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ABSTRACT 

In recent times, there have been increase in the rate at which researchers are searching for advanced ways of 

carrying out land-use land-cover (LULC) mapping, especially in developing countries. This explains why 

supervised machine learning algorithms have become dominant methods in geo-data science. Therefore, this 

study is aimed at identifying different types of supervised machine learning algorithms, and their performance in 

LULC classification. Four machine-learning algorithms, namely Random Forest (RF), Support Vector Machine 

(SVM), K-Nearest Neighbour (K-NN), and Gaussian Mixture Models (GMM) were examined. This study also 

attempted to validate the various models using the index-based validation method. Accuracy assessment was 

performed by using Kappa coefficient. The results of the LULC showed that RF classified 23% of the study 

area as bare land, SVM has 24% of the study area classified as bare land, K-NN also allotted 24% to bare 

land, while that of GMM classifier was 30%. The overall accuracy of RF, SVM, K-NN and GMM were 0.9840, 

0.9780, 0.9641 and 0.9421 respectively. The Kappa Coefficient of the various classifiers were RF (0.9695), 

SVM (0.9580), K-NN (0.9319) and GMM (0.8916). It showed that though all the algorithms performed relatively 

very well, but RF performed better than the other classifiers. Finally, this study revealed that the RF algorithm is 

the best machine-learning LULC classifier, when compared to others. It suffices to state that, there is need for 

further studies since other extraneous environmental variables may be underpinning these conclusions. 

Keywords: Supervised machine learning, Algorithm, Kappa Coefficient, classification  

 

1.INTRODUCTION 

Image classification defines phenomena in an 

image based on their spectral signatures, 

considered as a function wavelength. Mapping of 

land use land cover (LULC) dynamics has been 

identified as an integral part of a wide range of 

geospatial activities and applications [1]. Rapid and 

uncontrolled population growth with associated 

economic and industrial development, especially in 

developing countries with intensified LULC have 

become underpinning reasons for assessing 

changes in LULC [2,3]. Changes in LULC have a 

series of impacts on the environment in many ways 

such as increased flood, drought vulnerability, soil 

degradation, loss of ecosystem services, 

groundwater depletion, landslide hazards, soil 

erosion and others [4,5,6]. Over the years, 

researchers had deployed conventional and direct 

ways of mapping at various scales integrating 

spatial information with different levels of precision, 

which were laborious, time-consuming and 

expensive in mapping large areas [7]. 
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Conversely, the satellite-based and aerial 

photograph-based mapping of LULC has proven 

cost-effective, spatially extensive, multi-temporal, 

and time-saving [8]. With the advancement in 

remote-sensing (RS) techniques and microwave 

sensors, satellites now provide data at various 

spatial and temporal scales [9,10]. Satellite images 

also have the advantages of multi-temporal 

availability as well as large spatial coverage for the 

LULC mapping [11,12]. In recent times, the 

application of machine-learning algorithms on 

remotely-sensed imageries for LULC mapping has 

been attracting considerable attention [13,14].  

Therefore, researchers have been deploying 

various classification algorithms in the fields of 

Remote Sensing and Geographic Information 

System (GIS). They include parametric algorithms 

such as maximum likelihood [15], machine learning 

algorithms such as Random Forest RF)                                                                                                                    

Artificial Neural Networks (ANNs) and Support 

Vector  Machine (SVM) [16,17]. Machine-learning 

algorithms have been grouped into two categories; 

supervised and unsupervised techniques [18]. 

Examples of the supervised classification 

techniques include Spectral Angle Mapper (SAM), 

Support Vector Machine (SVM), Random Forest 

(RF), Mahalanobis Distance (MD), Fuzzy Adaptive 

Resonance Theory-Supervised Predictive Mapping 

(Fuzzy ARTMAP), Radial Basis Function (RBF), 

Naive Bayes (NB), Decision Tree (DT), K-Nearest 

Neighbour (K-NN), Gaussian Mixture Models 

(GMM), Multilayer Perception (MLP), Maximum 

likelihood classifier (MLC), and Fuzzy Logic 

[19,20].  

Conversely, the unsupervised classification 

techniques include Affinity Propagation (AP) 

Cluster Algorithm, Fuzzy C-Means algorithms, K-

Means algorithm, ISODATA (iterative self-

organizing data) etc. [21,14]. Thus, numerous 

studies on the LULC modelling have been carried 

out using different machine-learning algorithms 

[22,23,24] as well as comparing the machine-

learning algorithms [25,26,27,28].  

