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Analytical Solution of Linear Fractional Partial
Differential Equation of Order 0 < α ≤ 1 by

Improved Adomian Decomposition Method

Abstract

The paper aims to obtain exact analytical solution of linear nonhomogeneous space-time frac-

tional order partial differential equation by improved Adomian decomposition method coupled with

fractional Taylor expansion series. The solution of these equations are in series form may have rapid

convergence to a closed-form solution. The effectiveness and sharpness of this method is shown by

obtaining the exact solution of these equations with suitable initial conditions(ICs). With the help

of this method, it is possible to investigate nature of solutions when we vary order of the fractional

derivative. Behaviour of the solution of these equations are represented by graphs using Matlab

software.

Keywords : Improved Adomian decomposition method; Fractional Taylor expansion series;

Mittage-Leffler function; Caputo fractional derivative

1 Introduction

The study of nonlinear partial differential equations(PDEs) is a well developed re-
search area. There are physical models governed by nonlinear fractional partial differ-
ential equations(FPDEs) in various sciences such as sciences of Mathematics, sciences
of Physics, sciences of Chemistry, and sciences of Biology as well as in technologies
[16, 25, 26, 29, 32, 33]. Several researchers have focused on the study of physical mod-
els directed by FPDEs. The difficulty of getting the exact solution of equations in such
models is an important and attractive area of research. Not all nonlinear equations in
physical models have an exact solution, therefore, many researchers have developed
various methods of solving nonlinear FPDEs. The Adomian decomposition method
(ADM)[6, 7] is a powerful weapon to determine solution of fractional differential equa-
tions.In a present years, a numerous attention has been devoted to the study of the
Adomian’s Decomposition Method (ADM)[1, 6, 7]. Cherrualt et al.[11], Adomian and
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Rach [8], Duan et al. [17], which permit us to survey the properties and solutions of
a huge variety of ordinary and partial differential equations, as well as of fractional
partial differential equations(FPDEs), which express several mathematical problems,
or can be used to mathematically model diverse physical processes. From a historic
view, the ADM was first introduced, and enormously used in the 1980’s [2, 3, 4, 5], and
afterward many mathematicians and scientists have constantly modified the ADM in
an attempt to upgrade its accuracy and/or to widen the applications of the initial
method. Duan, Rach and Wazwaz [21, 22, 23, 35, 36, 37, 39, 43] put in a lot of effort
to improve ADM. The ADM procedure to solve linear or nonlinear boundary value
problems using the Duan-Rach recursion[18, 19, 20], which is intrinsic to the ADM,
does not itself require Green’s functions, Dirac delta functions, and discretization
techniques such as a finite-difference method or a finite element method. Also, it
does not invoke the shooting method, special basis functions, guessing the starting
term, linearization, perturbation, and so on. Importantly, fast, efficient, cost-effective
and accurate solutions can be found without the need to resort to high performance
computing. As the nonlinear terms are not ignored or crudely linearized, a much
better appreciation of the physics of a particular problem ensues. This aspect of
simulation is often lost in numerical methods. A key concept is that the Adomian
decomposition series is any rearrangement of the Banach-space analog of the Taylor
expansion series about the initial solution component function that permits solution
by recursion, in which the aforesaid rearrangement is accomplished through the choice
of the recursion scheme. The ADM yields a rapidly convergent sequence of analytic
functions as the approximate solutions of the original mathematical model. The most
important work about convergence has been carried out by Cherruault [10]. Further
remarks about the convergence of the decomposition method are in [11]. Historical
view of ADM given by Rach in [34].Thus the ADM subsumes even the classic power
series method while extending the class of amenable nonlinearities to include any
analytic nonlinearity.

While Shawagfeh [40] has employed ADM for solving nonlinear fractional partial
differential equations, Daftardar-Gejji and Jafri have obtained solution of numerous
problems [27] by using ADM. Also Dhaigude and Birajdar [14, 15] extended the
discrete ADM for obtaining the numerical solution of system of FPDEs. Chitalkar-
Dhaigude and Bhadgaonkar in [12] have shown that the ADM is more convenient
than the Charpit’s method to solve first-order nonlinear PDEs. Sontakke and Pan-
dit [41, 42] investigates the iterative solution of linear and NFPDEs using fractional
ADM. Bhadgaonkar and Sontakke [9] obtained exact Solution of Space-Time FPDEs
by ADM.

