The Riemann Zeta Function and Its
Zeroes

Abstract

This dissertation includes a detailed of the Riemann zeta functions, with a particular focus its
analytic continuation, functional equation and application. We will start with the historical
background. Following this we cover certain important preliminaries which are needed to use the
functional equation. We then define the Riemann zeta function and prove the functional
equation. In addition to this that, we show the Riemann zeta function has generalization in form
of the Dirichlet L-function. Then, the zeroes of the Riemann zeta function will be studied.
Finally, we establish the zero free region of Riemann zeta function.

1 Introduction

Number theory is among the many branches of mathematics. In order to
make progress in number theory, numerous mathematicians must sometimes
use techniques from several areas of mathematics, such as complex
analysis. The connection between number theory and complex analysis is
referred to as Analytic Number Theory.

In 1737, the Swiss mathematician Leonhard Euler put forth the zeta
function. Following this, in 1859, the German mathematician Bernhard
Riemann introduced the Riemann zeta function. He published an eight
page—paper ~ On the Number of Prime Number Less than a Given
Magnitude’ . He presented that this is the link between the zeta
function and distribution of prime numbers and he showed the zeta
function to be a homomorphic function in a complex plane. However, he

did not prove that some the zeros of £ lie on the line Re( s ) :'%L

this is called the Riemann hypothesis. This function is useful function
in mathematics and is particularly it is important in number theory.

The aim of this dissertation is to focus on studying of the Riemann
zeta function, its analytic continuation, functional equation and
applications.

This dissertation is divided in to seven sections, In the first
section, a brief historical background of the Riemann zeta function will
be provided to illustrate the history of function. In the second
section, the theory of analytic continuation will be proved.



Following this, third section, provides some useful preliminaries for
analytic which will help to us prove function equation of the Riemann
zeta function and Dirichlet L function; indeed, these preliminaries are
vital when it comes to reaching our aim. In the fourth section, the
definition of the Riemann zeta function will be presented in two ways,
namely the Dirichlet series and the Euler product. In addition, the
analytic continuation of the Riemann zeta function will be proved. In
the fifth section, the Riemann zeta function has been generalised and
one of these generalizations namely the Dirichlet L—function will be
presented, alongside its analytic continuation. Moreover, the functional

equation of the Dirichlet L —function will be set out. In the sixth
section, the zero of the Riemann zeta functions will be studied.

Finally, in the seventh section, the applications of the Riemann zeta

function will be provided.

2 Historical background

The series 2,‘;°=1% =1+ % + % + i 1&-
is the harmonic series. This is one of the most familiar example of an infinite series. The
number theory is fundamentally about the positive integers n=1, 2, 3

This series is very interesting in the context of number theory. Unfortunately, it
diverges, but only: the sum of the first n terms is about Inn and as n — oo the sum
tends to +oo.

When we replace its general term %With the smaller % where s > 1, this makes Z%
converge without loss, which is an important property of number theory.
Clearly, this gives rise to £(s) defined by £(s) = Z;‘{;l% =1+ % + % + i + .-
this series is named after Riemann, who published the fundamental paper on the £(s)

properties in 1859. Euler was the first mathematician to introduce the £(s) approximately
120 years earlier he stated that the Riemann zeta function can be expanded as product

£(s) = 1_[ (1_;_5) where p all primes"
p

this is a very important and powerful result because it means that method analysis can be
applied to study the prime number. Euler defined £(s) as a function of the real variable

s, whereas Riemann improved the zeta function depending on whether it was allowed

to be complex number. Riemann’s tried to extend the definition £(s) by Euler from

R to C. Moreover, he studied the analytic continuation of £(s) and obtained the functional
equation. When he studied the zeta function then he found the £(s) to be complex
function, he also laid out the key to more thoroughly investigating the distribution of the
primes lies. Before proving the Riemann conjecture or the result about prime, he proved
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the two main results.
(a) The Riemann zeta function can achieve analytic continuity over the whole s-plan

with a simple poles at s equal to 1 with residue 1, such that £(s) — (s — 1)~! s integral
(entire) function.
(b) The Riemann zeta function satisfies the functional equation

s (%) £(s) = 29T (;) £(1—s)

we can say that the function on the left side is even a function of (s — %). It can be

concluded that this functional has properties of £(s) for ¢ less than zero to be deduced

from properties for o greater than 1. In particular, the Riemann zeta function had zero

for o < 0 at the poles of I G s) at s = —2,—4,—6 ..... These zeroes called the trivial zero, the

reminder of the plane where 0 < o < 1 there are non trivial zeros is called the critical strip.

Moreover, Riemann made some remarkable conjectures
(1) In the critical strip the £(s) has several zeros with respect to a =
(2) the integral (entire) function £(s) defined as
1 -1 1
£(s) =2s(s— D2 °r (ES) £(s)
the £(s) has not pole for a greater than or equal %and the integral function is an even
function of (s — 1). In addition, it has product representation
£(s) = e*B [y (1 - %) er
where p runs over the zeros of the Riemann zeta function in the critical strip and A and

B are constants. In 1893 Hadamard proved it. Note that we take the information from
Jones [5] (p. 9. 163) and Davenport [1] (p. 9.59).

3 Preliminaries of complex number

In this section we present the important part of complex analysis that
will be help to know the basic of analytic number theory.

3.1 Convergence

Definition 3.1. [6]

We say a sequence {ZlPZZm}-Of'C'Converge to w in complex number if
lim,wlz, —w| =0 and we write w = lim,_ 2,

Definition 3.2. [20]

Let S is non empty set in C. (E,)be sequence converges point wise F on
S, for every

s in S and FE,(s) tend toF(s). the (E,) is uniformly convergent to F on
S if Ve>0 there exist N =N (& ) such that vn >N



|F(s) — E,(s)| < ¢ ,Va €S
the uniformly in this definition that means a number N not depending on
S.

3.2 Identity theorem

Let f and h be two analytic functions in region R. Assume that there is
{s,} sequence of the different point of R converging to a point s, €

R such that the function f(s,)and h(s,) have the same values for all
=1,2,3.... Then f = /A on all of R.

these were taken from ( [2] theorem 1).

3.3 Analytic function

We can express that is ANALYTIC at the point z if it is a complex
differentiable on open set x which contain the point z. Clearly, f is
analytic on 0 if f is a complex differentiable on a domain 2 in C. The
information in this section was taken from Stein [6] and Mutry [19] and
Neubrander [22].

Definition 3.3. Let f be a complex function define onan open D inC, f : D — C we can say

if there is some number f’(a) then f is complex differentiable at a if
limz_>a f(z)—f(a) — fl(a)

zZ—a

Definition 3.4. If f is a complex differentiableina € D c C then
"(a) = — Y =1 f@-f(@
f (a) = f(a) = 1z (a) =lim,_, —a
Definition 3.5. Let S < C be an open subset and f is a function from S tend to C is

called complex differentiable or homomorphic on S if

lim,,_, f(Z+h;—f(Z)

existand is finiteVz € S.
If vz € S, fisanalytic on S if the f equals its own Taylor series in the neighborhood of
z

f(Z + h) — ;‘f:()%hn for small h

Proposition 3.6. If f and g are analytic (homomaorphic) in Q then
1) f + ganalyticinQand (f + g)'= f'+ ¢’
2) fg analyticin Qand (fg)' = f'g + fg’
3) If g(zo)does not equal 0 then f/g is holomorhic at zy and (f/g)' = F=L



3.4 Analytic continuation

If the function f is analytic in a region D we can say that the function f will be continued
analytically. If f; is analytic on a domain D; and f, is analytic on a domain D, , where the
intersection of the domain does not equal ¢ and f; (S) = f, (s) for all s € D, ND, then we can
state that f, is the direct analytic continuation of f; to the domain D, such that £, must be
unique for if g is analyticon D, and if g(s) = f; (s) forall sin D; ND, then £, (s) = g(s)
V sisopenset D; ND, and f, (s) = g(s) Vs € D,.

1

Example 3.7. let fi(x) = Ygos™ for(s|<1l) and f,(x) = ) for (se C\{1})

then £, is direct analytic of f; and f; is the interior of unit disc and f, is on the whole of

(CM1})

Example 3.8. Let f(x) = 1 + x + x, + x3 +.....the series is converges for |x| < 1.1In
fact f(x) = rlx) for such z then F(x) = Vv z # 1 and is in fact differentiable and

1
(1-x)
analytic vV such zand F(x) = f(x) V |z| < 1then we can express that F is an analytic
continuation of f.

