Review Form 1.6

Journal Name:	International Astronomy and Astrophysics Research Journal
Manuscript Number:	Ms_IAARJ_84174
Title of the Manuscript:	Looking into Dark Energy Effect on the Extragalactic Radio Quasar Luminosity Evolution
Type of the Article	Original Research Article

General guideline for Peer Review process:

This journal's peer review policy states that <u>NO</u> manuscript should be rejected only on the basis of '<u>lack of Novelty'</u>, provided the manuscript is scientifically robust and technically sound. To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(https://www.journaliaarj.com/index.php/IAARJ/editorial-policy)

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Compulsory REVISION comments		
	Please check the mathematics and cross references: $\mathcal{P}_{\mathcal{CE}} \sim (D^2 P)^{-\beta} \tag{25}$	
	$D = \left[\frac{1}{m_h c^3 \Omega \epsilon} \left(\frac{\mathcal{P}_{CE}}{Q p_j^{\psi}} \right)^{-\frac{1}{\beta}} \right]^{\frac{1}{2}} P^{-0.5} $ (27)	
	Putting the values of the indices into equation (26), we obtain for extended quasars (in one significant figure),	
	$\mathcal{P}_{\mathcal{C}\mathcal{E}[z(EGRQ)]} = \mathcal{G}\left(\frac{1}{m_h c^3 \Omega \epsilon D^2 P}\right)^2 p_j^{0.52} \qquad (35)$	
	$\mathcal{P}_{\mathcal{C}\mathcal{E}[z(EGRQ)]} = \mathcal{G}\left(\frac{1}{m_h c^3 \Omega \epsilon (1+z)^{-3.2} P}\right)^2 p_j^{0.52} \qquad (37)$	
	$\mathcal{P}_{\mathcal{C}\mathcal{E}[z(CSSQ)]} = \mathcal{H}\left(\frac{1}{m_h c^3 \Omega \epsilon (1+z)^{-5} P}\right)^{0.031} p_j^{32} (38)$	
	$(1+z) \sim \mathcal{P}_{\mathcal{C}\mathcal{E}[z(EGRO)]}^{=0.16} \tag{39}$	
	$(1+z) \sim \mathcal{P}_{\mathcal{C}\mathcal{E}[z(CSSO)]}^{-6.4} \tag{40}$	
	8. Discussion and Conclusion	
	We have carried out linear regression analysis of observed source linear sizes (D) of the more extended radio quasars against their corresponding observed redshifts, z , (Figure 1) in our sample. Results of the regression analysis show that D relates with z according to equation (3) , $(1+z)\sim D^{-0.6}$, with correlation coefficient, 0.50. The correlation is good.	
	Moreover, on the $D-z$ plane (Figure 2), we obtain the relation, $(1+z)\sim D^{-0.4}$ (i.e. equation (7)), which connects the observed linear sizes of CSS quasars and their respective redshifts. The correlation is marginal	
	Furthermore, we solve for source projected linear size, and get equation (27); i.e. $D = \left[\frac{1}{m_h c^2 \Omega \epsilon} \left(\frac{p_{\mathcal{C}\mathcal{E}}}{Q p_j^{\psi}}\right)^{\frac{1}{\beta}}\right]^{\frac{1}{2}} P^{-0.5}.$ This equation simply shows that β and ψ may be estimated from linear regression of the D/P data.	
	Combining equations (2) & (35), and equations (6) & (36) yield respectively, equations (39) and (40); i.e. $(1+z) \sim \mathcal{P}_{\mathcal{CE}[z(EGRO)]}^{-0.16}$ and $(1+z) \sim \mathcal{P}_{\mathcal{CE}[z(CSSO)]}^{-6.4}$. Hence, we find $\mathcal{P}_{\mathcal{CE}[z(CSSO)]} \gg \mathcal{P}_{\mathcal{CE}[z(EGRO)]}$; i.e. equation (41).	

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)

Review Form 1.6

Minor REVISION comments	
Optional/General comments	

PART 2:

		Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Are there ethical issues in this manuscript?	(If yes, Kindly please write down the ethical issues here in details)	

Reviewer Details:

Name:	David J Smith
Department, University & Country	UK

Created by: EA Checked by: ME Approved by: CEO Version: 1.6 (10-04-2018)