It must be stated emphatically, that there are other 

factors apart from the type of machine learning 

algorithm used for LULC classification, that can 

affect its accuracy. Several studies found that the 

LULC classification using medium- resolution and 

low-resolution satellites do have several spectral 

and spatial limitations that affect its accuracy 

[29,30]. Though numerous studies have been 

conducted on land-use classification using 

machine-learning algorithms [1,31] but not much 

has been done in the comparative analysis of the 

various models. This study is therefore aimed at 

utilizing four machine-learning techniques in order 

to enunciate which of them can produce a high-

precision LULC map based on accuracy statistics. 

 

2. MATERIALS AND METHODS 

Ileiloju/Okeigbo Local Government Area (study 

area) in Ondo state lies between Longitudes 6
o
 40’ 

and 7
o
 14’ N and Latitudes 4

o
 38’ E and 4

o
 53’ E 

[32]. It shares boundaries with Ondo town, Idanre 

and Ipetu Ijesha. In the study area, towns and 

villages such as Agunla, Akinsulure, Oloronba, 

Awopeju, Oloruntele, Bamkemo, Lisamikan and 

Ileoluji are notable. It covers a total area of about 

698 km
2 
with an average temperature of 26

o
C. The 

topography is inundated with hills such as the Ikeji 

and Otasun hills.  The average temperature is 

26
o
C with a relative humidity of about 66%. The 
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study area has rivers such as Oni, Okurughu and 

Awo rivers flowing across the local government 

area in terms of the drainage system. The 

economy of the study area is based on the 

cultivation of crops such as cassava, yam, and 

cash crops such as oil palm, cocoa, rubber, and 

kola nut (https://www.manpower.com.ng>lga). It 

must be stated that this study did not cover the 

entire local government area but mainly the 

northern part of the local government. This was 

premised on the fact that the focus of this study is 

on the performance of different machine learning 

classification algorithms and not on a land use land 

cover change detection analysis (Figure 1). 

 

Figure 1: Map of the study area. 

 

2.1. Materials 

The Landsat 8 Operational Land Imager (OLI) 

image of November 25th, 2021 (path/row 

190/055) was downloaded from the United 

States Geological Survey (USGS) website 

(https://earthexplorer.usgs.gov). The Google 

Earth image coupled with some ground 

control points (GCP) were was used for the 

accuracy assessment ofto assess the 

classified LULC maps accurately the classified 

LULC maps. 

 2.2. Pre-processing 

An atmospheric correction is a prerequisite for 

image pre-processing. In this study, the Dark 

Object Subtraction (DOS) Algorithm in QGIS 3.22 

using the (SCP plugin) was deployed for the image 

correction. Dark The dark object subtraction 

method operates by removing the effects of 

scattering from the image data. It is unique in the 
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sense thatbecause it derives the corrected DN 

(Digital Number) values majorly from the digital 

data without relying on outside information [33]. 

Dark-object subtraction (DOS) is one of the most 

widely used methods when it comes to reducing 

haze within an image. Most dark object subtraction 

technique assumes that there is a high probability 

that there are at least a few pixels within an image 

whichat least a few pixels within an image should 

be black (0% Reflectance) [33]. The (DOS) method 

assumes that within a satellite image, there exist 

features that have near-zero percent reflectance 

(i.e., water, dense forest, shadow), such that the 

signal recorded by the sensor from these features 

is solely a result of atmospheric scattering (path 

radiance), which must be removed [34,35]. This 

study, like similar researches [36],Like similar 

research [36], this study utilized seven 

atmospherically corrected L8 OLI/TIRS spectral 

bands (Table 1). 

Table 1. Landsat 8 OLI bands 

Bands Wavelength (micrometers) 

Band 1 - Coastal aerosol 0.43 - 0.45 

Band 2 - Blue 0.45 - 0.51 

Band 3 - Green 0.53 - 0.59 

Band 4 - Red 0.64 - 0.67 

Band 5 - Near Infrared (NIR) 0.85 - 0.88 

Band 6 - SWIR 1 1.57 - 1.65 

Band 7 - SWIR 2 2.11 - 2.29 

 

2.3. Random Forest  

Random Forest (RF) is a new non-parametric 

ensemble machine-learning algorithm developed 

by Breiman [37]. It is unique in the sense 

thatbecause it can handle a variety of data, such 

as satellite imageries and numerical data [38]. RF 

is an ensemble learning algorithm premised on a 

decision tree, which integrates massive ensemble 

regression and classification trees. Several studies 

have shown a satisfactory performance for LULC 

classification using RF in the field of remote-

sensing applications [13,19,27]. The higher the 

number of trees involved in this method the better 

the accuracy in the image classification and land 

use modelling [39,40] for instance in their study, 

selected 200 decision trees and submitted that the 

performance of RF was accurate.  