Note that all information are taken from Stein [6] and [18].

4 Preliminaries on complex function

We mentioned before, Euler defined the Riemann zeta function for the real variables. However,
Riemann extend this function to C and he studied the analytic continuation of the Riemann zeta
function. The functional equation are very significant in analytic continuation. We need to Know
some preliminaries on complex function will help to prove the functional equation. This section
divides to sex parts we will start to the gamma function and summation formula. Then we
present the theta function and entire function. Finally, we provided the Dirichlet series and Euler
product.

4.1 The Gamma Function
During the period spanning (1707-1783) Leonhard Euler first introduced the Gamma function

I'(s). Following this, it was studied by other famous mathematicians such as Carl Gauss, Adrien-
Marine Legendre. The gamma function is significant function for analytic number theory.



It appears is several area as deferential integration, such as the zeta function and number theory.
In this section we shall require some basic properties of the gamma function I'(s). Note that these
properties are taken from [11] Sebah, [6] Stein, [1] Davenport and [13] Forster.

Definition 4.1. For s be positive integer, the gamma function is defined by
I'(s) = f0°° e ttS~1dt the integral converges for s > 0 the function defined for @« > 0 can be
continued beyond the line a« = 0.

Proposition 4.2.
The I'(s)extend to an analytic function in the half — plane Re(s) greater than 0.

Definition 4.3. Where C is Euler’s constant then the Euler gamma function is defined by

L — Cs T s -
T = Se | | B (1 + n) e n foralls

Theorem 4.4. The Euler’s formula of the Gamma function is

I(s) = %1_[ (1 + %)S (1+ %)_1

n=1
Proof. From the definition infinite product

ﬂm ) = (L+u) 4wy e (14 1,) o

n=1
and from the definition the Euler Gamma function , we obtain

1 . 1+l+...+i_l . S _3
— = slimpy_e e* 2 9™ Jim 12, (1 +3) e
r'(s) m—oo n

h — S
= slim,,, m~*[[7L, (1 + ;)

= slimp,_e [1757 (1 + %) n=1 (1 + i)

= slim,_e [, (1 + %)‘S (1 + %) (1 + %)s
Lettingm — o
Then we have

st (1497 (149

Theorem 4.5. The function I'(s)satisfies the functional equation
I's + 1) = sI'(s)

Proof. From the Euler’s formula we have

+1 1
AChb)! = élimn—)oo Hrnn—l (1+%)S s(1+%)1
o ()



()5
(5 )

—_ S n m
- mhmn—)oo Hn:

then we have

S . m (n+1 n+s
= sirtimnces T (57) (5555)

n n+s+1

passing to the limitas s — 0 thus
m+1 s+1
= i (57) (55) =5

Theorem 4.6. The addition formula of the gamma function is
res)ra —s)=

for any number s is not an integer.

sin s

Corollary 4.7. The duplication formula of the gamma function is

renr (%) _ zzn—lr(n)r<n +%>

for nis natural number.

Corollary4.8. I'(n + 1) = n!
for every non negative integer n.

Legendre obtained in 1809 the duplication formula.

Theorem 4.9. The Legendre duplication formula is
1 v
reor (x+3) = e r(2x)

Corollary 4.10. [*~ ™" du = v

1.2...(n-1)n?
s(s+1)...(s+n—-1)

Corollary 4.11. T'(s) =lim,,_,

Corollary 4.12. The sine product is

2
sin(nz) = nz 1_[ <1 — %)

n=1
for all z is complex number.



4.2 Summation formula
4.2.1 The Euler-Maclaurin formula
Definition 4.13. [16] (p.g. 66)

The sum of f(n) can written as the stieltjes integral

PNOE f Fn) dix

a<nsb

if a,b € Z and f is continuous in [a, b] where [x] is integral part of x,

[x] = max{l € Z:] < x}
putting Y(x) = x — [x] — % now we can derive the Euler-Maclaurin formula by the partial
integration.

Lemma 4.14. [16] Let a,b € Z with a smaller than b ,we have

b 1
> o= | () +w e @) dx +5 () - (@)

a<nsb

Theorem 4.15.
Let f(x)has twice continuously dif ferentiable function on [a, b] and define p(x) and a(x) by
X

=50  and o) = [ padu
There for i

b
> ) = f FEx + p®)f () ~p@f (@) — [ o) [0

a<nsb

where f(x) be continuous differentiable on [a, b].

4.2.2 The poisson summation formula

Theorem 4.17. [7]
Suppose f, fare Fourier transform, the poisson summation formula is

Zner(n) = ZneZ f(n)

with Fourier transform of

f=F@© = [, fGe2mixt

4.2.3 The partial summation



Lemma 4.18. [14]
let f(x)a continuation dif ferentiable function on the interval [a, b]and let
C(x) = Ygen<xCn Wherec, be arbitrary complex numbers.then we have

S enfm = [ ot J b ')

a<ns<b a

4.3 Theta Function
Note all the information are taken from [2] Hassen, [8] Segarra, [9] Steiger and [21] Pitman.

Definition 4.19. Jacobi’s theta function @ (t) is defined by
O(t):= X%, exp (—n?mt) (t >0)

Proposition 4.20. @(t) can be written

Ot)=1+2 Z exp (—mn?t)

n=—oo

where 0 is the Jacobi theta function.

Proposition 4.21. Ift > 0then

0t) = — o (1)
=780
Proof. we start from definition (4.19)

o(t) := Z exp (—n?mt)

n=oo

there is very important sum formula is called passion formula (4.17)
+oo —omi
Znez f() = Zner J_,, fF()e ?™ ¥ dy

then we have
—1n?2 +oo _ .2 g,y
Zneze mnex — ZneZ f_oo e TV Xo kaydy
400 24 oo
— ZnEZ J‘_oo e TYx mkydy
k| ok% K2
=Y f+00e—nx(y2+ZL;y+12x—2—12x—2)dy
—00
F 24 9k .o K2\ _ .kzth h
rom (y°+ l;y+lx—2—y+l; en we have
J\2 k2
g7y,
2 +oo  _pp2l nx[y+ik]2
—-Tnx _— -k~ =
= Ynez€ " _ZnEZf_oo e xe = dy
2

—mn2x _ —mk?l (4o mx y+iE
= Ynez€ =Yneze * f_oo e [ X] dy
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the change of variable

Lk too +oo+ik
ytiz=z , dy = dz T ™ ,’,5
—00+l;
Then we obtain
.k
2 21 tooti= 2
= Yneze T =Xneze Tk xf re ™ dz
—oo+i—
X
It can be shown that
.k
+0oo+1— 2 R 2
X ,—MXZ i —TXZ
e dz = e dz
f—oo+i§ f_R
we will divide this integral to three parts
.k -k
R _mxz? _ (RH _pxz2 R+ _mxz? R —mxz?
J ne dz=[ " *e dz+f_R+iEe dz + fRﬂ.%e dz
x

—1tn?2 —mk2l o0 _ 2
Yneze Y =Xneze xf_oo e ™ dz

—mk22 ’ U
e x |—
ZnEZ X

—nn? —mk?i 1
ZnEZe X ZZnEZe x\/;

From Gauss integral
then

from

O(x) 1= Ypege ™%

o =02

Proposition 4.22. Ast - 0 from Proposition (2.15) then for some ¢ > 0 let
=C

|9(t) —%| <et

then we have

Proposition 4.23.
i 1
O (;) = x20(ix)

4.4 Entire functions
An entire function (integral function) is an analytic in the whole complex plane.

4.4.1 Entire functions of the finite order
Note we take the information in this section from [1] Davenport, [6] Stein and [10] Rubin. let
f(z) be an entire function is said f(z) to be finite order if there exists o greater than 0 such that

f(2) = 0(e!") as |z| » o (4.1)
we must a > 0 with the property (4.1) is called the order of f(2).

Lemma 4.24. Let f(z)be an entire function of finite order and f(z)have no zeros;
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this is necessarily to form e g(z)where g(z)is polynomial andits order is the degree of
polynomial g(z)and so is an integer.

Lemma4.25.
Let f be an entire function.If there exist a positive number a and a constant
B > 0and0 < R1 < R2 < R3....with

lim R, = o such that |f(z)| < Bel”®

m-—-0o
when ever |z| € {Ry,R, ....}then there is f(z) = e9@ if g(z)is polynomial.
Hence f(z) is of finite order and this order is equal of degree g(z).

