
STUDY ON TWO NEW NUMBERS AND POLYNOMIALS NUMBERS AND
POLYNOMIALS ARISING FROM THE FERMIONIC p-ADIC INTEGRAL ON Zp

ABSTRACT. The p-adic analysis and their applications is used p-adic distributions and p-adic mea-
sure, p-adic integrals, p-adic L-function, and other generalized functions. In addition, among the
many ways to investigate and construct generating functions for special polynomials and numbers,
one of the most important techniques is the p-adic Fermionic integral over Zp. In this paper, we
introduce new numbers and polynomials arising from the Fermionic p-adic integral on Zp. First, we
introduce new numbers and polynomials as one of generalizations of Changhee numbers and polyno-
mials of order r (r ∈ N), which are called the generalized Changhee numbers and polynomials. We
explore some interesting identities and explicit formulas of these numbers and polynomials. Second,
we define new numbers and polynomials as one of generalizations of Catalan numbers and polyno-
mials of order r (r ∈ N), which are called the generalized Catalan numbers and polynomials. We
also study some combinatorial identities and explicit formulas of these numbers and polynomials.

1. INTRODUCTION

Initiated by Kurt Hensel (1861-1941) at the end of the 19th century, p-adic numbers have more
recently been applied in physics, mathematics, and engineering in other parts of the natural sciences.
In particular, the p-adic analysis and their applications utilize p-adic distributions and p-adic mea-
sure, p-adic integrals, p-adic L-function, and other generalized functions. Among these, the p-adic
integral and its applications are very important in finding solutions to special (differential) equa-
tions, real problems in both physics and engineering ([3-14], [16-21]). There are many methods
and techniques for investigating and constructing generating functions for special polynomials and
numbers. One of the most important techniques is the p-adic Fermionic integral on Zp. In [9], Kim
constructed the p-adic q-Volkenborn integration. When q = −1, it is called the p-adic Fermionic
integral on Zp ([10]). In this paper, we introduce two new numbers and polynomials which derived

from the Fermionic p-adic integral on Zp. For p ≡ 1(mod 2), t ∈ Cp with |t|p < p−
1

p−1 , a ∈ Q+,

b ∈ Q−{0} with (a, p) = (b, p) = 1, we first introduce new numbers A(r)
n (a,b) and polynomials

A(r)
n (a,b|x) of a generalization of Changhee numbers and polynomials of order r (r ∈ N), respec-

tively. We explore some interesting identities and explicit formulas of these numbers and polyno-
mials. Second, we define new numbers W (r)

n (a,b) and polynomials W (r)
n (a,b|x), respectively, for

one of generalizations of Catalan numbers and polynomials of order r (r ∈ N). We also invesgete
some interesting properties and explicit formulas of these numbers and polynomials.

Let p be a prime number with p ≡ 1 (mod 2). Throughout this paper, Zp, Qp and Cp will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic
closure of Qp. Let| · |p be the p-adic norm with |p|p = 1

p .
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2 New numbers and polynomials which derived from the Fermionic p-adic integral on Zp

For a Cp-valued continuous function f on Zp, Kim [9, 10] introduced the p-adic fermionic
integral on Zp as follows:

I−1( f ) =
∫
Zp

f (x)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)µ−1(x+ pNZp)

= lim
N→∞

pN−1

∑
x=0

f (x)(−1)x, (see [4, 10, 11, 18]).

(1)

Let fn(x) = f (x+n) for n ∈ N. From (5), we observe that

I−1( fn)+(−1)n−1I−1( f ) = 2
n−1

∑
l=0

(−1)n−1−l f (l), (see [4, 10, 11, 18]).(2)

In (2), when n = 1, we have

I−1( f1)+ I−1( f ) = 2 f (0).(3)

From (3), for r ∈N, Kim-Kim introduced the Changhee numbers Ch(r)n and polynomials Ch(r)n (x)
of the first kind of order r, respectively, as follows:∫

Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)ndµ−1(x1) · · ·dµ−1(xr) =Ch(r)n , (see [7]),(4)

∫
Zp

· · ·
∫
Zp

(1+ t)x1+···+xr+xdµ−1(x1) · · ·dµ−1(xr)

=

(
2

2+ t

)r

(1+ t)x =
∞

∑
n=0

Ch(r)n (x)
tn

n!
, (see [7]).

(5)

When x = 0, Ch(r)n =Chn(0), which are called the Changhee numbers of order r.
When r = 1, Chn = Ch(1)n and Chn(x) = Ch(1)n (x), which are called the Changhee numbers and

Changhee polynomials, respectively.
For t ∈Cp with |t|p < p−

1
p−1 , from (3), we have the Catalan numbers Cn given by the generating

function ∫
Zp

(1−4t)
x
2 dµ−1(x) =

2√
1−4t +1

=
∞

∑
n=0

Cntn, (see [11]),(6)

and the Catalan number C(r)
n of order r (r ∈ N) given by the generating function∫

Zp

· · ·
∫
Zp

(1−4t)
1
2 (x1+x2+···+xr)dµ−1(x1)dµ−1(x2) · · ·dµ−1(xr)

=

(
2√

1−4t +1

)r

=
∞

∑
n=0

C(r)
n tn.

(7)

The p-adic logarithm and exponential function are given by the following infinite series:

log(1+ t) =−
∞

∑
n=1

(−t)n

n
, (s ∈ Cp, |t|p < 1),

and

et =
∞

∑
n=1

tn

n!
, (s ∈ Cp, |t|p < p

p
p−1 ).
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H. K. Kim 3

From (3), the Euler polynomials are given by

(8)
∫
Zp

et(y+x) dµ−1(y) =
2

et +1
ext =

∞

∑
n=0

En(x)
tn

n!
, (see [5, 8, 10]).

