
 

 

RESPONSE SURFACE OPTIMIZATION OF DIETARY IRON, CALCIUM AND 

VITAMIN C IN SOYAMILK FOR COMPLEMENTARY FEEDING 
 

 

Abstract: 

Response surface methodology (RSM) is a collection of tools developed in the 1950s for the 

purpose of determining optimum operating conditions. In this work, a three level three factor (3
3
) 

factorial design that metamorphosed to the response surface design with two augmented central 

point was employed. In its applications a secondary data from the department of Food Science 

and Technology (FST), Michael Okpara University of Agriculture, Umudike (MOUAU), 

containing the mineral components of soymilk for complementary feeding of infants was used. 

The analysis for the First Order (FO), Two Way Interaction (TWI) and the Polynomial (PQ) 

model was carried out and the augmented response surface analysis was performed. Following 

the path of steepest ascent, an optimality condition from the surface and contour lines shows that 

dietary iron is significant for varying the colour content, while calcium was significant for 

varying the ash and moisture content. It was then recommended that for optimal colour content 

in the soymilk, 3.07mg/100ml of Dietary Iron, 154.1mg/100ml of Calcium and 24.23mg/100ml 

of Vitamin C should be used, for optimal ash content in the soymilk, 2.22mg/100ml of Dietary 

Iron, 152.03mg/100ml of Calcium and 13.53mg/100ml of Vitamin C should be used while for 

optimal moisture content in the soymilk, 2.9858mg/100ml of dietary Iron, 335.71mg/100ml of 

Calcium and 25.48mg/100ml of Vitamin C should be used. 

 

Introduction 

Response surface methodology is a procedure and a philosophy for the design, the conduct, the 

analysis, and the interpretation of experiments performed to determine the quantitative 

relationship between a dependent variable (the response) and one or more quantitative, 

continuous independent variables. 

The basic approach, first suggested by Box and Wilson (1951), ingeniously combined elements 

of multiple regression theory and its specialized form in analysis of variance with special 

features of the factorial designs, including principles of partitioning, confounding and fractional 

replicates. The central composite design is one of a number of experimental designs developed 

specially for use in response surface exploration in order that the data collection phase be 

performed as completely, as cheaply and as efficiently as possible. 

Box and Hunter (2005), suggested the characteristics of experimental designs for fitting response 

surfaces. 

Naturally, Soymilk also known as vegetable or imitation milk is produced from whole soybean 

(glycine max).Soymilk resembles cow’s milk in appearance flavor and nutritive value. When 

properly processed (Iwe, 2003) should contain 8.25% solid-not fat; not less than 3.25% fat, not 

more than 88.50% water and not less than 11.50% solids including 3.25% fat. 

Soymilk or soy drink is a stable off-white emulsion/suspension water extract of whole soybean 

that contain 2% oil, 88% water, water soluble protein of about 3.5%, 2.9% carbohydrate, 0.5% 

ash and others like Calcium Iron Lecithin, Riboflavin, Isoflavones and Vitamin E. The protein 

content is higher than that of cow’s milk by about 2.2%. Addition of Iron, Calcium and Vitamin 

C in foods including beverages like soymilk will not only meet the nutrient needs of infants and 

young children, but they also will work in synergy to promote growth performance (Clarke, 



 

 

1995; Thiers, 2009). Among other sources of vegetable milk, soymilk had received very high 

research attention as reference vegetable milk (Onweluzo and Nwakalor, 2009). 

Infancy is a period of tremendous physical growth characterize by increase in length and weight 

as well as physiological, immunological and mental development. Yeung, (2011). Furthermore, 

the composition of human milk varies in magnitude between nutrients in lactating mothers. 

Lonnerdal, (1985). These and more portend that with time (about 4-6 months to 12 months) the 

breast milk alone will not be sufficient to meet the child’s nutrition for energy needs, it therefore 

becomes mandatory for an adequate and appropriate nutrition (in terms of calorie, vitamins and 

minerals) be introduced, else the infant will not achieve the expected growth. A complementary 

food is therefore introduced to improve both the energy and nutrient intakes since the child will 

no longer gain weight despite appropriate breast feeding, and will be feeling hungry always 

despite frequent breast feeding. Rarback, (2011). Some experimental analysis have been 

presented to ascertain these physio-chemical changes which include determination of PH, 

viscosity etc. 

