
Solving generalized nonlinear Schrödinger equation by
Adomian decomposition technique

Abstract
In this paper, using a suitable change of variable and applying the Adomian decomposition method
to the generalized nonlinear Schrödinger equation, we obtain the analytical solution, taking into
account the parameters such as the self-steepening factor, the second order dispersive parameter,
the third order dispersive parameter and the nonlinear Kerr effect coefficient, for pulses that contain
just a few optical cycle. The analytical results are performed numerically. Under influence of these
effects, pulse did not maintain its initial shape.
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1 Introduction
The propagation process of ultrashort laser pulses in a nonlinear medium is nowadays in the center
of interest because of its important application in the optical telecommunication. Important effects
involved in this propagation process have been theoretically and experimentally considered by several
authors [1]. In this paper, we solve the generalized nonlinear Schrödinger (GNLSE) by using Adomian
decomposition technique. In this equation, the parameters such as the self-steepening factor, the
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second order dispersive parameter, the third order dispersive parameter and the nonlinear Kerr effect
coefficient and the self-frequency shift are included. In a series of remarquable papers [1-3], the
authors have studied this equation using various approaches. One of the methods is the Adomian
decomposition method for solving a wide range of physical problems [4-10]. Several modifications
were improved its ability in [11-19]. An advantage of this method is that it can provide analytical
approximation or an approximated solution to a wide class of nonlinear equations without linearization,
perturbation, closure approximation or discretization methods. Its abilities attracted many authors to
use this method for solving physical problems. Our paper is organized as follows: in section II,
we present the analytical solutions. Section III contains the results and discussion and section IV
contains the conclusions.

2 Analytical results

The generalized nonlinear Schrödinger equation deals with the pulse envelope A(z, t) related to the
electric field E(z, t). The evolution of A(z, t) inside the dispersive nonlinear medium is then governed
by the standard NLS equation generalized thanks to the additional terms that represent the higher-
order nonlinear and dispersion effects. Such a generalized nonlinear Schrödinger equation has the
form [20]
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where ξ = z/LD is the distance normalized to the dispersion length and τ = (t−z/vg)/T0 is the time
normalized to input pulse width T0, δ3 = β3/(6T0|β2|) takes into account the third-order dispersion
effects governed by β3, s = 1/(ω0T0) is the parameter responsible for self-steepening and fp(τ)
governs the pulse shape. Throughout this paper, intrapulse Raman scattering τR is equal to zero.

Now we provide the analytical solution of the generalized nonlinear Schrödinger equation. Setting

κ = β0n2LD, η = εξ + τ, ηξ=0 = τ, g(η) = A(ξ, τ)

for small positive number ε, the above partial differential equation reduces to the following nonlinear
functional equation
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equivalently

g −N(g) = q (2.2)
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where
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In order to obtain the analytical solution of the equation (2.2), the Adomian method is used for solving
nonlinear functional equations such as the equation (2.2), where N is a nonlinear operator from a
Hilbert space H into H, q is a given function in H. We are looking for f satisfying (2.2) and we
assume that (2.2) has a unique solution for every q ∈ H.
The Adomian method consists in representing g as follows [7-13]

g =

+∞∑
n=0

gn (2.4)

The nonlinear operator N is decomposed as follows

N(g) =

+∞∑
n=0

An (2.5)

where the An are functions (Adomian’s polynomials) of g0, . . . , gn that are obtained by writing:
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where λ is a parameter introduced for convenience. From (2.6) we deduced the An values by the
formulae
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[
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, n = 0, 1, 2, 3, . . . (2.7)

Thus we will compute in a recurrent manner gn and An to the following relationships:

g0 = q
g1 = A0

...
gn = An−1

...