4.4.2 Infinite product

Definition 4.26. Let sequence {u,, } of complex numbers

Po=1+u)d+uy).... 1 +u,) =1l +u,) and p = lim,_,, p, €Xists. Then we
can write the product p = [[;~;(1 + u;) the p,, are partial product of infinite product. then we
express the product [];-,(1 + u,) converges if {u,, } is converges if there exist the lim,,_, ,, p,,.

Proposition 4.27. Let ), a, < o then [[;-;(1 + a,) this product is converges to zero if and
only if one of its factors is zero.

Proposition 4.28. Assume the sequence {F,} is analytic functions on the open set Q.
If there exist constant c,, greater than zero such that
Ycp <o and |F(z) — 1| <c, VzeEQ
then:
Q) [I;=1 E,(2) this product converges uniformly in Q to F(z) analytic function.

(i) let I;((ZZ))=Z§'1°=1£"Z; if F,(z) dose not vanish for any n.
n

Lemma4.29. Ifuy,...uy € C andif

N N
=] [a+uw  wi=] @+ 1D
=1 n=1

n
then py < elwlt=+hwh and  |py —1|<py -1
4.5 Dirichlet series

Definition 4.30. [13]
A Dirichlet series is a series of the form f(s) = Z,‘;‘;li—’; such thats € Cand (a,),s1 iSa
sequence of complex numbers.

Remark 4.31. [4] and [5]
The Dirichlet series F(x) = ,‘;‘;1% wheres = a+it, a > a and f isan arithmetic

function then the Dirichlet series Z;’{;l% is convergent in a half-plane a« > «a, thus the

series is an analytic function of s for @ > «a..

11



Theorem 4.32. [4]
For any Zf(x)n‘s with a, finitewe have 0 < a,—a, <1
Theorem 4.33. [13]
f(x)

suppose f(s) = Yoy S be a Dirichlet series for some s, is complex number, it has bounded

partial sums then the Z,‘;‘;lfg) converges with R(s) > ag := R(sy) forall s is complex

number and the assume that the converge uniformly on every compact subset of
kcH(ay) ={s€C:Re(s)>ay}
Hence f is analytic function in H(a,)

Theorem 4.34. [5] (p.g. 180)

Assume that F(s) = Xoo n=1 f(n) ns G(s) = Xoo n=1 g(n) ns H(s) = Xcon=1 h(n) ns ith=f* ¢
then H(s) = F(s)G(s) such that F(s) and G(s)is absolutely converge for all s Proof. we can
multiplay F(s) and G(s) because F(s) and G(s) both converge absolutely

F(s) G(s) = zf(n) gn)

nS
n=1

Z f (k)g(m)
- ~ (kn)s

k=1n=1
We replace m = kn then we have

oo

_ z z f(k)g(n)

=1m=kn

4.6 Euler product

Definition 4.35. [4]

we called f is multiplicative if an arithmetic function f is not identically zero and

f(mn) = f(m)f(n) when (m,n) = 1and f multiplicative function is called completely
multiplicative if f(mn) = f(m)f(n) for all positive integer m and n.

* The next theorem was discovered in 1737 by Euler.

Theorem 4.36. [5] (p. g. 183)
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a) Let Yooy f(n) =[1,(1 + f(p) + f(p*) + ---) if f is multiplicative arithmetic function such
that Y, f(n) is absolutely convergent.
b) Let f is completely multiplicative Yo, f(n) is convergent and then

Yo f(m) =11, (ﬁ) this product is called the Euler product of the series.

5 - The Riemann Zeta Function

The important definition in this dissertation is the definition of the Riemann zeta function. The
Riemann zeta function {(x) can be defined in two ways: as a Dirichlet series or as a Euler
product. Note that this information was taken from [14] Karatsuba, [23] Batemann, [20] Everest
and [3] Karatsuba. We will now introduce the first definition.

Definition 5.1. For Re(s) > 1 the Riemann zeta function {(s) is defined by Dirichlet series:
{(s) = Z;’fﬂ% = % + % + .-« The series converges Re(s) > 1 and it is analytic function in
the half plane Re(s) > 1.

There is an analogue of the Euler product for {(s).

Lemmab5.2. For Re(s) > 1 the Riemann zeta function defined by the Euler product

1 -1
¢() =T (1 =)
Proof. Let Re(s) greaterthan1and X > 2 be an integer. we can use the series
TR .

which is absolute converges and from the unique decomposition of a positive integer into prime
factors we obtain

Mpex(1=2) " =Tz L+ S b5
—Zp5xns+R(s,X)

where
R(X)<Zl— 1<1X1“’
IR(s; 201 < ns|l n® - o—1
n>x n>x
where ¢ = Re(s) > 1 passingtothe limitX — +4oo
hence,

-1
¢(s) =i =T1p (1-55)
Corollary 5.3. For Re(s) = o > 1 then, {(s) # 0

Proof. This follows from Euler’s product formula

|z<1s)| - U(l‘pi) SU(“%)
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then, we have

where ¢ > 1 then,

o
1<(s)] >m>0

5.1 The zeta function is analytic

The next theorems of convergent uniformly is that it preserves the complex function is
analyticity.

Theorem 5.4. [6] (p.g.169)
The series of the function {(s) converges for Re(s) > 1 and the Riemann zeta function is
analytic (homomorphic) in this half plane.

Proof. If s = o + it where g and t are real then
|n—sl — |e—slogn| - |e—alogneitlogn| — e—alogn =nc

As a consequence.
The series of the function zeta(s) is uniformly bounded ifa > 1 + § > 1 by X
then,
1 .
Y —75 Is converges.

1
nite

Therefore, the series of Riemann zeta function Z% converges uniformly on every half-plane
Re(s) >1+6>1

Then,

{(s) is analytic (homomaorphic) function in Re(s) > 1.

Theorem 5.5. [1]

The function {(s) is homomorphic ( analytic ) every where except a simple pole at s = 1 with
residue 1.
Theorem 5.6. [20] (p.g-173)
assumes that S < C is open and we have F is function from s goes to complex number and
sequence of functions Fy from S tend to C converge to F uniformly on S if the sequence of
functions Fy is analytic then F is analytic.

5.2 Continuation of {(x)
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Analytic continuation is a very important idea from complex analysis. We shall extend {(s) to
the half-plane Re(s) > 0. Given that the function g is a convergent power series on D is the
disk of positive radius, and the analytic function is defined as any domain containing D work
with g on D is called continuation of g.

Corollary 5.7. [6] (corollary 2.6)
for Re(s) > 0 we have
1 0o
() == ()
where in the half-plane Re(s) > 0 the series ).;_; 6,(s) is homomorphic (analytic).

We will now present the useful proposition before prove the corollary.

Proposition 5.8. [6] (proposition 2.5)
The sequence of entire function {dn(s)},~, that satisfy the estimate
16,(s)] < Is| / no**

1 N dx
SRR
1=n<N 1 1=n<N

whenever N is an integer greater than 1
to prove the proposition, we compare

Z n=S with Z f xS dx

where s = o + it, such that

1<n<N 1sn<N ~ ™
And set
n+1 1 1
6,1(5) = Jn [E_F dx
from the mean-value theorem we apply to f(x) = x=° we get
1 1 S
5 T s < nul whenever x € [n,n + 1]
then
5 ~ sl
182()] < —57
Then,
N dx 3 Z JTH'I dx
s s
1 X 1sn<N T x

we will now prove the corollary, we assume that Re(s) > 1. From the proposition we let N
tend to infinity and we see by the estimate |5,,(s)| < |s|/n°*?.
we have ); &,,(s) is uniform converges in any half plane Re(s) > 0.

since the Z% converges to {(s) if Re(s) > 1.
then, Y. 6,,(s) is analytic when Re(s) > 0.
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then {(s) is analytic continuation.