Factorial experiments are employed in all fields of life; agricultural science, biology, medicine, 

the physical sciences etc. experiments are usually carried out by researchers either to discover 

something about a particular process or to compare the effects of several factors on responses. 

Factorial experiment is therefore a crossed factor design that usually involves several factors and 

it is such that every possible combination of the factor is included or observed or examined. 

Factorial experiment permits the analysis of a number of factors with the same precision (eg. 

Individual and joint effects) as if the entire experiment had been devoted to the study of only one 

factor. 

Some notable factorial experiments are as follows; 

2
k
 factorial experiments- This involves K factors each at two levels. 

3
K
 factorial experiment- This involves K factors each at three levels. 

B
K
 factorial experiment- This involves K factors each at B levels. (Montgomery 2013). 

 

The problem: 

According to Fallon and Enig (2007), Infants are at high risk of iron, protein and calcium 

deficiencies after six months of exclusive breast feeding. They stated that soymilk can serve as a 

supplement towards improving on these deficiencies. The problem now lies on determining the 

composition and quality of soymilk to be used. Furthermore, the composition and quality of 

soymilk varies with the variety of soybean used and the method of production (Wang et al., 

1978). It is therefore necessary to statistically circumvent these problems. 
 

The aim of this study is to apply response surface method in determining the optimal 

combination of levels of different component of soymilk as a complement for feeding infant after 

six months of exclusive breast feeding.  

The specific objectives Include; To determine the optimal combinations of levels of the different 

component of soymilk (that is; Dietary Iron (Fe), calcium (Ca) & Vitamin C (C) that is suitable 

for complementary feeding in infants. To investigate the linear relationship as well as the 

curvature (quadratic) relationship using the response surface analysis. This study is going to help 

determine the combination of level of the different components of soymilk (that is; Dietary Iron 

(Fe) (X1), calcium (Ca)(X2) & Vitamin C (C) (X3) that will be suitable for complementary 

feeding in infants, and would be a guide to people using this approach. This study is limited to 



 

 

the use of response surface methodology to analyze the different levels of the mineral 

components that made up soymilk for complementary feeding. 

 

Methodology 

The data used for this study are secondary data. It was gotten from the work “Application of 

response surface methodology to fortification of soymilk from sprouted soybean with Iron,  

Calcium and Vitamin C for complementary feeding” (FST), published by Dr. I. N. Okwunodulu 

(2014) from the department of Food Science and Technology, MOUAU. 

 

RESPONSE SURFACE METHODOLOGY (RSM)-  The method of response surface 

analysis was adopted for this study. However RSM has been reported to be the best option since 

it identifies the effects of the individual process variables, locates optimum process variable. 

Combinations for multivariable system efficiency, and offers economy of experimental points 

since it requires least experimental data. (Mullen and Ennia, 1979).   

The objective of RSM experiments is to predict the value of a response variable called 

the dependent variable based on the controlled value of experimental factors called independent 

variables. As an important subject in the statistical design of experiment, the Response surface 

methodology(RSM) is a collection of mathematical or statistical techniques that are useful for 

the modeling and analysis of problems in which a response of interest is influenced by several 

variables and the objective is to optimize this response. 

A response surface is fitted  an extension of linear model algorithm, and works almost exactly 

like it; however, the model formula for response surface must make use of the First Order, Two-

Way Interaction, Pure Quadratic or Second Order models where  the First Order model in (1.0)  

is given by: 

0 1 1 2 2 3 3ijk ijky x x x                                             (3.1). 

Adding the interaction term introduces curvature into the response function. It is 

necessary to use more than two levels to detect curvature, however, and, in general, to determine 

the shape of the “response surface.” That is, how does the response vary over different 

combinations of values of the factors? In what region(s), if any, is the change approximately 

linear? Are there humps, and valleys, and saddle points, and, if so, where do they occur? These 

are the types of questions that response surface methodology attempts to answer. 

We usually represent the response surface graphically. To help visualize the shape of the 

response surface, we often plot the contours of the response surface. Each contour corresponds to 

a particular height of the response surface. 

