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 11 

Kant’s 1755 hypothesis on the origin of the sun and planets, as modified by Laplace, 
foreshadowed the modern protoplanetary theory of planet formation in which planets are 
thought to form within giant gaseous protoplanets. The protoplanetary theory was popular in 
the 1940s and 1950s, but was abandoned and ignored by phenomenological model-makers 
in the early 1960s who favored the planetesimal theory. Here, I validate the protoplanetary 
theory by: 

 Thermodynamic considerations; 

 Observations of internal magnetic field generation; 

 Observations of Mercury; and, 

 Observations of Earth’s behavior. 
Although the planetesimal theory does not account for solar system formation, some of its 
elements added a veneer of oxidized material to the outer portions of Earth, especially 
oxidized iron which is critical for the development of life. 

 12 
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1. INTRODUCTION 16 
 17 
In 1755, Kant [1] set forth a hypothesis on the origin of the sun and planets that was 18 
modified by Laplace [2] four decades later. Laplace’s nebula hypothesis was the forerunner 19 
of the modern protoplanetary theory of solar system formation in which planets are thought 20 
to form within giant gaseous protoplanets. The protoplanetary theory attracted scientific 21 
attention in the 1940s and 1950s [3-5], but was abandoned and ignored by 22 
phenomenological model-makers in the early 1960s who favored the planetesimal theory [6-23 
9]. 24 
 25 
The primordial matter from which planets and other objects in the solar system formed, as 26 
compelling evidence indicates [10-17], had a well-defined composition that is yet manifest in 27 
the solar photosphere. Figure 1 shows the similarity in relative abundance of less-volatile 28 
elements in the solar photosphere and in two chondrite meteorites that possess strikingly 29 
different states of oxidation. 30 



 

 

 31 
Figure 1. Comparison of relative element atom-abundances, normalized to iron, in the 32 
sun and in the Orgueil carbonaceous chondrite and in the Abee enstatite chondrite. 33 
From [10]. 34 
 35 
Thermodynamic considerations which involve the intensive variables X-T-P, i.e. composition-36 
temperature-pressure, are independent of the size of the system or the amount of matter 37 
present [18]. As the solar system formed from well-defined primordial matter, thermodynamic 38 
considerations of the protoplanetary theory and of the planetesimal theory must differ solely 39 
in their respective T-P domain. Early considerations of the protoplanetary theory invoked 40 
high-pressures >1 atm. whereas models based upon planetesimal theory invoked low-41 
pressures <0.001 atm. 42 
 43 
The purpose of this brief communication is to show that the composition of Earth’s interior is 44 
directly related to high-pressure condensation of matter from a gas the composition of the 45 
sun’s photosphere, concomitantly justifying and validating the theoretical protoplanetary 46 
origin of the solar system. Further supporting evidence is presented, specifically related to 47 
planet Mercury, to the occurrence of internally generated magnetic fields in planets and large 48 
moons, and to the geological and geodynamic behavior of Earth. 49 

 50 
2. VALIDATION OF THE PROTOPLANETARY THEORY 51 

BY THERMODYNAMIC CONSIDERATIONS 52 
 53 
In 1944, Eucken [3] published a scientific article entitled “Physikalisch-chemische 54 
Betrachtungen ueber die frueheste Entwicklungsgeschichte der Erde” which translates as 55 
“Physico-Chemical Considerations about the Earliest Development History of the Earth”. 56 
From thermodynamic considerations, Eucken investigated condensation from primordial 57 
matter, namely, a gas of the composition of the sun’s photosphere at pressures from 1 to 10

4
 58 

atm. Eucken showed that the first primordial condensate from a cooling gas of solar 59 
composition at high-pressures would be molten iron at high temperatures, followed at lower 60 
temperatures by silicate minerals, and, if condensation were complete, at still lower 61 
temperatures, by gases and ices as evident in Jupiter. 62 



 

 

 63 
From these thermodynamic considerations, Eucken [3] proposed Earth’s formation from 64 
within a giant gaseous protoplanet that began with liquid iron metal raining out forming its 65 
core, followed by the condensation of minerals that formed its mantle. I validate the 66 
protoplanetary origin of Earth in the following ways: 67 

 By thermodynamic considerations I connected high-pressure primordial 68 
condensation with the oxidation state and minerals of the enstatite chondrites [19], 69 
and 70 

 By ratios of mass I connected the minerals of the Abee enstatite chondrite to the 71 
components of Earth’s interior [20-23], as shown in Table 1. For details, see [23]. 72 