2.4. Support Vector Machine  

Support Vector Machine (SVM) is a non-parametric 

supervised machine learning method aimed at 

solvingto solve the binary classification problems 

[14]. The polynomial and radial basis function 

(RBF) kernel in remote sensing,In remote sensing, 

the polynomial and radial basis function (RBF) 

kernel has been used most commonly. 

However,but for LULC classification, RBF is the 

most popular technique, and it produces better 

accuracy than the other traditional methods [14]. 

The objective of the original SVM technique was to 

find the hyper-plane that can separate datasets 

into a number ofseveral classes, as well as to and 

find the optimal separating hyper-plane from the 

available hyper-planes [41]. In this process, the 

vectors ensure that the width of the margin will be 

maximized [42]. The training samples or bordering 
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samples that delineate the margin or hyper-plane 

of SVM are known as support vectors [20]. The 

operational capacity of the SVM is a function of the 

kernel size and density. Therefore, the differential 

between the simulated and the real actual satellite 

data, using the support vectors shows the best 

performance shows the best performance using 

the support vectors [43]. The SVM was performed 

in QGIS 3.22 using the dzetsaka plugin. 

 

 

2.4. K-Nearest Neighbour classifier 

K-nearest neighbor (KNN) algorithm [37] is a 

method for classifying objects based on closest 

training examples in the feature space. K-nearest 

neighbor algorithm is among the simplest of all 

machine learning algorithms. In the classification 

process, the unlabeled query point is simply 

assigned to the label of its k-nearest neighbors. K-

NN uses k-nearest neighbors from a subset of all 

of the training samples in determining a pixel’s 

class or the degree of membership of a class. The 

selection of different values for ‘K’ can generate 

different classification results for the same sample 

object. KNN is a simple classification technique. 

KNN is used to classify the objects based on their 

similarity or closest training samples in the feature 

space [44].  

2.5. Gaussian Mixture Models 

A Gaussian mixture model (GMM) is useful for 

modeling data that comes from one of several 

groups. The groups might be different from each 

other, but data points within the same group can be 

well-modeled by a Gaussian distribution. 

 

2.6. Validation of machine learning 

classifiers 

In order to validate the results derivable from this 

study, the “index-based technique” has been 

chosen to select the best performing machine-

learning technique for LULC mapping. For this 

purpose, three satellite-based indices; Normalized 

Difference Vegetation Index (NDVI), Normalized 

Differential Water Index (NDWI) and Normalized 

Difference Built-up Index (NDBI), have been 

classified using different threshold (equations 1-3). 

At the end, the area extent of the classifier-derived 

LULC will be statistically compared to the index-

derived area extent. 
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2.6. Accuracy Assessment  

The post-classification accuracy assessment of the 

LULC generated using various models has become 

an integral part of the classification process [45]. 

The Kappa coefficient statistical technique was 

deployed in this study for assessing the level ofto 

assess accuracy. Monserud and Leemans [46] 

suggested five levels of accuracy results: very poor 

(< 0.4), fair (0.4 to 0.55), good (0.55 to 0.70), very 

good (0.70 to 0.85) and excellent (> 0.85). Thus, 

the Kappa coefficient was calculated using 501 

randomly selected sample points to evaluate the 

accuracy of LULC maps generated using different 

algorithms. The reference data was downloaded 

using the Google Earth Pro. 

3. RESULT AND DISCUSSION 

3.1. LULC Classification 

In this regard, image classification based on the 

four advanced mathematical and machine learning 

algorithms including Random Forest, Support 

Vector Machine, K-Nearest Neighbour and the 

Gaussian Mixture Models. Landsat 8 (OLI/TIR) 

image was classified into four thematic classes: 

The Settlement, Bare land, Vegetation, and 

Waterbody. The study area is about 9,031 ha. 