In most response surface methodology, the form of the relationship between the response 

and the independent variable is unknown. The first step in RSM is to find a suitable 

approximation for the true functional relationship between the set of independent variables. 

(Montgomery 2013). 

RSA is based on the assumption that when k factors (or independent variables) are being studied 

in an experiment, the response (or dependent variable) will be a function of the levels at which 

these factors are combined (xk).  

 

 

 

The Sequential Nature of the Response Surface Methodology 

Most applications of RSM are sequential in nature. 



 

 

Phase 0: At first some ideas are generated concerning which factors or variables are likely to be 

important in response surface study. It is usually called a screening experiment. The objective 

of factor screening is to reduce the list of candidate variables to a relatively few so that 

subsequent experiments will be more efficient and require fewer runs or tests. The purpose of 

this phase is the identification of the important independent variables. 

Phase 1: The experimenter’s objective is to determine if the current settings of the independent 

variables result in a value of the response that is near the optimum. If the current settings or 

levels of the independent variables are not consistent with optimum performance, then the 

experimenter must determine a set of adjustments to the process variables that will move the 

process toward the optimum. This phase of RSM makes considerable use of the first-order model 

and an optimization technique called the method of steepest ascent (descent). 

Phase 2: Phase 2 begins when the process is near the optimum. At this point the experimenter 

usually wants a model that will accurately approximate the true response function within a 

relatively small region around the optimum. Because the true response surface usually exhibits 

curvature near the optimum, a second-order model (or perhaps some higher-order polynomial) 

should be used. Once an appropriate approximating model has been obtained, this model may be 

analyzed to determine the optimum conditions for the process. 

 

MATHEMATICAL MODEL EQUATIONS AND RSM MODEL SOLUTION SEARCH-

RSM is often represented with mathematical models that resemble those of regression equations. 

These mathematical model equations are determined by the number of process variable cases 

involved and have the probability of showing significant/non-significant linear, quadratic and 

cross product (interaction) order effects. Those variables significant (p>0.05) at 1% level do not 

contribute at 5% level (p≤0.05) (Bradley, 2007). 
 

For two process variable cases, the mathematical model is; 
2 2

0 1 1 2 2 11 1 22 2 12 12ijk ijky x x x x x            
     (3.2)

 

This model equation indicates significant/ non-significant two linear, two quadratic and a single 

cross product or interaction order effect. 

The second-order model is widely used in response surface methodology for several 

reasons: 

1. The second-order model is very flexible. It can take on a wide variety of functional 

forms, so it will often work well as an approximation to the true response surface. 

2. It is easy to estimate the parameters (the β’s) in the second-order model. The method of 

least squares can be used for this purpose. 

3. There is considerable practical experience indicating that second-order models work well 

in solving real response surface problems. 
 

For three process variable cases, the mathematical model is; 
2 2 2

0 1 1 2 2 3 3 11 1 22 2 33 3 12 12 13 13 23 23ijk ijky x x x x x x x x x                    
  

(3.2.1) 

This model equation indicates significant/ non-significant three linear, three quadratic and three 

cross product or interaction order effect. 

Where;  β0= Intercept 

  Βi (ie. Β1, β2, β3)= linear regression terms 

  Βii (ie. Β11, β22, β33)= quadratic regression terms 



 

 

  Βij (ie. Β12, β13, β23)= cross product regression terms 

  ε= Random error term. 

  ijky
=

 Dependent response variable 

 

Normality, independent, homogeneity of variance assumptions were justified using the necessary 

approaches. 

 

3.3 FACTORIAL DESIGNS (THE CCD’S WITH 5 AXIAL POINTS) 

Factorial designs are designs in terms of treatment combinations (a factorial treatment design) 

which is a necessary first step in designing a factorial experiment after the factors and their levels 

are known. The central composite design is an experimental design, useful in response surface 

methodology, for building a second order (quadratic) model for the response variable without 

needing to use a complete three level factorial experiment and also for obtaining optimum 

conditions. The design consists of three distinct sets of experimental runs; 

1 A factorial (perhaps fractional) design in the factors studied, each having two levels. 

2 A set of center points, experimental runs whose values of each factor are the medians 

of the values used in the factorial portion. This point is often replicated in order to 

improve the precision of the experiment. 