Lemma 5.9. [14] (lemma 2)
For Re(s) greater than 0 and N > 1 we have

N
1 NS 1 “ p(u)
{(S)=Z$+ —EN_S-l-SfN us+1du

s—1

1 n=1
Where p(u) = >—{u}
Proof. let0 < N < M be integer numbers. Then we have

[ele] N (o)
1 1 1
(=) 5= wt D w
n=1 n=1

N n=N+1
1 . 1
= Z s + 1\}11330 Z s (5.1)
n=1 N+%<nSM+%

we will apply the the Euler-Maclaurin sum formula (remark 4.16) for second sum in (5.1)
where p(u) = %— {fu} and {u} =u—[u] thus p(uw) = %— u— [u]
we obtain

00 1 1
1 M+31 M+3 p(w)
Z —S=f —Sdu+sj T au (5.2)
1 n N+% u N+% u

N+7<7’LSM+E

where p(M + 2) =2 = (M + ) + [M + -] =-—-M -~ + M =0
~— (N +) + [N +] = 0 Now, we solve this integral

also, p(N + %) =

M3 1 Mz N A | I
T YRR U R (A% e
fN% w T TS Nel I1-s t3 1-s\' T3 (3:5)
then we solve the second integral
"2 p(u) N ) "2 p(u)
sf S+1du=sf S+1du+sf 77 au (5.4)
1y iU N U
then
1 1
M+2p(w) N 5—u+[u]
s ) us+1du=s 1Tdu
= N+§
1
j‘N 7+N—ud
= u
N+% uS+1
N %+N Ny
:Sf 1 s+1 du_sf+1us+1d
2 2



N

1 u=sY ut=s N%
=s(z+N)[=] L +s
y (2 =Syl [1 - sl

) )

S P ) | ER N (1+N)1 .
2 2 2 1—-5s\2 1-s

1 A | N*% 1
=s<—+N>f du+sf —du
2 N+%us+1 us

= 1NS N15+<1+N>1_S+ > <1+N>1_S Y VERE
_1+% 1 1 2 1 1—5 2 1_S
S S— S—
where T :+:——1+E
then
v Gan) (e ) (WD) - ()
2 2 1-s 2 1-s/
=S =S =S
=—1N‘S— Nl‘S—N1‘5+<l+N) —<N+1) + ! <N+1) + NS
2 1-s 2 2 1-s 2
S Y L VS (N+1)H 5.5
2 1—s 1-s 2 -3)
from equations (5.2) , (5.3), (5.4), (5.5) we get
2001 112

N+—<n<M+— ns

() () T s v e (48

—=S

1
1 1 1 1\1S M+3 o(u
:__N_S_ Nl—S_I_ (M+_) +Sf p( )du
N

2 s—1 1-—s 2 ust+i

thus

o M+1 1

1 1 1 1 M+3 p(u)
— = | — = ——_ NS — 1-s
Z 5 A}Il_r:rgo oy 2N s—1N +SfN us+1du
n=N+1 . n=N+1
thus , from (5.1) we obtain
_ + (u)
{s) = TNy — N~ — =N 45 [ 22 du

the last integral is analytic function in the half plane Re(s) greater than 0. This lemma now
follows by analytic continuation.

Theorem 5.10. [13]

The {(s) has analytic continuation to {s € C |Re(s) > 0} with a simple pole at s equal 1
with residue 1.

5.3 Functional equation of the {(s)
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Functional equation of the Riemann zeta function is one of the main goals of this dissertation.
We will now present two proof of the functional equation by using some of the preliminaries.

Theorem 5.11. [1] (p.g.61) and [8]
The {(s) satisfies the functional equation

T ZF( )((s) —n_lz SF( )C(l—s)

Proof. Riemann started from the deflnltlon of gamma function
I'(s) = f tSle~tdt (5.6)
0

we will replace s — % in (5.6)

r (%) = foot%‘le‘fdt
0

valid fora > 0. Wesub: t = mn2x and dt = mn2dx
s *© s
e 2.\5—1_—-mn?x....2
F(z) —j; (mn°x)2 “e nmn“dx

[0/0)
12 1
=j 71'2 (2 )2 le T Xn2dx
0

then we get

then we add summation

> S sy 1 > s
Zn_fr‘(z>—5: Zf x2 o™X 4y
=1 n n=1 0
ner (3 )zn == [T EE e d (5.7)
we will use the definition Riemann zeta function {(s) = Z;’l":l%
T ZF( )Z(s) —f X lyo e ™% gy (5.8)

fora > 1, the inversion of order belng justified by the convergence of

Z J ——1 —nznxdx

from the definition of the gamma functlon
writing

009 = Ynez e ™ = 1425 €™ = 14 24(x)
then

18



P(x) = 32, e~ (5.9)
we putting (5.9) in (5.8) then

o (o]

S N
f x27t z e~y = f x2 M P(x)dx
0 0

n=1

Then from (5.8)

i (3)ee = |

0
plainly 8(x) = 1 + 2i(x)
we will use expression of the 6 theta function

6(x) =%6(§) forx > 1

20(x) +1 = %[zq; (%) + 1]
=10 =2 () +3] -

we will prove this equation is special case of these satisfied by the Jacobi theta function
1

0o =20 ()t 3 (5.11)
we apply (5.11) in (5.10)

J: x%_1 Y(x)dx = 1x%_1 [\/i;lll(j) %—%] dx

1(' s3 s,
:>f x2 21.|J dx+2f (x2 2 —x2 )dx
0

1

oo [ee]

1 S
x2_1¢(x)dx=f x2_11|1(x)dx+f x2  P(x)dx
0

1

or

1/ 1 s1 1 s
=>j x2 21|J dx+§i 1x2 Z—Exz
2 2 2 1,
f 2 2 )d + -
=
xz 2y * s(s—1)
we shall replace x = % anddx = — ; du and change the boundary the integral from
b to I§
s_3
_f°°<1)2 2 ( )'—du' N 1
)\ wu_uz_ s(s—1)

we will replace u by x
3
2

“ 1 73 [—dx] 1
=J1 (Z) Lp(u)_x2 ] +s(s—1)

folxg_llll(X)dx= f1°°x 2 () dx +

then

(S - (5.12)

19



we dividing the integral
Jy 2 @dx = [ 22 p()dx + fol xz t(x)dx (5.13)
we putting (5.12) in (5.13)
o S_ o S_ 1 2
fo xz Y(x)dx = fl X2 1L|J(X)dx+f0 X 2 Lp(x)dx+
fooxg_l x)dx = foo [xg_l + x_g_E]Lp
from (5.7) = zr( JIOETS X L) dx
we apply (5.14) in (5.7)
s s ®r s s 1
m 2 (— (s) =f [x7_1+x_7_5] PY(x)dx +

.j- [xz +x ’ ]w(X) s(sl— 1)

this holds for @« > 1. this integral on the right-hand side is absolutely convergent for « > 1 and
when we replace the right-hand side s by 1 — s is unchanged and this formula gives the analytic
continuation. Then we have

( -1
(5.14)

(5—1)

1
s(s—=1)

1_

s ZF( ){(s) —n_TsF<¥>{(1—s)

Theorem 5.12. [4]
For all s we have

(1 - s)= 2Q2m)5I'(s) cos( )((s)
equivalently,
{(s) = 22m)S~Ir(1 — s) sm( ) {1 —59)

Proof. We start of Legendre duplication for the gamma functlon this we can put the functional
equation is a simple form

2/x275r2s) = Ir'(s)r (s + %)
we replace s by >

we will looking

FEra-s= sinms

+1
we replace s by ===~ +

N |-



1 1-
P ()
now we will use the Riemann functional equation
1-s 1—
™ zr( )((s) ="z r( )((1—5)
multiply F( ) in both side
() (2)ew = w5 () (H)ca ) 519

now we shall use Legendre duplication in the left side and Euler reflection formula in right side
we obtain

F(S+1)F(1 s+1) T
2 2 sm(n25+n)

T ;F( ){(s) —n_%r‘(¥){(1—s)

r T rE0) = —d 1)
COS7
then
_ 2 s
{(1—-s)= 2y cos7F(S) {(s)
we replace 1 — s with s
2 7r(1 —5) i
{(s) = 2oy O Fr(1-=s){(1-ys)

then we obtain
{(s) = 25751 sin§r(1 —-s)¢{(1-5)

Corollary 5.13. [14] let
1
£s) = 556 = D20 (3) ()

is entire function and £(s) = &(1 - s).

6 - Generalization of The Riemann Zeta Function

There are diverse way in the Riemann Zeta Function can be generalized. This section will
present the generalization of Riemann Zeta Function to the Dirichlet L-Function. the Dirichlet L-
Function is function of complex variables, similar to the Riemann Zeta Function. Now we will
define the function is useful for character.

Definition 6.1. [12]
Let q be positive integer, an arithmetical function is called a Dirichlet character modulo m
such that:
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y(n) =0 if and only if (n, q) =1
x(nq) = x(n)x(q) foralln,q €N
x(n+q)=y(n) foralln eN
The special kind of character which is very important is the primitive character.