 73 
 74 

3. VALIDATION OF THE PROTOPLANETARY THEORY 75 
BY INTERNAL MAGNETIC FIELD GENERATION 76 

 77 
Uranium in the Abee enstatite chondrite resides in the iron-alloy component that 78 
corresponds to Earth’s core [24]. Planetocentric nuclear fission (georeactor) formation is a 79 
natural consequence of density layering in oxygen-starved (highly-reduced) planetary matter 80 
[25-27]. The two-component, self-regulated [28] nuclear fission georeactor assembly is 81 
capable of sustained thermal convection in its charged-particle-rich sub-shell, and is ideally 82 
suited for geomagnetic field generation [29-31]. 83 
 84 
Two independent lines of evidence support georeactor existence: 85 

 Calculated georeactor nuclear fission production of 
3
He/

4
He ratios are in precisely 86 

the range of ratios observed in oceanic basalts [32]. 87 

 Geoneutrino (antineutrino) measurements, at a 95% confidence level, at Kamioka, 88 
Japan [33] and Grans Sasso, Italy [34], indicate georeactor nuclear fission output 89 
energy of 3.7 and 2.4 terawatts, respectively. These fissionogenic energy values 90 



 

 

are similar to the 3-6 terawatt range employed in Oak Ridge National Laboratory 91 
georeactor simulations [32, 35]. 92 

The commonality of internally-generated magnetic fields at the surface of numerous planets 93 
and large moons (Table 2, adapted from [36]) further validates the theoretical protoplanetary 94 
origin of the solar system. 95 
  96 

 97 
 98 

4. VALIDATION OF THE PROTOPLANETARY THEORY 99 
BY OBSERVATIONS OF MERCURY 100 

 101 
Thermodynamic considerations have shown that enstatite (MgSiO3) is the primary silicate to 102 
condense from solar matter at high pressures (>1 atm.) [3, 19]. Enstatite is the major silicate 103 
of the Abee enstatite chondrite [37, 38] and, by the mass ratio identity shown in Table 1, 104 
enstatite is the major silicate of the Earth [20-23]. Moreover, enstatite is a significant 105 
component of the surface of planet Mercury [39, 40]. 106 
 107 
In 2011, NASA’s MESSENGER orbiting spacecraft produced important images of features 108 
unique to planet Mercury that were inexplicable to NASA scientists. Many of the images 109 
revealed “… an unusual landform on Mercury, characterized by irregular shaped, shallow, 110 
rimless depressions, commonly in clusters and in association with high-reflectance material 111 
…. and suggests it indicates activity” [41] (Figure 2). 112 



 

 

 113 
 114 
Figure 2. NASA MESSENGER image showing pits surrounded by shiny material. 115 
These bright shallow depressions appear to have been formed by disgorged volatile 116 
matter from within the planet. 117 
 118 
In 2012, I published the following scientific explanation for the anomalies observed on 119 
Mercury’s surface [42]: “During formation, Mercury’s iron core, in condensing and raining-out 120 
as a liquid at high pressures and high temperatures from within what was a giant gaseous 121 
protoplanet, dissolved a considerable amount of hydrogen, as hydrogen is quite soluble in 122 
liquid iron. As Mercury’s core solidified, the hydrogen was dispelled and erupted from the 123 
surface like hydrogen geysers, forming the surrounding shiny iron metal by turning relatively 124 
low reflecting iron sulfide into highly reflecting  iron metal.” 125 
 126 
Figure 3 shows the relationship between condensation and dissolved hydrogen. For the 127 
indicated hydrogen gas pressures (left vertical axis) and temperatures, the red curve shows 128 
the boundary between liquid iron and gaseous iron in an atmosphere like the outer part of 129 
the sun. For each temperature/pressure point along the red curve, the amount of hydrogen 130 
dissolved in the molten iron, indicated by the blue curve, can be read from the right vertical 131 
axis. For reference, the green lines tie together these corresponding points. The hydrogen 132 
volume units, at STP (standard temperature and pressure), are equal to the volume of planet 133 
Mercury. 134 



 

 

 135 
Figure 3. By condensing from a giant gaseous protoplanet at pressures above 10 136 
atm., Mercury’s core initially was liquid and contained copious amounts of dissolved 137 
hydrogen. For details see [42]. 138 
 139 
Verifying my assertion [42] that the shiny material surrounding the pits on Mercury’s surface 140 
is indeed iron metal will further validate the protoplanetary theory of solar system formation. 141 
   142 