From Table 2, out of the total area under study, RF 

classifier classified 392 ha (4%) as Settlement 

area, 2015 ha (23%) as Bare land, 6264 ha (69%) 

as Vegetation and 360 ha (4%) as Waterbody. The 

SVM classifier classified 286 ha (3%) as 

Settlement, 2136 ha (24%) as Bare land, 6242 ha 

(69%) as Vegetation and 367 ha (4%) as 

Waterbody. Also, 359 ha (4%) were classified as 

Settlement, 2153 (24%) as Bare land,6142 (68%) 

as Vegetation, and 378 (4%) as Waterbody by K-

NN classifier. GMM classifier had 949 ha (10%) 

classified as Settlement, 2732 ha (30%) as Bare 

land,5019 ha (56%) as Vegetation and 331 ha 

(4%) as Waterbody. The LULC maps in Figures 

2,3,4 and 5 showed that the settlement area, as 

classified by RF (4%), SVM (3%) and K-NN (4%) 

are very similar. GMM, using the same image and 

training samples classified 10% of the study area 

as settlement. With a sharp difference of about 6%, 

the GMM classifier tends to differ in algorithmic 

operations when compared to other classifiers. RF 

classified 23% of the study area as bare land, SVM 

has 24% of the study area classified as bare land. 

K-NN also allotted 24% to bare land, while that of 

GMM classifier was 30%. Vegetation thematic 

class has almost the same classified area extent 

across the four different classifiers i.e. RF (69%), 

SVM (69%), K-NN (68%) and GMM (56%) which is 

the least coverage when compared to other 

classifiers. Waterbody was classified as 4% by all 

the classifiers (Table 2). 
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Figure 2: LULC with Random Forest (RF) classifier 

 

Figure 3: LULC with Support Vector Machines (SVM) classifier 
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Figure 4: LULC with K-Nearest Neighbour (KNN) classifier 

 

Figure 5: LULC with Gaussian Mixture Model (GMM) classifier. 



 

 

Table 2 shows the percentage share of each LULC class with respect to the total land coverage in the study 

area for each classifiereach classifier's total land coverage in the study area. 

 Random Forest 
(RF) 

Support Vector 
Machine (SVM) 

K-Nearest Neighbour 
(KNN) 

Gaussian Mixture 
Model (GMM) 

 Classes Area(ha) % Area(ha) % Area(ha) % Area(ha) % 

Settlement 392 4 286 3 359 4 949 10 

Bare land 2015 23 2136 24 2153 24 2732 30 

Vegetation 6264 69 6242 69 6142 68 5019 56 

Waterbody 360 4 367 4 378 4 331 4 

 

 

It is an established fact according to [47] that LULC 

classes cannot be thematically equal amongst the 

classification techniques, be it machine-learning 

algorithms or traditional classification techniques. 

This explained why the area extent of the various 

LULC classes as shown in Table 2 are different 

from one classifier to another. Differences in the 

parameter optimization of the algorithms can also 

be responsible the differences in area under LULC 

classes of different classifiers [48]. Though the 

studies of [13] and [27] opined that the machine-

learning techniques do not have significant 

difference in the results, this study revealed that 

there could be significant differences in the LULC 

results of the different classifiers. 

3.2. Validation of models using index-

derived techniques 

The results in Table 3 show the comparison 

between the spectral indices-derived area extent 

and that of the LULC derived from the classifiers. 

Figure 6 shows the reclassified maps of the NDVI, 

NDBI and the NDWI. The total area of NDBI-based 

is 2339 ha compared to settlement/bare land area 

as classified by RF classifier which is 2407 ha, with 

a difference of -67 ha. It shows that they are both 

close when compared to that of SVM (2422 ha), K-

NN (2512 ha) and GMM (3681 ha) respectively. 

The NDVI-based vegetation area remained 6253 

ha while that of RF classifier stood at 6264 ha with 

a difference of -11 ha. The total vegetation area 

extent as classified by other classifiers are SVM 

(6242 ha), K-NN (111 ha) and GMM (1234 ha) 

respectively. Water body area calculated using the 

NDWI was 365 ha, while that of RF classifier was 

360 ha (Table 3). 

Table 3. Area of LULC computed by the spectral indices and the computed areas of the LULC by the Machine 

Learning (ML) algorithms. 