Rach et al. [38] created a new modification of the ADM for solving ordinary dif-
ferential equations (ODEs) using the Taylor expansion series for a nonhomogeneous
term. N. Khodabakshi et al. [28], discussed the basic ADM method and extended
the proposed method in [38] to solve time-fractional ODEs. As a result of these ideas,
Dhaigude and Bhadgaonkar in [13] combined the ADM with a fractional Taylor ex-
pansion series and obtain an almost analytical solution of physical models such as Gas
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dynamics model, Advection model, Wave model, and Klein-Gordon model in nonlin-
ear nonhomogeneous space-time fractional PDEs. The fractional Taylor expansion
series used in this method is represented as a differential transform in the differential
transform method [31]. This method is developed specifically for nonhomogeneous
differential equations. The main aim of this paper is to implement improved ADM
to solve the linear nonhomogeneous space-time fractional partial differential equation
so we write proposed method in [13] for linear fractional PDE. The solution of this
equation is calculated in the form of convergent series with easily computable com-
ponents. The space-time fractional derivatives are described in the Caputo sense.

The paper is structured in this way: in section 2 few basic results about fractional
calculus and related properties are given which are used in this paper, while in section
3 we clarify the steps of the improved ADM for solving nonlinear nonhomogeneous
space and time fractional order PDEs in section 4. Section 5 is conclusions.

2 Basic Definitions

In this section, basic definitions on fractional calculus are discussed which are useful
for further discussion.

Definition 2.1 [33] Let f ∈ Cα and α ≥ −1, then Riemann-Liouville fractional
integral operator(RLFIO) of w(x, t) with respect to t of order α is indicated by
Iαt w(x, t) and is explained as

Iαt w(x, t) =
1

Γ(α)

∫ t

0

(t− τ)(α−1)w(x, τ)dτ, t > 0, α > 0. (2.1)

Definition 2.2 [33] Let m − 1 < α < m, t ∈ R and t > 0. The Caputo fractional
derivative operator(CFDO) for the function f ∈ H1([a, b],R+) with order α ≥ 0 is
explained as

Dα
t w(x, t) =


1

Γ(m− α)

∫ t

0

(t− τ)m−α−1∂
mw

∂τm
dτ,

∂mw

∂tm
, α = m ∈ N.

(2.2)

We have following properties of RLFIO and CFDO

Dα
t t

µ =
Γ(µ+ 1)

Γ(µ− α + 1)
t(µ−α), (2.3)

Iαt t
µ =

Γ(µ+ 1)

Γ(µ+ α + 1)
t(µ+α), α > 0, µ > −1. (2.4)

Note that the relation between RLFIO and CFDO is given by:

Iαt D
α
t w(x, t) = w(x, 0)−

m−1∑
k=0

w(k)(x, 0)
tk

k!
, m− 1 < α ≤ m. (2.5)
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Mittage-Leffler function(MLF) : The MLF for one parameter and two parameter
is explained as follows

Eα(t) =
∞∑
n=0

tn

Γ(αn+ 1)
, (α ∈ C, Re(α) > 0),

Eα,β(t) =
∞∑
n=0

tn

Γ(αn+ β)
, (α, β ∈ C, Re(α, β) > 0).

When we apply CFDO on MLF we get

Dα
t Eα(at

α) = aEα(at
α), (2.6)

where a is constant.

3 Analysis of method

Consider the initial value problem (IVP) for space-time FPDE of order 0 < α ≤ 1,

Dα
t w(x, t) +Dα

xw(x, t) = g(x, t), (3.1)

w(x, 0) = h(x), (3.2)

or equivalently

L(w(x, t)) = g(x, t), (3.3)

w(x, 0) = h(x), (3.4)

where w(x, t) is unrecognized function which we want to determined, t is time variable,
x is the space coordinate, L(w(x, t)) is fractional differential operator and g(x, t) is
nonhomogeneous function.
Now, applying the RLFIO Iαt on both side of equation(3.1) and use the IC (3.2), we
attain:

w(x, t) = w(x, 0) + Iαt
[
g(x, t)−Dα

xw(x, t))
]
. (3.5)

The unrecognized function w(x, t) can be expressed as an infinite series of the form

w(x, t) =
∞∑
n=0

wn(x, t) (3.6)