5. VALIDATION OF THE PROTOPLANETARY THEORY 143 
BY OBSERVATIONS OF EARTH’S BEHAVIOR 144 

 145 
Eucken [3] recognized from thermodynamic considerations that complete condensation from 146 
within a giant gaseous protoplanet would yield a gas-giant planet like Jupiter. I posited a 147 
similar formation for Earth, initially fully condensed with a 300 Earth-mass outer shell of 148 
condensed ices and gases [29, 43-45]. Subsequent, violent T-Tauri phase solar winds 149 
stripped the ices and gases away leaving, at the beginning of the Hadean eon, a rocky 150 
planet that had been compressed to about two-thirds of present-day Earth-diameter, and 151 
containing within itself the great stored energy of protoplanetary compression. 152 
 153 
Earth’s subsequent decompression, described by my Whole-Earth Decompression 154 
Dynamics, in logically and causally related ways, accounts for virtually all of Earth’s surface 155 
geology and geodynamics. 156 
 157 
As whole-Earth decompression progresses and as Earth’s volume increases, its surface 158 
area increases by the formation of decompression cracks. Primary decompression cracks 159 
with underlying heat sources extrude basalt-rock, which flows by gravitational creep until it 160 
falls into and infills secondary decompression cracks that lack heat sources. This accounts 161 
for the separation of the continents and for the topography of Earths ocean basins. 162 
  163 
As whole-Earth decompression progresses and as Earth’s volume increases, its surface 164 
curvature must change. The manner by which surface curvature adjusts to changes in 165 
volume explains, in logical, causally related ways, the formation of mountain chains 166 
characterized by folding, fjords, and submarine canyons [46]. 167 
 168 



 

 

Whole-Earth Decompression Dynamics explains, more completely and more correctly, 169 
observations usually attributed to plate tectonics without requiring physically-impossible 170 
mantle convection [23] or fictitious super-continent cycles [47]. In addition, Whole-Earth 171 
Decompression Dynamics explains geological observations that are inexplicable by plate 172 
tectonics, including the geothermal gradient [48], origin of petroleum and natural gas 173 
deposits [49], oceanic troughs [43], and more. 174 
 175 

6. COUNTER ARGUMENTS 176 
 177 
In 1974, when I earned the Ph.D. degree in nuclear chemistry, there was wide-spread belief 178 
that the planets and other objects in the solar system originated by condensing from a very 179 
low pressure gas, <0.001 atm., with a composition similar to that of the sun’s photosphere. 180 
Then the dust was assumed to gather into progressively larger masses, untimately 181 
becoming planetisimals, then planets. 182 
 183 
These ideas stemmed from assumption-based computational models of Cameron [6], and 184 
were followed up by other models [7-9]. Not only were the model calculations incorrect [50], 185 
but they led to geophysically impossible concepts. For example, core formation reputedly 186 
required whole planet melting and a magma ocean. Geomagnetic field production 187 
supposedly required physically impossible [23] core convection. Continent displacement 188 
reputedly required physically impossible [23] mantle convection. There were paleomagnetic 189 
errors in latitudes [51], and fictitious supercontinent cycles [47] were said to exist to account 190 
for multiple periods of mountain formation by assumed continent collisions. 191 
 192 
Clearly, the planetisimal theory does not account for solar system formation. However, 193 
elements of the planetisimal theory, for example, low-pressure condensation in the outer 194 
regions of the solar system or in interstellar space, added a veneer of oxidized material to 195 
the outer portions of Earth, especially oxidized iron which is critical for the development of 196 
life. 197 
 198 

7. CONCLUSIONS 199 
 200 
Kant’s 1755 hypothesis on the origin of the sun and planets, as modified by Laplace, was the 201 
forerunner of the modern protoplanetary theory of planet formation in which planets are 202 
thought to form within giant gaseous protoplanets. The protoplanetary theory was popular in 203 
the 1940s and 1950s, but was abandoned and ignored by phenomenological model-makers 204 
in the early 1960s who favored the planetesimal theory. I validated the protoplanetary theory 205 
by: 206 

 Thermodynamic considerations; 207 

 Observations of internal magnetic field generation; 208 

 Observations of Mercury; and, 209 

 Observations of Earth’s behavior. 210 
 211 
Although the planetesimal theory does not account for solar system formation, some of its 212 
elements added a veneer of oxidized material to the outer portions of Earth, especially 213 
oxidized iron which is critical for the development of life. 214 
 215 
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