Definition 6.2. [1]
let x is primitive if y(n) the function restricted by the condition (n,q) = 1 and y(n) may
have a period less than g other wise we say that y is primitive.
The very important property is the character x,

Lemma 6.3. [1]
let y,the Dirichlet character such that
_(xa(m) if (n,q) =1
X(n)_{O if (n,q)>1
This character y, is primitive.

Definition 6.4. [13] (p. g.49)
Let k be the natural number and let y(n) be the character modulo k. The function L(s, y) is
called the Dirichlet L- Function or the Dirichlet L-Series and is defined by the Dirichlet series

L(s, z) = z x(rsl)

n

R(e) > 1

Theis series converges for every s € C with Re(s) > 1, the L(s, y) is analytic function in
half-plane Re(s) > 1.

The second way of defining the Dirichlet L- Function is through the Euler product for L(s, x).

Lemma 6.5. [14] (p. g-110)

L(s,x) = T (1-£2

m )_1 ,for Re(s) > 1 (6.1)

Proof. For X > 1 we define the function

-1
®(s,X) = 1_[ <1 - X;?) (6.2)

psx

since Re(s) greater than 1 we have

<1_x(p)> _ @ x(@?)

5 +

ps pZS

we can using the multiplicatively of y(n) and into the prime factor and we using the unique
decomposition of a natural number in to the prime factors. we get

2 (e 0]
qD(S,X):H{l J%#((p )+"'}=z)%+R(S,X) (6.3)

pZS

PsX nsx
Furthermore, R(s, X) is summation over those natural number n > X whose prime divisors all
< X. Now for this summation we give a upper bounded
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1 ®du 1
IR(s,X)| < R(s,X) = ZF<I = x1-9

X u  o—1
n>X
where ¢ = Re(s) greater than 1, passing to the limit in (6.3) as X goes to +co this complete the
proof.

From (6.2) we get
1 x(p) > 1 “du 1
= 1 <y —<1 —=1 ,
‘L(s,){)’ |1—[< * pS _Zn"< +_]; u? +a—1
D n—1
-1

L 52
s, x) .

for for Re(s) > 1 let L(s, x) does not equal 0 then if the character y modulo k , then the
Dirichlet L- Function differs from {(s) by only a simple factor.

Lemma 6.6. [14]
If x(n) = xy0(n)is the principal character modulo k.Then,

L(s, xo) = {(s) 1_[ (1 —%) ,Re(s) > 1

P\X

Lemma 6.7. [14] (p.g.112)
For Re(s) > 1, let y; be primitive character modulo g, and y be the imprimitive character
modulo g,. When y; is primitive character corresponding to y.

L(s,20 = L(s,x2) = Typ\gpwa, (1 —222)
Proof. By the Euler’s for L(s, ). we present

L = [a-x@w

and

L) =] [a-uep

p
fors € C with Re(s) > 1 and product of L(s, x) and L(s, ;) are convergent. noting that for
each prime let

{){1 (p) = x(p) ifp is aprime not dividing q
x(p) = 0 ifpisaprime dividing q
hence,

L) =] [a-uer

p
- [a-n@wp

ptq

= | [a-new] [a-xnewpo

ptq rlq
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from definition of L(s, y) by Euler’s product.
we obtain

L) =160 = | [a-n@p
pla

6.1 Continuation of L(s, x)

We will introduce the important property of the Dirichlet L-Function in terms of analytic
continuation to Re(s) > 0. Note that the next theorems and remark are thaken from Steuding
[15] ,Davenport [1] and Forster [13] .

Theorem 6.8.
let ¥ be a Dirichlet character modulo q and L(s, y) is Dirichlet L-function such that if y # x,

. — . x(m) .
where y is the principle character modulo g the serlesz? ns converge in ¢ > 0. The
function L(s, y) is analytic in half plane ¢ > 0.

Theorem 6.9. let y a character mod q with y # y, and let g be positive integer greater than or
equal 2. Then, the Dirichlet L-Function has an analytic continues to C.

Theorem 6.10. let y is principle character and y = y,, then

Lo =| [ |12 ) @

p|m
hence L(s, xo) is analytic continues with a single pole at s = 1. Then L(s, y,) can be analytically
continue to the whole plane C.

Remark 6.11. We present in Lemma (6.7) the relation between the imprimitive character y and
the primitive character y;. By using the Euler’s product, we can see that the lemma implies a
simple relation between the corresponding Dirichlet L-Functions. Then,

L =160 | [a-ump
plq
is analytic continuation for Re(s) > 0.

Lemma 6.12. [14] (p.g. 112)
For Re(s) >0, when y = y; , let S(x) = X<, x(n) . we have

L(s,x) = SJ S(x)x"tdx
1
Proof.Let N > 1and Re(s) > 1, Now applying lemma (partial summation) where C(x) =

Y1<nex x(n) thisis C(x) =Sx) , ¢, = y(n). Let f(x) = % which is continuous and
differentiable on [1, N]. Then,

Zx()—=—f (Z x())

1<nsN 1<nsN
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N 1 1
=sf1 S(x)xs+1dx+C(N)m

= ' S D+1 ! d C(N !
=5 | (560 1)+ 1)y + COD

N 1 N1 1
:sf1 (S(x)—l)xs+1dx+sf1 xS+1dx+C(N)F

= [ e+ 5[ 2] vy
=5 ) c(x)xSJer xX+s S %5, ()NS

N -1 1
= sfl c(x)x™ 5 tdx + N +1+ C(N)F

N
1
= sf c()x 5 ldx+1+ (C(N) — l)m
1
Thus

N
1
= =1+ sfl c(x)x~S71dx + C(N)F

n=1
Now when N — oo we get

n

L(s,x) = Z X(?) =s jooS(x)x‘ldx
n=1 1

Since

S(x) < o(x)
Therefore, the integral above converges in the half plane Re(s) > 0. then define there an
analytic function.

6.2 The Functional equation of the Dirichlet L-Function

In 1882, Hawritz presented the first functional equation for the Dirichlet L-Function. Before
introducing the functional equation of L(s, ), we must to present the Gauss sums.

Gauss Sums

let y be Dirichlet character modulo g. To prove the functional equation for L(s, y) we need to
expressn — y(n) as linear combination of imaginary exponentialsn — e (%) for m mod q.

Definition 6.13.
For any Dirichlet character modulo g , The Gaussian sum t () is defined by

(0 = zq:x(m)e(%)
m=1

If (n,q) = 1 then let the inverse of nis n~!
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x0T (D) = x(n) Z )((m)e( )

e
- mi;z(h) e (hq—”)

Lemma 6.14. The primitive Dirichlet character y modulo q.For every
n €Z/qZ we have
7(h) (h”) 0
el— | =
X q

h€eZ/qL

Then we have

Then we have
xrm= Y z<h)e(’;—") o

heZ/qZ
Lemma 6.15. let the primitive Dirichlet character y modulo g then

1
IT GOl = q2
Theorem 6.16. let y be a primitive character modulo ¢ > 3. Then the L(s, x) has analytic
continuation to an entire function. let

{a=0 if x(-1) =1
a=1 if x(=1) = -1
The Dirichet L-function satisfies the following the functional equation
SRR X. S
- S, = S,
= Te0 X
when
1
T —7(s+a) 1
0=(7) " (36 + ) Lew

The function &(s, ) is entire.

Proof. suppose that y(—1) = 1. we start in the gamma function

r(s) = [t etdt (6.4)
we replace s to % in (6.4)
then we get
() Iy t271 et dt
substituting ¢ = - dt = qmn? dx
() f £t et dt

2

2 -1 mnex
= f (nn x) e 4 qmn®dx
0 q
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then we get

we multiply }; y(n) in both side
o 2q2 F( ) X(n) ZJ- xZS le™ 74 )((n)dx

Z)((n)f x2 le_ T dx
:f 25 1(2){(n)e )dx

let first assume y(—1) = 1then we have y(—n) = nforalln € Z, y(0) =

formula
R A D =
T 2q2 F(z) L(s,x0) _E-[o x27 " P(x,x)dx
where,
- _mn’x
b0 = ) xme (x> 0)
n=-—oco

0 we write last

(6.5)

A symmetry relation between y(x, x) and ¥ (x~1, ¥) can be deduced form Lemma (6.14)

hn
x(mT () = J(h)e|(—
2, W)
and Theorem

[0e] (0]

1
Z —(n+a)2 X = x2 § e—nznx+2m'a

n=—oo n=-—oo

with x replaced by x;from lemma (6.14) we have

T (D) Y, x) = z (Z X(m)e( )) -n*ng

n=-oo \m
1 nznx 2mmn
- Y
m=1 n=-—oo

then by theorem (6.15)
1

_ i Z(m) (g)i i e—(n+%)2nq/x

m=1 n=—oo

oo

)%iz(wo Doe g

=1 n=—oo

R 19

let ] = nq + m then
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% i i w(x‘l,;?)

m=1 n=—oo

T (D Yo, x) = (g)z YL p) (66)
Now, we will spilt the integral (6.5)

£Gsx) = P (s )L(sx)—%fl

[ee]

1 1
X2 P(x, 0 dx + 2 f x 2 () dx
1

from (6.5) we get

L e S [ g 67)

this clear there are present an everywhere analytic function of s . Also, this expression gives the
analytic continuation of L(s, y) over the whole pane. we observe that that L(s, y) is entire

. . 1 .
function since F(E s) IS never 0.

