal of Biology, Agriculture &Healthcare. 2017; (3) 7: 48-53.
- 14- de Silva NR, Brooker S, Hotez PJ, Montresor A, Engels D, Savioli L. Soil-transmitted helminth infections: updating the global picture. *Trends Parasitol*. 2003;19(12):547-551.