Suppose that g(x, t) is analytic.Its fractional Taylor expansion series [24, 30, 31] is:

g(x, t) =
∞∑
k=0

∞∑
h=0

Gα,α(k, h)x
kαthα, (3.7)

where

Gα,α(k, h) =
1

Γ(kα + 1)Γ(hα + 1)
(Dα)kx(D

α)ht g(x, t)
∣∣
x=t=0

and (Dα)kx = Dα
xD

α
x ...D

α
x , k times.
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By using (3.6) and (3.7) in (3.5) we attain

∞∑
n=0

w(x, t) = h(x) + Iαt

[ ∞∑
k=0

∞∑
h=0

Gα,α(k, h)x
kαthα −Dα

x

∞∑
n=0

wn(x, t)

]
, (3.8)

∞∑
n=0

w(x, t) = h(x) + Iαt

[ ∞∑
k=0

Gα,α(k, 0)x
kαt0α +

∞∑
k=0

Gα,α(k, 1)x
kαtα + · · ·

]
− Iαt

[
Dα

x

∞∑
n=0

wn(x, t)

]
. (3.9)

Taking term by term comparison on both side of equation (3.9), we set recursion
scheme like:

w0(x, t) = h(x),

w1(x, t) = Iαt

[ ∞∑
k=0

Gα,α(k, 0)x
kαt0α −Dα

xw0

]
,

w2(x, t) = Iαt

[ ∞∑
k=0

Gα,α(k, 1)x
kαtα −Dα

xw1

]
,

w3(x, t) = Iαt

[ ∞∑
k=0

Gα,α(k, 2)x
kαt2α −Dα

xw2

]
,

and so forth. Then the solution w(x, t) of IVP (3.1)− (3.2) is

ϕm+1 =
m∑

n=0

wn(x, t) (3.10)

which gives
lim

m→∞
ϕm+1 = w(x, t). (3.11)

4 Numerical Applications

The effectiveness and sharpness of the improved ADM can be demonstrated by ap-
plying it to space-time fractional nonhomogeneous linear partial differential equation.

Example 4.1 Consider the linear nonhomogeneous space-time fractional PDE,

xα

Γ(α + 1)
Dα

xw(x, t) +Dα
t w(x, t) =

xα

Γ(α + 1)
tαE2α,1+α(t

2α) +w, 0 < α ≤ 1 (4.1)

with initial condition

w(x, 0) =
xα

Γ(α + 1)
. (4.2)
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Applying Iαt on both side of equation (4.1) and use initial condition (4.2), we have

w(x, t) = w(x, 0) + Iαt

[
− xα

Γ(α + 1)
Dα

xw(x, t) +
xα

Γ(α + 1)
tαE2α,1+α(t

2α) + w

]
,

w(x, t) =
xα

Γ(α + 1)
+ Iαt

[
− xα

Γ(α + 1)
Dα

xw(x, t) +
xα

Γ(α + 1)
tαE2α,1+α(t

2α) + w

]
.

(4.3)

Here

g(x, t) =
xα

Γ(α + 1)
tαE2α,1+α(t

2α).

By using (3.6) and (3.7) in (4.3) we have

∞∑
n=0

wn(x, t) =
xα

Γ(α + 1)
+ Iαt

[
− xα

Γ(α + 1)
Dα

x

∞∑
n=0

wn +
∞∑
k=0

∞∑
h=0

Gα,α(k, h)x
kαthα +

∞∑
n=0

wn

]
,

∞∑
n=0

wn(x, t) =
xα

Γ(α + 1)
+ Iαt

[
− xα

Γ(α + 1)
Dα

x

∞∑
n=0

wn +
∞∑
n=0

wn +
∞∑
k=0

Gα,α(k, 0)x
kαt0α

+
∞∑
k=0

Gα,α(k, 1)x
kαtα +

∞∑
k=0

Gα,α(k, 2)x
kαt2α + · · ·

]
. (4.4)

Here first few coefficients of Gα,α(k, h) are given in Table1.