3 A set of axial points, experimental runs identical to the center points except for one 

factor, which will take on values both below and above the median of the two 

factorial levels and typically both outside their range. All factors are varied in this 

way. 

The central composite designs (CCDs) are the most frequently used response surface 

designs. These designs permit the estimation of nonlinear effects and are constructed by starting 

with a two-level full factorial and then adding center points (i.e., at the center of the full 

factorial) and axial (star) points that lie outside the square formed from connecting the factorial 

points. The design for two factors is shown in Figure 12.7.The value of α would be selected by 

the experimenter. Desirable properties of the design include orthogonality and rotatability. A 

design is rotatable if Var( y ) is the same for all points equidistant from the center of the design.  

In the case of two factors, rotatability is achieved when α = 1.414. If there are not tight 

constraints on the number of center points that can be used, both orthogonality and rotatability 

can be achieved by selecting the number of center points to achieve orthogonality since the 

number of center points does not affect rotatability. 

CCD enables estimation of the regression parameters to fit a second-degree polynomial 

regression model to a given response. A polynomial, as given by Equation (1.7), quantifies 

relationships among the measured response y and a number of experimental variables X1…Xk, 

where k is the number of factors considered, β are regressors and ε is an error associated with the 

model: 
2 2 2

0 1 1 2 2 11 1 22 2 12 1 2 1, 1... ... ...k k kk k k k k ky x x x x x x x x x x                        (3.9) 

The regressors (β1, β2, β3…) in the various terms of Equation (3.9) provide a quantitative 

measure of the significance of linear effects, curvilinear effects of factors and interactions 

between factors. It is worth noting that the model presented by Equation (3.9) is not a model in 

purely physical sense, but rather it should be understood as a statistical model, i.e., a correlation 

developed based on regression analysis. 



 

 

However, this nomenclature is widely used in the field of design of experiments and statistics, 

and therefore it is used hereafter. 

 
 

Figure 1.Visualization of original type rotatable CCD for 3 factors X1, X2 and X3 

-- 

Values at the center point (red point with coordinates 0, 0, 0) that is located in the center 

of the cube are used to detect curvature in the response, i.e., they contribute to the estimation of 

the coefficients of quadratic terms. Axial points (six blue points located at a distance α from the 

center point) are also used to estimate the coefficients of quadratic terms, while factorial points 

(eight grey points located at corners of the cube with a side length equal to 2) are used mainly to 

estimate the coefficients of linear terms and two-way interactions. For testing four or more 

factors in an experiment, Figure 1 should be extended to the fourth or more dimensions (Marcin 

et al. 2015). 
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 Fig 2 Composite design 



 

 

 

 

3.4 THE METHOD OF STEEPEST ASCENT AND STEEPEST DESCENTS 

The method of steepest ascent is a procedure for moving sequentially along the path of steepest 

ascent, that is, along the direction of maximum increase in the predicted response. The fitted first 

order model is; 0

1

n

ijk i i

i

y x 


 
       (3.9.1)

 

And the fisrt order response surface, that is the contors of y, is a series of parrallel line such as 

that shown in  figure 1.2 below. The direction of the steepest ascent is the direction in which y 

increases most rapidly. This direction is parallel to the normal to the fitted resonse surface. We 

usually take as the path of steepest ascent the line through the centre of the region of interest and 

normal to the fitted surface 

Cite by? 

 

 

Fig 3 Surface response  

 

 

3.4.1 STEPS INVOLVED IN THE METHOD OF STEEPEST ASCENT 

The following steps describe the general procedure:  

1 The experimenter runs a first-order model =…………………. In some restricted 

region of variables, X1, X2, …, Xk. The experiment usually contains center-points 

runs which can be used to perform a lack-of-fit test for curvature. 

(a) If a lack-of-fit for curvature is not significant, then go to step 2, 

(b) If lack-of-fit for curvature is significant and the experimenter is satisfied that little 

or no additional information can be obtained using the path of steepest ascent (or 

path of steepest descent) procedure, then we stop applying this method. 

2 The fitted first-order model is used to determine a path of steepest ascent (or path of 

steepest descent). 

3 A series of experimental runs is conducted along the path until no additional increase 

(or decrease) in response is evident. 