Indeed for simplicity reasons we choose g′(η0) = ag(η0), g′′(η0) = bg(η0) for real numbers
a, b and we take into account g(η0) = A(0, τ), the initial pulse; then we have g0, g1 and the 2-term
approximation of g =

∑
n≥0 gn such as:
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g1(η) = N(g0) (2.9)
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g1(η) = e−τ2/2
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3 Results and discussion
First of all, let’s point out that the following parameters δ, s τR characterize the higher-order dispersive
and nonlinear terms. These parameters govern respectively the effects of third order dispersion, self-
steepening and the self-shift frequency. One can see that when the width of the pulse T0 decreases,
the pulse is shorter and the nonlinear parameters increase. Consequently, when the pulse is shorter,
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the higher effects are more important. Then, when the time T has the values of picoseconds or larger,
these parameters are very small and can be neglected, so the standard NLS equation becomes
inadequate. We observe that during propagation through the waveguide, where the propagation
direction is coincident with the z-axis, the intensity of the pulse A(t, z) decreases due to several
loss mechanisms for both gaussien and hyperbolic secant profiles. From Fig. 1 we have chosen a
Gaussian pulse for ”s = 0.02, T0 = 10[fs], β2 = −1[ps2/km], τR = 0, a = 0.5, b = 0.25, κ = 0.1,
δ3 = 0.02[ps3/km], ϵ = 2.5× 10−6, P0 = 1[mW ]”. Fig. 1 compares the intensity profiles at a distance
z = 10LD with the input Gaussian pulse. As seen there, the shape of the pulse subsided even
it keeps the same Gaussian profile. We consider now the propagation of the ultrashort pulse with
the initial hyperbolic secant shape with the same parameters. Fig. 2 shows changes in the electric
field with propagation. As expected, the the electric field is distorted considerably when compared to
that at the input taken to be: Ein(τ) = sech(τ)cos(τ). Fig. 3 presents the evolution of the intensity
of the Gaussian-pulse with ”δ3 = 0.03[ps3/km]” and Fig. 4 shows the intensity of the pulse when
”δ3 = 0.09[ps3/km]”. The comparison shows that when we inrease the third order dispersive term,
the pulse shape exhibit oscillations. When the propagation distance is larger the oscillation of the
envelope is stronger. Let’s point out that the influence of the self-steepening effect is slighly observed
when its value is increased.

In the results obtained above, we may see the impact that third dispersive and nonlinear effects
have on the propagation of the ultrashort pulses in its whole importance. Under the influence of
these effects, the propagation of the ultrashort pulses is much more complicated than in case of short
pulses.

Therefore, some higher-order effects such as third-order dispersion, self-steepening play important
roles in the propagation of optical pulses. The effect of self-steepening is due to the intensity-
dependent group velocity of the optical pulse, which gives the pulse a very narrow width in the course
of propagation.

5

UNDER PEER REVIEW



−8 −6 −4 −2 0 2 4 6 8
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Normalized time τ = T/T
0

R
ea

l p
ar

t o
f n

or
m

al
iz

ed
 a

m
pl

itu
de

 

 

 
input pulse
output pulse

Figure 1: Gaussian-pulse envelopes as a function of propagation distance z: on
top, ”z=0 [km]”; and below, the output pulse with z = 10LD
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Figure 2: Hyperbolic-sech pulse envelopes as a function of propagation distance z.
On top: ”z=0 [km]”; and below, the output pulse with z = 10LD
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Figure 3: Evolution of the intensity of the Gaussian pulse. The parameters used
are: ”δ3 = 0.03ps3/km, s = 0.8, τR = 0, T0 = 10fs”
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Figure 4: Evolution of the intensity of the Gaussian pulse. The parameters used
are: ”δ3 = 0.09ps3/km, s = 0.8, τR = 0, T0 = 10fs”

4 Concluding remarks

We have applied Adomian decomposition technique to solve analytically the nonlinear Schrödinger
equation for propagation of an ultrashort optical pulse inside a nonlinear medium. Our results illustrate
the third order dispersive effect in pulse distorsion with an oscillatory structure. The self-steepening
factor reduces the width of the pulse during propagation. The ultrashort pulses are widely used
nowadays, especially in the optical telecommunication, so the results obtained in the research of
these pulses are of great practical importance.
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