Now we will replace s by 1 — s and y by y in above formula we obtain:

§(1—s,x)=

B 1(° 2.1
) w(x,x)dx+5 f X272 (x, 7)dx 68)
1

from last formula is equal to (6.7) multiplied by smce t(x) 7(x) = q this relation is
consequence of Lemma (6.14) and y(— 1) 1 smce |mpI|es that

T = Zx(m)e() ZX()e( =) = ZX( m) e(—7) =700

hence, we have obtalned the functlonal equatlon

1

E(1-5,7) == % £(5)

we have proved in the case y(—1) = 1 we next prove the case y(—1) = —1 the previous
argument fails. since the ¥ (x, x) simply vanishes. Now we change the procedure by replacing s
with s + 1 in the gamma function

S\ ® s _
F(E)_fo tz e tdt
1 @ s 1
F(—(s+1)>:f t2 ze bt dt
2 0

dt = gqmn?dx

1 o T[nzx %_% _T[nzx
r (E (s + 1)) = f < 7 > e 4 qmn®dx
0

© s_ 1 _nex
=f (tn?xq™1)? 2e " 4 gqmndx
0

2
wesubt = 2%
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m2 zn® n"lxzzq 2'2e 4 qmn®dx

_ f°° s, sl sl gk
i 0
then we obtain

1.1 1 ® s 1 2X
7~ (G5+3) g2 n—sr( (s + 1)) =f nx22 e ™ q dx
0
In the same way as before, when ¢ > 1.

we add sum }; x(n)

it YD (s )= [T (Y nawe ™)

n=1 n=1
then,
ﬂ_(%s"'%)q(%-%) Z:lelrsl) F(% (s+ 1)) :fo x%_% (Z:lnx(n)e_nnz%> dx
then,
_(1S+1) (£+1) 1 1% s.1
m \272/q\272) L(s, )T E(S+1) =5f xz 21, (x,x) dx (6.9)
0

_mn2%.
where . (x, x) = 3% nx(n)e " ¢  whenx > 0

to prove a symmetry relation for y (x, x) we use the differentiated of the theorem (6.13) with
respect to & and written y in place of x

o

_Z_TIZ(TL + a)e—(n+a)2§ 4 Zy%ﬂ,'i Z ne—nzﬂy+2n’ina
y

n=-—oo
. X m .
we are settingy = m and a = 7 we obtain

2(2)2‘[1’ Z ne_nzﬂ(q)+2mn 27‘[— Z <n+ ) )Zq

then oY R
[e9) q oo
Z ne_nz’%””m% = —_anf z (n + E) e_("+%)2"%
.~ xX\Z_. = q
n 2 (5) i
2
_ qq2 n+=) 7l
= —;x—zl Yn=—oo <n+ ) ()
3 2
i o (n+ ) ()
2
we obtain ¥
. -n?ri+2minc . (q ; oo m —7r(n+m)Zg
Y _ne q ¢ = —i (;) ) (n + ;) e a’/ x (6.10)

now using this we can now carry out a computation similar as before we have
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T W, (0 = Z 7 Z g

n=—oo
from (6.9)
§ q © m m\2q
Y Do 3 e
m=1 n=-—oo CI
1 3 1 i m)?2
m=1 n=-—oo
q
1.3 2
=iq2x "2 Z (D) e ™ /ax
m=1
then we have
_ .13 1
() Y1 (e 0) = igzx 2 Y (7, %) (6.11)

now we will use symmetry relation in (6 9) we get

£(s,x) = n~ 2D Gal+D F( (s + 1)) L(s,x)

we will use (6.11)
1

1[(” s_1 1
:EJ(; xZ 2, (x, x) dx+2 ()l/J(x LY)x 2dx

this gives the analytic continuation of &(x, x) and L(s, y) to entire function. Now if we replace
x by y and s by s — 1 in above formula furthermore, using the fact when y(—-1) = -1

sincet(y) t(x) = —q.
The proof is exactly as for t(y) t(y) = —gq that we have y(—m) = —y(m) we get

§(1-sx) = ﬁf(s)()

now we proved é(1 —s,y) = %E(s,)() in the case y(1) = —
Note all the informatin in this section from [1] Davenport.

7 Zeros of the Riemann zeta function

As seen in the section related to the Riemann zeta function and the Euler’s state for
Re(s) > 1the {(s) can be defined as an {(s) = le_#p_s and we see that {(s) does not vanish

when Re(s) > 1.
In terms of obtaining the information about the location of zeros of the {(s), we see from the

functional equation (Theorem 5.11) of {(s) that
1-

T ZF( ){(s)—ﬂ TSF(¥)((1—S)
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therefore,

213005

S
r(3)
let for Re(s) < 0 we observe that:
M e isequal zeroats = —2,—4,—6,....
2
(i)  the {(s)isnotequal tozeroats = 0
iy T G) has no zeros.
*— cancels the pole of {(1 — s) these are called the trivial zeros. Also, the

T
{(s) =

since the zero of 5
2
{(s)in0 < Re(s) < 1 has infinitely many non trivial zeros is called critical strip and the real
part of every zero of {(s) is equal 1;

Theorem 7.1. the {(s) has infinite number of zeros in the critical strip

The above-mentioned information we take from Karatsuba [14], Stein [6] and Bateman [23].
Following this, the next theorems and lemmas in this section are taken from Stein [6].

Theorem 7.2. the only zeros of the Riemann zeta function are at negative even integers
—2,—4,—6,....if the zeros are outside the strip 0 < Re(s) < 1.

Theorem 7.3. {(s) has no zeros on the line Re(s) = 1

Note: from Theorem (7.3) we can observe the following: we know that the Riemann zeta
function has a pole at s = 1 and there are no zeros in the neighbourhood of the points = 1.
However, we want is the deeper property that {(1 + it) # 0, tE€R.

Before proofing the theorem (7.3) we need present certain properties:

Lemma 7.4. let
10g {(s) = Spm— =Xiican™ €y 20

where Re(s) > 1

Lemma 7.5. Let

34+ 4cosB +cos?20 =0, 0 R
from the simple observation this follow

3+4cos8+cos20 =2(1 + cos 6)?

Corollary 7.6. [6]
let
log|{3(c) {*(c + it) {(o + 2it)| = 0
where o > 1 and t is real.
Proof.lets = o + it and we have
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Re(n™s) = Re(e~(@tilogn) = ¢=0logn co5(¢ logn) = n~? cos(t logn)
therefore, we see
log|{3(o) (*(c + it) {(o + 2it)|
which gives,
= 3log|{(o)| + 4log|{ (o + it)| + log|{(c + 2it)|
Now,
= 3Re[log{(o)]d + 4Re[log {(c + it)] + Re[log {(c + 2it)]
from the lemma (7.5) we have

z cyn™? (344 cos 0, + cos 26,,)

where 6,, = tlogn The positively follows from lemma (7.5) and we see that ¢,, = 0. Now we
can finish the proof of our theorem, which comes we take the proof from [6] (p.g. 187)
In proving the theorem (7.3)
we assume that {(1 + it,) = 0forsomet, # 0 since the Riemann zeta function is analytic
at 1 + it, it should vanish at least to order 1 at this point.
hence, for some constant C > 0 let
|{(o + it0)|* < C(oc — 1)* aso —> 1
In addition,
we know that s = 1 is simple pole for the Riemann zeta function, for some constant ¢’ > 0
we have
[C(@)]® < C'(c — 1)73 asoc - 1
lastly, since the Riemann zeta function is analytic at the points o + 2it, , for o goes to 1 then
the quantity |(o + 2it,)| remains bounded. Now we will put these facts together.
we obtain
|C3(0) ¢* (0 + it) {(o + 2it)| >0 as o - 1
Now, from the corollary (7.6) we observe the logarithm of real numbers between 0 and 1 is
negative. Hence,
The {(s) has no zero on the real line Re(s) = 1

Theorem 7.7. [4] (theorem 3) If p,, are the non trivial zeros of the Riemann zeta function and
B, is an absolute constant. Then we have

et L) h )

n=1 n=1

Corollary 7.8. [4] (corollary 2) The zeros of {(s) in the critical strip are distributed
symmetrically with respect to the lines Re(s) = % and Im(s) = 0.