 

CLASS 

 

Spectral 

Indices (ha) 

Area (ha) computed by algorithms and their differences with 

spectral indices 

RF SVM K-NN GMM 

Settlement/Bare land 2339 2407 (-67) 2422 (-88) 2512 (-173) 3681 (-1342) 

Vegetation 6253 6264 (-11) 6242 (11) 6142 (111) 5019 (1234) 

Formatted Table



 

 

Waterbody 365 360 (5) 367 (-2) 378 (-13) 331 (34) 

*Values within parenthesis indicate the difference between area computed in spectral indices and that of the 

algorithms. 

 

Figure 6: The index-derived maps of NDVI, NDWI and NDBI 

3.3. Accuracy Assessment of the classified 

LULC 

To validate these models’ accuracy, 501 random 

points generated on the classified images which 

contain classified information. These points were 

then observed with the actual ground data 

extracted from google earth historical imagery 

2021. The extracted values from the classified 

image vis-a-vis the reference data (google earth 

image) were used to calculate the error matrix, 

overall accuracy and Kappa coefficients of the four 

classifiers. Tables 4, 5, 6 and 7 showed the error 

matrices of the various classifiers. These error 

matrices helped in evaluating the performances of 

the various classifiers. Table 8 showed shows the 

User Accuracy and the Producer Accuracy of the 

various classifiers in relation toconcerning the 

LULC thematic classes. The producer accuracy of 

Settlement as classified by RF (0.9921) is the 

highest when compared to other classifiers, while 

the rest of the three classifiers (SVM, K-NN, and 

GMM) had approximately 0.9545. The user 

accuracy of the settlement class had RF (0.9167), 

SVM (0.9130), K-NN (0.8077) and GMM (0.6774). 

It showed that settlement was accurately classified 

by RF, but poorly classified by GMM. The results 

are almost the same pattern with the other classes 

(Table 8). The Overall Accuracy (OA) and Kappa 

Coefficient (K) for all the classifiers are shown in 

Table 9. The overall accuracy of RF, SVM, K-NN 

and GMM are 0.9840, 0.9780, 0.9641 and 0.9421 

respectively. This was a pointer to the fact that, 

there was a close similarity in the performances of 

the classifiers in terms of OA. The Kappa 
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Coefficient results of the various classifiers RF 

(0.9695), SVM (0.9580), K-NN (0.9319) and GMM 

(0.8916) showed that RF was the most accurate of 

all the classifiers. It suffices to state that other 

classifiers also performed very highly when 

compared to [46] Kappa Coefficient benchmark of 

0.85 as excellent performance. Nevertheless, there 

appeared to be an excellent agreement between 

classified LULC map and the reality on ground.  It 

has been found that SVM, and RF generally 

provide better accuracy when compared to other 

traditional classifiers. Some researchers have 

submitted that SVM and RF are the best 

techniques for the LULC classification compared to 

all other machine-learning techniques [16,19]. This 

study revealed that though, all the machine 

learning classifiers are very good in terms of LULC 

classification, the Random Forest is still highly 

recommended.  

 

 

Table 4. Error matrix for RF 

Error Matrix Observed Total 

C
la

s
s
if
ie

d
 

RF Settlement Bare land Vegetation Waterbody 

Settlement 22 1 0 1 24 

Bare land 0 143 2 0 145 

Vegetation 0 0 310 1 311 

 Waterbody 0 1 2 18 21 

Total 22 145 314 20 501 

 

 

Table 5. Error matrix for SVM 

Error Matrix Observed Total 

  
  
C

la
s
s
if
ie

d
 SVM Settlement Bare land Vegetation Waterbody 

Settlement 21 1 0 1 23 

Bare land 0 143 2 1 146 

Vegetation 1 0 309 1 311 

 Waterbody 0 1 3 17 21 

Total 22 145 314 20 501 

 

 Table 6. Error matrix for K-NN 

Error Matrix Observed Total 



 

 

C
la

s
s
if
ie

d
 K-NN Settlement Bare land Vegetation Waterbody 

Settlement 21 3 1 1 26 

Bare land 0 140 5 1 146 

Vegetation 1 0 305 1 307 

 Waterbody 0 2 3 17 22 

Total 22 145 314 20 501 

 

 

 

 

 

 

 

Table 7. Error matrix for GMM 

Error Matrix Observed Total 

C
la

s
s
if
ie

d
 GMM Settlement Bare land Vegetation Waterbody 

Settlement 21 5 4 1 31 

Bare land 0 136 8 1 145 

Vegetation 1 2 298 1 302 

 Waterbody 0 2 4 17 23 

Total 22 145 314 20 501 

 