4 Centered near the location along this path which yields a maximum (or minimum) 

response, a new experiment is designed. 



 

 

5 Return to step 1.Once curvature is detected and the method is stopped, a more 

elaborate experiment to fit a quadratic response surface model should be designed and 

conducted. 

 

3.5 METHOD OF STEEPEST DESCENT 

The method of steepest descent is a procedure for moving sequentially along the path of steepest 

descent, that is, along the direction of maximum decrease in the predicted response. The steepest 

descent method, which is based on the gradient of '  . Where; 

       (3.9.2) 

Therefore, the gradient of 

' 
  is given by   

      

 

( ' ) ;
2 '[ ( ; )]

fx
y f x

    
           

  (3.9.3) 

 

STATISTICAL DATA ANALYSIS 
 >loveline.rsm(loveline.colour) 

 

Where is the data? 

The author did not apply step by step the theory that themselves 

copied from Montgomery book 

 

 It is not clear: 

 

Call: 

rsm(formula = response ~ SO(x1, x2, x3), data = data) 

 

Estimate  Std. Error t value  Pr(>|t|)     

(Intercept)  6.3046e-01  6.4155e-02  9.8271 3.869e-16 *** 

x1           7.0659e-02  1.7460e-02  4.0468 0.0001058 *** 

x2           2.4713e-02  1.7460e-02  1.4154 0.1602236     

x3          -3.5846e-03  1.7460e-02 -0.2053 0.8377786     

x1:x2        1.4804e-02  2.2814e-02  0.6489 0.5179860     

x1:x3       -1.7857e-05  2.2814e-02 -0.0008 0.9993771     

x2:x3       -1.3393e-03  2.2814e-02 -0.0587 0.9533113     

x1^2         4.2221e-03  2.6226e-02  0.1610 0.8724430     

x2^2        -3.3269e-03  2.6226e-02 -0.1269 0.8993217     

x3^2        -1.8299e-02  2.6226e-02 -0.6977 0.4870454     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Multiple R-squared:  0.1734,    Adjusted R-squared:  0.09504  

F-statistic: 2.214 on 9 and 95 DF, p-value: 0.02754 

 

Analysis of Variance Table 

 

Response: response 

' [ ( , )]'[ ( , )]y f x y f x      



 

 

Df  SumSq  Mean Sq F value    Pr(>F) 

FO(x1, x2, x3)   3 0.53696 0.178986  6.1407 0.0007324 

TWI(x1, x2, x3)  3 0.01237 0.004124  0.1415 0.9348720 

PQ(x1, x2, x3)   3 0.03135 0.010451  0.3586 0.7830624 

Residuals       95 2.76901 0.029148                   

Lack of fit      5 0.08953 0.017905  0.6014 0.6989489 

Pure error      90 2.67949 0.029772                   

 

Stationary point of response surface: 

         x1          x2          x3  

-3.03525471 -3.04171908  0.01484657 

 

Eigenanalysis: 

$values 

[1]  0.008760942 -0.007830431 -0.018334097 

 

$vectors 

          [,1]        [,2]        [,3] 

x1  0.85241769  0.52258593 -0.01697144 

x2  0.52269438 -0.85087586  0.05292317 

x3 -0.01321631  0.05398353  0.99845436 

 

 

RESULT- The result shows that in the first order model, only the and X2 variables are 

significant while the variable X3 is not significant. The second-order model and the polynomial 

terms show no significance  Who are X1, X2, X3? 



 

 

 
 

FIGURE 4. The response surface plots of the colour content.  

Explain! 
 

 

 

 
>loveline.rsm(loveline.ash.content) 

 

Call: 

rsm(formula = response ~ SO(x1, x2, x3), data = data) 

 

Estimate  Std. Error t value Pr(>|t|)     

(Intercept)  3.5825e-02  8.0072e-04 44.7405   <2e-16 *** 

x1           8.3194e-05  2.1792e-04  0.3818   0.7035     

x2           9.2780e-03  2.1792e-04 42.5743   <2e-16 *** 

x3          -8.4156e-05  2.1792e-04 -0.3862   0.7002     

x1:x2        1.7857e-05  2.8475e-04  0.0627   0.9501     

x1:x3        1.2500e-04  2.8475e-04  0.4390   0.6617     

x2:x3        1.7857e-05  2.8475e-04  0.0627   0.9501     

x1^2         7.7611e-05  3.2733e-04  0.2371   0.8131     

x2^2        -4.8627e-05  3.2733e-04 -0.1486   0.8822     

x3^2        -2.7585e-04  3.2733e-04 -0.8428   0.4015     
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--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Multiple R-squared:  0.9503,    Adjusted R-squared:  0.9455  