Theorem 7.9. [4] (theorem 4)
We have

- 1

<clogT
Zl+(T—yn)2 =08
n=

whereifp, =B, + iy, n = 1,2,3...... be non trivial zeros of the Riemann zeta function
andif T > 2.

Remark 7.10. [4]
From the functional equation (Theorem 5.12)
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{(s) = 255~ 1sm( ) I'(1—s){(1—5s)
taking s = -2k
then
{(=2k) = 272k g=2k"1sinw(—k) T(1 + 2k) {(1 + 2k)
from I'(1 + 2k) = 2k! we have

= —272k2k1r 2 " 1sinmk ((1+2k) =0
then {(—=2k) = 0 for k =1,2,3....is called trivial zero of {(s).
the same in

{((1—-s)=22n)5T(s) cos( ) {(s)

we takings = 2k + 1where k = 1,2,3.....then the factor cos( ) Is vanishing and we
obtained {(—2n) = 0 is called trivial zero of the Riemann zeta function.

7.1 The infinite products for &(s) and (s, )
7.1.1 The infinite products for £(s)

We have defined
£(s) = —s(s - D2 (5)¢e

this function is an entire function Whlch satisfies £(1 — s) = &(s) and the zeros of entire
function is located in the open critical strip, {0 < o < 1}, indeed these zeros are placed
symmetrically with respect to the real axis and with respect to the central line o = % .

We shall apply the Weierstrass factorization theorem to ¢ (s). Following this, we can determine
the order of (). In this section, the theorems and propositions are taken from [1]

Proposition 7.11. When |s] is large let |£(s)| < eClsIt°dlsl for some constant C > 0
furthermore, there exists no any choice of C; > 0 such that,

E(s)|0(e 1) as |s| - oo
then |&(s)| has order 1

The next sequence of theorems, lemma and proposition gathers necessary ingredients for
proposition (7.11)
Theorem 7.12. The Weierstrass factorization theorem: let f(z) be an entire function with
f(0) # 0and f has finite order p > 0 and let all zeros of f is z;,z,........
then, there is a polynomial g(z) of degree < p such that

1/2z\2 1/z\k
_ 9@ _Z z _(_) _(_)
f@) =e 1_[ {(1 )exp (zn * 2\z, ot k\z,
if k € Zsatisfying0 <k < p and Y1z, 7% < oo there exist at least one such k.

Lemma 7.13. let
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r'iz 1 i ( 1 1)

rz) V=3 4\ Z +n n
n=

where the sum is absolutely convergent for every z € C\0,—1, —2.....

Theorem 7.14. (Stirling’s formula)
We have

1
logl'(z) = (z —;) logz—z+logV2r +0(|z|™), €>0

forall zwith |z| = 1 and |arg z| < © — €.

Proposition 7.15. If 0 < § < 1

we have

|{(s)| < logt , Vo=>1,t=>2
and

|C'(s)| « (logt)? , Vo=1,t=2
and

()| Kott™@ , Ve=6,t>1

Now we will proof proposition (7.11) since by the functional equation £(1 — s) = &(s)
it suffices to prove

|E(s)| < eClsllogls] when o = R(s) > 1

clearly,
1
|1;s(s - DHm72°

by the Stirling’s formula theorem which is applicable since

eCls| when |s| is large

1 < (1 ) < 1 b f > 1 >0
- - 27‘[ arg > S 27T ecause o o = >
this gives
3 Cz]s|log|s| i
|F (2 s)|< e when |s| is large

1
Lastly, by the proposition (7.15) we see that {(s) « |t|z forall s with o > % and the Riemann

zeta function is bounded in the half plane {o¢ > 2}, since |{(s)| < Y% ,n"? whemo > % and
|s| is large , hence

19(s)| < el
Now, [{(s)] < eClslteglsl follow by multiplying our three bounds.
Now to prove that |£(x)| 0(e1s1) cannot holds as |s| goes to oo it suffices to look real s tending
to oo by Stirling’s formula we have {(s) — 1 for such s while log I'(s) s log s

Corollary 7.16. [19] The Riemann zeta function has infinity many zero where 0 < Re(s) <1
Proof. The zero of the Riemann zeta function in the stated region are exactly those of &(s) then
the &(s) would be polynomial and has order zero. If there were finitely zeros. which is not the
case. The next corollary are taken from [1] (p. g. 80) and [14] (p. 9. 57).

Corollary 7.17. we have the formula
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S
§(s) = e™PIIY (1 - %) er A, B are constant (7.1

if £(s) has infinitely of zeros p;, py,......... such that 0 < Re(s) < 1 these have ; |pn|~17¢€
converges forany € > 0 and Y, |pn|~! diverges. the zeros of () are the nontrivial zeros of the
Riemann zeta function {(s)

Proof . the zeros of entire function are the non-trivial zeros of the Riemann zeta function for in

é(s) = % s(s —1)n=2r Gs) (s) (7.2)
the trivial zeros of {(s) are cancelled by simple poles of I (%) and %sF (% s) has no zeros and the

zero (s — 1) is cancelled by the pole of the Riemann zeta function {(s). Hence, the Riemann
zeta function has infinitely of non-trivial zero p in 0 < p < 1 the critical strip. the product

formula
= s\ S
s) = eAtE (1 ——> ep
£(s) 1:[ ;

leads to an expression of % as sum of partial fractions and logarithmic differentiation of (7.1)
we get

YO _pyy, (=+2) (7.3)

§(s) -p p

now we write (7.2) in the form
-1

U(s) = (%s)_l (s — 1! nfls r (%s)_l gs)=(s — D nfls r (%s + 1) £(s) (7.4)

we take log logarithmic derivative of (7.4) we get

76 _ 1 _lr(ls+1) )
is)  s-1 *3 lOgT[ 2 F(—s+1) &(s)
then we will combine the last formula with (7.3) we obtain
0® _ gt 1o 1) !
(o - BTtalesm™—; r(Es+1) ZP( P +2) (7.5)

the formula show the pole of {(s) at s = 1 and the non-trivial zeros at s = p . The trivial zeros
at s = —2,—4....are include in the gamma term.

sine, by the Weierstrass formula
1 s s
= Vs “Jen
sT'(s) ¢ 1_[(1+n)e "

1 r (—S+1) 1

)=5y+$+2;°=1( ———) (7.6)

we have

2 p( s+2+2n 2n
1 . 1 1
) _Ey+2n=1(s+2n_5)
the representation of £6) i (7.5) will be essential for much of the later work on the Riemann

zeta function.
The A and B is constant and it not very important can be evaluated. by the formula (7.2) notice
that

35



E(l)—hms(s—l)n ZF( )Z(s)

therefore, £(0) = % and e4 = % by (7.1) to evaluate B we have
_¥O _
£(0) £(1)
from the funcunal equation {(s) = &(s — 1) and (7.3) and by (7.2) we have
{© _T® 1 1 1'(5s+1)
§s)  4(s) LIl r(3s+1) (7.7)
now, we have from (7.6) and the series for log 2 that
1r'(3) 1 1) 1
it~ 37~ S (T ) S L vlog? (7:8)
since,
(00} _1 n
Z ( = —log2

we combined (7.8) in (7.7) this gives "

g6 U 1 1 1
&s)  Us) +s_1_§l°g”—§)/+1—log2
thus
L COTE S S (O NN
B=- ) =5v- 1+ log47t hm e S—ll

Now, we calculate the limit

1) = Si—l _s J (G — [xDx—s"1 dx
1

then {(s) = ;—1 — s 1(s) where I(s) = floo(x — [xDx~5tdx

where [x] is integral part

then

3 4

X
21 1 1 2 1 3
YL P A PR S A P
1 X x 2 \X X 3 \X X
3 41 21 31 41
dx+J —dx+J —dx f—dx+2j —dx+3j —de.....
2 X 3 3 X
[ n+1d.X
= lim J —dx—z J
N—->oo
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Now,