 

 

 

 

 

Table 8: LULC Accuracy Assessment statistics of the classifiers 

 RF SVM K-NN GMM 



 

 

Classes Pa Ua Pa Ua Pa Ua Pa Ua 

Settlement 0.9921 0.9167 0.9545 0.9130 0.9545 0.8077 0.9545 0.6774 

Bare land 0.9862 0.9862 0.9862 0.9795 0.9655 0.9589 0.9379 0.9379 

Vegetation 0.9872 0.9968 0.9841 0.9936 0.9713 0.9935 0.9490 0.9867 

Waterbody 0.9 0.8571 0.85 0.8095 0.85 0.772727 0.8501 0.7391 

 

 

 

Table 9. Summary of LULC Accuracy Assessment Results 

Classifier Overall Accuracy (OA) Kappa Coefficient 

(K) 

Random Forest  0.9840 0.9695 

Support Vector Machine 0.9780 0.9580 

K-Nearest Neighbour 0.9641 0.9319 

Gaussian Mixture Model 0.9421 0.8916 

  

The accuracy assessment in this study revealed an 

insignificant variation among the results of the 

classifiers. Therefore, comparing this study with 

some previous studies, the accuracy of LULC 

classification varied from one classifier to another 

sequel to variations in methods, techniques, time 

and space [49,14,27]. Variations in the 

classification outputs could be traceable to the 

influence of atmospheric, surface and illumination 

characteristics of the images [26]. It is pertinent to 

state that some other studies had reported that 

there are minor to moderate fluctuations in the 

accuracy of the LULC classification using different 

classifiers [50,51]. The high accuracy performance 

of RF classifier in this study with Kappa coefficient 

of 0.97 is further supported with previous studies 

such as that of [13] and [19] with accuracy levels 

0.93 and 0.90, respectively, for the RF classifier. A 

small difference is found between the previous 

study and this study on the accuracy levels of SVM 

[52,53].  Furthermore, [26] noted that the accuracy 

of SVM and RF has very little difference, but the 

difference increases between either SVM and K-

NN.  

4. CONCLUSIONS  

This study examined the accuracy of four different 

machine-learning classifiers for LULC classification 

using Landsat 8 (OLI/TIR satellite image with the 

aim of elicitingto elicit the best of all the classifiers. 

Four different classes were identified i.e. 

Settlement, Bare land, Vegetation and Waterbody. 

The results showed that the area coverage of each 

LULC class varies under different classifiers. The 

LULC classification was subjected to an accuracy 

assessment analysis, using the overall accuracy 

and Kappa coefficient as statistical parameters for 

comparative analysis. At the end, the Kappa 

coefficient and overall coefficient showed changes 

in the accuracy of each LULC classifier. Both 

Comment [DH26]: Discuss more on 
other papers in comparison to your own 
results. This section is lacking. You can 
explain in further detail what the papers 
have done where your research might 
benefit and/or if there is a similarity that 
you have. Potentially there are other 
machine learning algorithms and classifiers 
fro you to explore. Pixel mapping? OBIA? 
Hyperspectral NN Automata? Use these 
papers: 
 
1. 
https://journals.plos.org/plosone/article?id
=10.1371/journal.pone.0252111 
 
2. 
https://www.tandfonline.com/doi/abs/10.
1080/10106049.2021.1917005 
 
3. 
https://www.sciencedirect.com/science/ar
ticle/pii/S1110982322000059 
 
4. 
https://www.sciencedirect.com/science/ar
ticle/pii/S2352938520306388 
 

Comment [DH27]: Monotonous and 
repetitive. 

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252111
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252111
https://www.tandfonline.com/doi/abs/10.1080/10106049.2021.1917005
https://www.tandfonline.com/doi/abs/10.1080/10106049.2021.1917005
https://www.sciencedirect.com/science/article/pii/S1110982322000059
https://www.sciencedirect.com/science/article/pii/S1110982322000059
https://www.sciencedirect.com/science/article/pii/S2352938520306388
https://www.sciencedirect.com/science/article/pii/S2352938520306388


 

 

Kappa coefficient and Overall accuracy analysis 

showed that RF has the highest accuracy of all 

classifiers applied to LULC modelling in the study 

area. 
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