F-statistic: 201.6 on 9 and 95 DF,  p-value: < 2.2e-16 

 

Analysis of Variance Table 

 

Response: response 

Df    Sum Sq    Mean Sq  F value Pr(>F) 

FO(x1, x2, x3)   3 0.0082314 0.00274379 604.2883 <2e-16 

TWI(x1, x2, x3)  3 0.0000009 0.00000030   0.0669 0.9774 

PQ(x1, x2, x3)   3 0.0000076 0.00000252   0.5560 0.6453 

Residuals       95 0.0004314 0.00000454                 

Lack of fit      5 0.0002948 0.00005896  38.8516<2e-16 

Pure error      90 0.0001366 0.00000152                 

 

Stationary point of response surface: 

         x1          x2          x3  

0.11176619  0.02034834 -0.65457617  

 

Eigen analysis: 

$values 

[1]  0.0000000000  0.0000000000 -0.0002868042 

 

$vectors 

         [,1]        [,2]        [,3] 

x1 0.98259047  0.07883062  0.16823108 

x2 0.07472136 -0.99673398  0.03062844 

x3 0.17009609 -0.01752476 -0.98527164 

 
RESULT- The result shows that only the first-order variables, X1 and X3 show significance while 

the second-order and the polynomial terms show no significance.  ?? 

 
 



 

 

 
 

FIGURE 5 RESPONSE SURFACE PLOTS OF ASH CONTENT 

EXPLAIN 

 
 
 

 

 FIGURE 6  THE RESIDUAL ANALYSIS PLOTS OF THE ASH CONTENT  

EXPLAIN 
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For Moisture: 

 

loveline.rsm(loveline.Moisture.new) 

 

Call: 

rsm(formula = response ~ SO(x1, x2, x3), data = data) 

 

              Estimate Std. Error  t value  Pr(>|t|)     

(Intercept) 95.6709049  0.2109203 453.5879 < 2.2e-16 *** 

x1          -0.0013597  0.0574040  -0.0237    0.9812     

x2          -0.4239059  0.0574040  -7.3846 5.827e-11 *** 

x3          -0.0013361  0.0574040  -0.0233    0.9815     

x1:x2        0.0016071  0.0750057   0.0214    0.9830     

x1:x3       -0.0044643  0.0750057  -0.0595    0.9527     

x2:x3       -0.0055357  0.0750057  -0.0738    0.9413     

x1^2         0.0532441  0.0862217   0.6175    0.5384     

x2^2         0.1350463  0.0862217   1.5663    0.1206     

x3^2         0.0540016  0.0862217   0.6263    0.5326     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Multiple R-squared:  0.3762,    Adjusted R-squared:  0.3171  

F-statistic: 6.365 on 9 and 95 DF,  p-value: 5.071e-07 

 

Analysis of Variance Table 

 

Response: response 

Df  Sum Sq Mean Sq F value    Pr(>F) 

FO(x1, x2, x3)   3 17.1807  5.7269 18.1779 2.111e-09 

TWI(x1, x2, x3)  3  0.0030  0.0010  0.0031    0.9998 

PQ(x1, x2, x3)   3  0.8649  0.2883  0.9151    0.4367 

Residuals       95 29.9296  0.3150 

Lack of fit      5  1.5406  0.3081  0.9768    0.4364 

Pure error      90 28.3890  0.3154 

 

Stationary point of response surface: 

          x1           x2           x3  

-0.007064507  1.571423533  0.092622320  

 

Eigen analysis: 

$values 

[1] 0.13515019 0.05579973 0.05134208 

 

$vectors 

          [,1]        [,2]       [,3] 

x1  0.01074151 -0.65155400 0.75852621 

x2  0.99935104  0.03307746 0.01426082 

x3 -0.03438182  0.75788078 0.65148647 

 



 

 

RESULT- The result shows that only the first-order variables X1 and X2 show significance while 

the second.-order and the polynomial terms show no significance  

EXPLAIN 
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FIGURE 8 RESIDUAL ANALYSIS PLOTS OF THE MOISTURE CONTENT 

 

 

 

CONCLUSION 

The objective of this study is to determine the optimal combinations of levels of the different 

minerals (for soymilk) that is suitable for complementary feeding, and also to investigate the 

linear relationship as well as the curvature (quadratic) relationship using the response surface 

analysis. 