Table 1: The components of Gα,α(k, h)

Gα,α(k, h) Gα,α(k, 0) Gα,α(k, 1) Gα,α(k, 2) Gα,α(k, 3) Gα,α(k, 4) · · ·
k − varies vertically
h− varies horizontally
Gα,α(0, h) 0 0 0 0 0 · · ·
Gα,α(1, h) 0 1

Γ(α+1)Γ(α+1)
0 1

Γ(α+1)Γ(3α+1)
0 · · ·

Gα,α(2, h) 0 0 0 0 0 · · ·
Gα,α(3, h) 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

Taking term by term comparison on both side of equation(4.4), we set recursion
scheme as follows:
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w0(x, t) =
xα

Γ(α + 1)
,

w1(x, t) = Iαt

[
− xα

Γ(α + 1)
Dα

xw0 + w0 +
∞∑
k=0

Gα,α(k, 0)x
kαt0α

]
,

= Iαt

[
− xα

Γ(α + 1)
Dα

x

xα

Γ(α + 1)
+

xα

Γ(α + 1)
+ 0

]
,

= Iαt

[
− xα

Γ(α + 1)
+

xα

Γ(α + 1)

]
= 0,

w2(x, t) = Iαt

[
− xα

Γ(α + 1)
Dα

xw1 + w1 +
∞∑
k=0

Gα,α(k, 1)x
kαtα

]
,

= Iαt

[
− 0 + 0 +

xα

Γ(α + 1)

tα

Γ(α + 1)

]
,

=
xα

Γ(α + 1)

t2α

Γ(2α + 1)
,

w3(x, t) = Iαt

[
− xα

Γ(α + 1)
Dα

xw2 + w2 +
∞∑
k=0

Gα,α(k, 2)x
kαt2α

]
,

= Iαt

[
− xα

Γ(α + 1)
Dα

x

[ xα

Γ(α + 1)

t2α

Γ(2α + 1)

]
+

xα

Γ(α + 1)

t2α

Γ(2α + 1)
+ 0

]
,

= Iαt

[
− xα

Γ(α + 1)

t2α

Γ(2α + 1)
+

xα

Γ(α + 1)

t2α

Γ(2α + 1)

]
= 0,

w4(x, t) = Iαt

[
− xα

Γ(α + 1)
Dα

xw3 + w3 +
∞∑
k=0

Gα,α(k, 3)x
kαt3α

]
,

= Iαt

[
− 0 + 0 +

xα

Γ(α + 1)

t3α

Γ(3α + 1)

]
,

=
xα

Γ(α + 1)

t4α

Γ(4α + 1)
,

and so on.Then the exact solution of IVP (4.1)-(4.2) is

w(x, t) =
∞∑
n=0

wn(x, t) =
xα

Γ(α + 1)

[
1 +

t2α

Γ(2α + 1)
+

t4α

Γ(4α + 1)
+ · · ·

]
,

=
xα

Γ(α + 1)

∞∑
k=0

t2αk

Γ(2αk + 1)
,

w(x, t) =
xα

Γ(α + 1)
E2α(t

2α). (4.5)
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Figure 1: 2D Graphical representation of solution (4.5) of IVP (4.1)-(4.2) for different
values of α such as α = 1, 0.8, 0.6, 0.4 and exact when x = 0.25.

If α = 1 then IVP (4.1)-(4.2) is

xwx + wt = x sinh(t) + w, (4.6)

with IC
w(x, 0) = x. (4.7)

the exact solution of given IVP is

w(x, t) = x cosh(t). (4.8)

If α = 1
2
then solution of IVP (4.1)-(4.2) is

w(x, t) = 2

√
x

Π
et. (4.9)

Remark 4.1 : Figure 1 is the graphical behaviour of improved ADM solution (4.5)
for different values of α such as α = 1, 0.8, 0.6, 0.4 and exact solution (4.8) when
x = 0.25. 3D graphical representation of solution (4.5) of IVP (4.1)-(4.2) for different
values of α such as α = 1, 0.8, 0.6, 0.4 are given in Figure2 and Figure3. It is clear
from Figure 1, Figure 2 and Figure 3 that, when the limit α → 1, the solution (4.5)
approaches to the exact solution (4.8).
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Figure 2 and Figure 3 shows the 3D Graphical representation of solution (4.5) of

IVP (4.1)-(4.2) for different values of α such as α = 1, 0.8, 0.6, 0.4 and exact solution
(4.8).
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5 Conclusions

The applicability of improved ADM is demonstrated by some physically significant
linear nonhomogeneous fractional partial differential equation of order 0 < α ≤ 1.
It returns either a fast convergent series or an exact solution. Another advantage of
this method is that we can see where we want to stop the recursion by looking at
the coefficient table that is created during the process. The solution of these models
are in series form may have rapid convergence to a closed-form solution. It is a more
convenient way to solve such types of partial differential equation with the help of
improved ADM than general ADM.
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