I(1) = f " = [x])x2dx

l N+§: C ! )
8 nn n+1

n=1
so that
. (C(s) } _
Eﬂ{qg =11
then
y 1
B :§_1+§ logdnr — (1 - (1—y))
_Y 1+ 10ga
hence,
B=—Y_1+110g4
= > ) Og T

for B we can give different interpretation. Although, Y. |p|~! is diverges series. Y. p~1 is
converges series, as long as one groups together the terms from p and p.
Furthermore, if p = 8 + iy then

1+1_ 1 N 1
p p pt+iy B+iy
B+iy+B+iy 2B L2

B2 +y? By T el

we know that the series Y, |p|~2 converges.
It follows from the functional equation for {(s) = &(1 — s) and from (7.3) we obtain

1 1 1 1
B+E(—+—)=—B—E( +—>
1-s=p »p Ss=p P

p p

and the terms cancel the 1 — s — p and s — p.

since if the zeros is p thensois 1 — p thus B = — Zp% =-2 Zy>0# since

B =~ —0.023 from this can be seen |y| > 6 for all zeros.

7.1.2 The infinite products for (s, %)
Next we apply similar study to the Dirichlet L-function let y be primitive character to the
modulo g and we have defined
1 1
q\25t2% 1 1
&8s, x) = (;) r (ES + Ea) L(s,%)
wherea=0 if y(-1)=1
a=1if y-1)=-1
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and £ (s, y) is entire function the zeros of (s, x) are all situated in the critical strip {0 <o < 1}
and no zero at s = 0 or s = 1. these zeros coincide with non-trivial zeros of L(s, %)

we have
1

§(1 - sx)— E( X)

1

where |—=| is equal 1

()

Theorem 7.18. (s, y) is entire function has an infinity of zeros say p;, p....... such that
Y |p.|~17¢ converges for any £ > 0 but Y |p,|* diverges. furthermore, there exist constant
A = A(y), B = B(x) such that,

§(s,x) = e*Ps

cen b3t )

This section will take from [1].

8 Zero free region for the Riemann zeta function

The final part of this dissertation involves application of the Riemann zeta function. This
section will put forth the theorem of zero free region on {(s) and L(s, x). This section will prove
the zero free region on the Riemann zeta function, although the theorem of zero free region on
L(s, x) will not be proved here. The aforementioned proof is available in [1] ( p.g. 88). Note that
we take the information in this section from [1].

In 1896 Hadamard and de la Vallee Poussin proved that {(s) # 0 on ¢ = 1. This was the
fundamental step in proving the prime number theorem. This step remains vital in all
subsequence proofs until in 1948 when Selberg and Erdos discovered of elementary proof.

Foro > 1, we have

log ((S) C Zp 2%:1 m1 p—mo e~itmlogp (8.1)

If the Riemann zeta function had zero at 1 + it then from the right in formula (8.1)

Re log {(a + it) would tend to —oco as ¢ — 1. this indicate that the numbers cos(tm log p)
would be negative. Therefore, the numbers cos(2tm log p) we should expect it to be
predominantly positive and would contradict the fact that Re log {(o + 2it) keep bounded
aboveas o — 1.

Theorem 8.1. There exist a constant which is greater than zero such that {(s) has no zero in the
region

Cc
7= " gt + 2
Proof. From lemma (7.5) we have
3+4cos6+20=0 (8.2)
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the left side is equal 2(1 + cos6)?.
Now we apply to

Relog {(s) = Z Z m~1p™™9 cos(t log p™)
m=1
we replace t to 0, t, 2t in succession, its gives
3log (o) + 4Relog((c + it) + Relog{(oc + 2it) = 0
then we obtain
3(0) |C* (o +it) {(o + 2it)| = 1
therefore, we can make a sharper argumentation since we want to access the infinite product
formula for the Riemann zeta function. With this in mind, it is more convenient to work with
')
is)
equal 1 is clearly difficult. Since,

than with log {(s). This is because the analytic continuation of the latter to the left of o s

— ; A(n)n~°

Thus
4 S ®
—Re €6 = —ZA(n) n~? cos(tlogn)
s L
for o > 1. Hence using (8.2)

J' (o) ¢! (o+it) ' (o+2it)

[c( o) ] + 4[ € Uori ] & [_ (a+2it) ] = (8.3)
for o goes to 1 the behavior of — % from the right presents no difficulty. Since — % has
simple pole of {(s) at ¢ = 1 with residue 1.

We have
¢'(a)
- A
(@ o1

near ¢ = 1 the behavior of the other two functions is clearly significantly affected by any zero
that the Riemann zeta function may have just to the left of o is equal 1, at height near to t and
2t.

This effect is rendered clear by the formula from (7.5)

g _ 1 (75“) Z( 1 1)

= - B - —logn -=

((s) s-—1 2 (i)
r(zs+1)

Here the Gamma I" term is bounded by A log tif t = 2 and 1

Therefore, in this region

RS < atog - Y re (1)
—nRe og — e -
¢(s) g ~ s—p P
ifwewritep=pF+iy (0 < f<1),y€eR then

1 o—p 1 B

we obtain when s = g + 2it
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B (' (o + 2it)

¢ (o + 2it)
As regard s = o + 2it if we choose t to coincide with the imaginary part y of a zero 8 + iy with
y= 2

from the sum now we take the one term ﬁ which corresponds to the zero

< Alogt

(’(a+it)<Al . 1
¢ (o +it) Bt T o= B
now we are replacing our upper bounds in (8.3).
we get
4

3
A
0—,8<0—1+ logt

now we are takingo =1+ & log t where § > 0

then
4 3 al
P
logt 3 logt
é 4
logt 63 +Alogt
1+_logt_1
46
<1+

logt (3+A46)logt
we make the choice §, in the order to obtain positive numinator the last expression in the last
expression. These yields
C
B<1+ logt
thus, we have proved that there exists a positive numerical constant c such that the Riemann zeta
function does not have any zero in the region

c=>1

— — ,t=>2
logt

Finally, the Riemann zeta function has no zero arbitrarily near ¢ = 1 with |t]| < 2.

As such we can say there exists ¢ greater than zero meaning that {(s) does not have any zero
in the region
c

=1- log(|t] + 2)
8.1 Zero Free Regions for L(s, %)
Theorem 8.2. [1] (p.g.93)

There exist a absolute constant ¢ > 0 such that if y is complex character modulo q.
Then L(s, x) does not has any zero in the region
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c
logqlt|
c

_ N
osa if |t <1
If x is real non principal character, then L(s, y) has at most a single (simple) real zero.

if lt| =1
g =

9 Conclusion

The Riemann zeta function is one of the oldest functions in mathematics. It has a long history for
this function and there are many studies about this function. Over the duration of this dissertation
of concerning the Riemann zeta function, we have seen the significant aspect of the Riemann
zeta function, including its analytic continuation, functional equation and application. we will
now review the information presented. This dissertation has presented the historical background
of the Riemann zeta function. In addition, we proved some properties of the Riemann zeta
function such as:

1) Y,6,(5)=1q(s) — S_% is analytic where Re(s) > 0.
2) {(s) = gﬂ%#i_:—%N‘s +sf;°§§ff du is analytic where Re(s) >0 . Then, we

considered the functional equation of {(s). Firstly, we proved this equation depend on
the gamma and theta functions, and that the {(s) satisfies the functional equation

s /S i1-s /1 —s
T2 F(E) ((s)=m" 2 F(T) ((1-5)
Secondly, we proved that the two equations are equivalent by using Legendre duplication for the

gamma function such as
s
{(1—s) = 2(2m)~°T(s) cos (7) (s)
equivalently,
s
{(s) = 2(2m)*"'T(1 — s) sin (7) 7(1—s)
The Dirichlet L- function has been discussed and we have concluded that this can be analytically
continued, and the functional equation is obtained by using methods similar to the Riemann zeta
function. Moreover, the zero of {(s) has been considered, in particular the trivial zero and the
critical strip; we proved {(s) does not has zero when Re(s) > 1 and the application was then
presented.
Overall, it appears in this dissertation, there are many parts on the analytic continued of {(s)
which are still to be considered. Moreover, a number of important limitations need be considered
that the Riemann hypothesis.
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