As soon as we are close to the optimum a rotatable central composite design can be used to 

estimate the second-order response surface. The optimum on that response surface can be 

determined analytically. 

Results in this study indicated that only the first-order process variables had significant (P < t  ). 

The second-order process variable and the polynomial process variables show non-significance. 

Response surface analysis of the experimental data on colour content located maximum point for 

X1 at -3.04, X2 at -3.04 and X3 at 0.01, for the ash content, the maximum point for X1 was at 

0.11, X2 at 0.02 and X3 at -0.65, while for the moisture content, the maximum point for X1 was 

at -0.01, X2 at 1.57 and X3 at 0.09. 

 

 

 

RECOMMENDATIONS 

In order to raise healthy infants using Soymilk as a complement to breast milk, the following 

recommendations are made; 

(i) Colour content of Soymilk with the mixture compositionsX1at -3.04, X2 at -3.04 and 

X3 at 0.01 should be encouraged for feeding infants and young children. 

(ii) Ash content of Soymilk with the mixture compositions X1 at 0.11, X2 at 0.02 and X3 

a t -0.65 should be encouraged for feeding infants and young children. 

(iii) Moisture content of Soymilk with the mixture compositions X1 at -0.01, X2 at1.57 

and X3 at 0.09 should be encouraged for feeding infants and young children. 

 

 

REFERENCE 

 

Aguilera J. M. and Kosikowski F. V. (1976). Soybean Extruded Product: A Response Surface

 Analysis. Journal of food science. 41. 647-651. 

Box G.E.P.& Wilson K.B. (1951). On the Experimental Attainment of Optimum Conditions. 

Journal of Royal Statistical Society.  Series B, 13:  1-45. 

Clarke, R. I. (1995). Micronutrient fortification of foods: Technology and quality control FAO 

Corporate Doc Repository. Retrieved from  

http//www.fao-org/docrep/w284oe/w284oeob.htp.   

Conover W. (1999). Practical Nonparametric Statistical, 3
rd

 edition, pp. 428-433 (6.1), John 

 Wiley & Sons, Inc. New York. 

Exon, D. (2007). Good reasons why you may need Vitamin supplements. Nourishing Traditions. 



 

 

In: The cook book that challenges politically correct Nutrition and the Diet Doctocrates 

by Sally Fallon and Mary Enig. New trends publishing Inc. Retrieved from; 

www.Newtrendspublishing.com.  

Fallon, S. & Enig, M. G. (2007). Nourishing Tradition In: The Cookbook that Challenges 

 Politically Correct Nutrition and the Diet Dictocrates. New Trends Publishing Inc. 

 Retrieved from http://dspace.unijos.edu.ng/bitstream/10485/872/1/nutritional evaluation 

 of cereal legume.pdf.  

Graham H. (n.d). Research skill kruskal-wallis handout. Version 1.0, page 1 

Gurinder S. and Roopa S. P. (2014). Optimization (Central Composite Design) and Validation of 

 HPLC Method for Investigation of Emtricitabine Loaded Poly(lactic-co-glycolic acid) 

 Nanoparticles: In Vitro Drug Release and In Vivo Pharmacokinetic Studies. The 

 Scientific World Journal. Article ID 583090, 12 pages. 

Iwe, M.O. (2003). The science & Technology of soybean. Published by Rojoint communication 

services Ltd, 27-262. 

Keharom S., Mahachai R. & Chanthai S. (2016). The optimization study of α-amylase activity 

 based on central composite design-response surface methodology by dinitrosalicylic acid 

 method. International Food Research Journal 23, (1):10-17. 

Laura C. O. and Eric C. O. (2013). Optimization of composite flour biscuits by mixture 

response surface methodology. Food science and technol. International. 19, (4): 343-350. 

Lonnerdal, B. (1985). “Effects of maternal Dietary intake on Human milk  

Composition”.  Retrieved  from www.research Diets.com. 

Li-Chun Z., Ying H., Xin D., Geng-Liang Y., Jian L. and Qian-Li T. (2012). Response Surface 

 Modeling and Optimization of Accelerated Solvent Extraction of Four Lignans from 

 Fructus Schisandrae. Molecules17, 3618-3629. 

Mahsa A., MortezaB., Sirous N. and Abdolhosein N. (2012).A central composite design for the 

 optimization of the remova lof the azo dye, methyl orange, from waste water using the 

 Fenton reaction. J. Serb. Chem. Soc. 77 (2). 235–246. 

Marcin D., Mario D. and Terese L. (2015). Application of Central Composite Design for the 

 study of NOx Emission Performance of a Low NOx Burner. Energies. 8, 3606-3627. 

Meyers, Khuri and Carter (1989). Response Surface Methodology: 1966-1988. Technometrics 31 

 (2): 137-153 http://www.jstor.org/. 

Montgomery D. C. (2013). Design and Analysis of Experiments. 8
th

 edition. John Wiley and

 Sons; NY, USA. 

Murray R. Spiegel (1992). Theory and problems of statistics. (2
nd

 Edition). M. C. Grow Hill  

 Book. 

Nsofor, L.M. Okpara, B.U. and Osuji, C.M. (1997). Tropical storage stability and chemical  

 Properties of soymilk from sprouted soybeans. J. Fd. Sci. Technol. 34 (6) 377-384. 

 

 Okwunodulu, I. N. & Iwe, M. O. (2015). Micronutrient evaluation of fortified soymilk from 

 Sprouted whole soybean for complementary feeding using response surface

 methodology. Journal of Molecular Studies and Medicine Research, 01(01), 16-25. 

Onweluzo J.C and Nwakalor, C. (2009). Development and evaluation of vegetable milk from  

 Treculia Africana (Decne) seeds. Pakistan J. of Nutri. 8, (3): 233-238. 

Rarback, S. (2011). Nutrition and wellbeing  A-Z. Infant Nutrition. Retrieved from 

http.//www.faqs.org/nutrition/na-irr/infant-nutrition. Html. 

http://www.research/


 

 

Seyyed H. P., Keyhani A., Mostofi-Sarkari M. R. and Jafari A. (2012). Application of response 

 surface methodology for optimization of Picker-Husker harvesting losses in corn seed. 

 Iranica journal of Energy and environment. 3, (2): 134-142. 

Sharma H. K. Kaur J. Sarkar B. C. and Singh B. (2016). Optimization of pretreatment conditions 

 of carrot to maximize juice recovery by response surface methodology. Journal of 

 Engineering science and Technology. 1, (2): 158-165. 

Thiers, E.A. (2009). Water and nutrition. Published by Lenntech water treatment and purification 

Holding  B. U. Retrieved from; http//www.lenntech.com/about/aboutlenntech.en.htp. 

Thomas M. Little and F. J. Hills (1997). Agricultural Experimentation. John Wiley and Sons;  

 USA 

Titus U. N. (2008).Growth performance of rats fed raw and extruded African breadfruit-based 

 Complementary diets: A response surface analysis. Journal of the Science of Food and 

 Agriculture.88:522–528. 

Vipul S., Nishi B. & Swapan K. (2013). Application of response surface methodology and 

central composite design for the optimization of talc filler and retention aid in  papermaking. 

Indian Journal of Chemical technology.  20, 121-127. 

Wang H., Mustakas G., Wolt W., Wang C., Hesseltine W.& Bagley E.(1978). Soybean as the 

human food and simply processed. In  Parkistan Journal of Nutrition. (14 (12): 898-906). 

www. R project.com 

Yeung  L.D. (2011).Iron and complementary food fortification. United Nations University. 

Zhang X., Jinyan Z., Wen F. U. and Juan Z. (2010). Response surface methodology used for 

 statistical optimization of Jiean-Peptide production by Bacillus Subtilis. Electric journal 

of Biotechnology.13 (4):3-8. 
 