When x = 0, En = En(0), which are called the Euler numbers.
From (3), we get

(9)
∫
Zp

xn dµ−1(y) = En and
∫
Zp

(y+ x)n dµ−1(y) = En(x), (see [5, 8, 10]).

Let Tp be the p-adic locally constant space defined by Tp =
∪

n≥1 = limn→∞Cpn , (n ∈N), where
Cpn = {µ | µ pn

= 1}. For µ ∈ Tp and t ∈ Cp, the Apostol-Euler polynomials En(x; µ) were intro-
duced by

2ext

µet +1
=

∞

∑
n=0

En(x; µ)
tn

n!
, (see [3, 15, 18]).(10)

when x = 0, En(µ) = 2nEn(
1
2 ; µ), which are called the Apostrol-Euler numbers.

Obviously, when µ = 1, En(x;1) = En(x).
The Euler polynomials of order r (r ∈ N) are given by the generating function(

2
et +1

)r

ext =
∞

∑
n=0

E(r)
n (x)

tn

n!
.(11)

When x = 0, E(r)
n = E(r)

n (0), which are called the Euler numbers of order r.
For n ≥ 0, the Stirling numbers of second kind are defined by

(x)n =
n

∑
l=0

S1(n, l)xl, and
1
k!
(log(1+ t))k =

∞

∑
n=k

S1(n,k)
tn

n!
, (see [1, 2]).(12)

and

xn =
n

∑
l=0

S2(n, l)(x)l, and
1
k!
(et −1)k =

∞

∑
n=k

S2(n,k)
tn

n!
, (see [1, 2]),(13)

where (x)n = x(x−1)(x−2) · · ·(x−n+1) and (x)0 = 1.

2. THE GENERALIZED CHANGHEE NUMBERS AND POLYNOMIALS ARISING FROM THE
FERMIONIC p-ADIC INTEGRAL ON Zp

In this section, we study new numbers of polynomials as one generalization of Changhee num-
bers and polynomials which derived from the Fermionic p-adic integral on Zp, called the general-
ized Changhee numbers and polynomials. We derive many properties of them.

Throughout this paper, assume that p ≡ 1(mod 2), t ∈ Cp with |t|p < p−
1

p−1 , a ∈Q+,
b ∈Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, where (m,n) is the greatest common divisor

of m and n.
Let f (x) = a+bt From (3), we observe that∫

Zp

(a+bt)xdµ−1(x) =
2

(a+1)+bt
=

∞

∑
n=0

An(a,b)tn.(14)
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4 New numbers and polynomials which derived from the Fermionic p-adic integral on Zp

In particular, when a = 1, b = 1, the generating function of Changhee numbers of the first kind
are given by ∫

Zp

(1+ t)xdµ−1(x) =
2

2+ t
and n!An(1,1) =Chn.(15)

When a = 1, b =−1, we get

∫
Zp

(1− t)xdµ−1(x) =
2

2− t
and n!An(1,−1) = (−1)nChn.(16)

Theorem 1. For a ∈Q+, b ∈Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

An(a,b) =
bn

n!an

∫
Zp

(x)nax dµ−1(x) and,

and ∫
Zp

(x)nax dµ−1(x) =
2(−1)n

n!an(a+1)n+1 .

Proof. From (3), we observe that∫
Zp

(a+bt)xdµ−1(x) =
∞

∑
n=0

∫
Zp

(
x
n

)
ax−nbn dµ−1(x)tn

=
∞

∑
n=0

1
n!an

∫
Zp

(x)naxbn dµ−1(x)tn.

(17)

On the other hand, we get

2
(a+1)+bt

=
2

(a+1)(1+ b
a+1 t)

=
2

a+1

∞

∑
n=0

(
− b

a+1

)n

tn.(18)

Remark. By (1), we observe that∫
Zp

(−1)xxkdµ−1(x) = lim
N→∞

∫
∪pN−1

x=0 (x+pNZp)
(−1)xxk dµ−1(x)

= lim
N→∞

pN−1

∑
x=0

(−1)xxkµ−1(x+ pNZp) = lim
N→∞

pN−1

∑
x=0

xk = 0.
(19)

When a =−1, combining (1) with (19), we have∫
Zp

(−1+bt)xdµ−1(x) =
∫
Zp

ex log(1−bt)(−1)x dµ−1(x)

=
∞

∑
l=0

∫
Zp

(−1)xxl dµ−1(x)
1
l!
(log(1−bt))l

=
∞

∑
n=0

n

∑
l=0

(−1)nbn

n!
S1(n, l)

∫
Zp

(−1)xxk dµ−1(x)tn = 0,

By comparing the coefficients of (17) and (18), we get the desired result.
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Theorem 2. For a = 1, b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

An(1,b) =
bn

n!

n

∑
l=0

S1(n, l)El,

where En are the Euler numbers.

Proof. From (12) and (14), we observe that
∞

∑
n=0

An(1,b)tn =
∫
Zp

(1+bt)xdµ−1(x)

=
∞

∑
l=0

∫
Zp

xl 1
l!
(log(1+bt))ldµ−1(x)

=
∞

∑
l=0

∫
Zp

xl
∞

∑
n=l

S1(n, l)
bn

n!
t ldµ−1(x)

=
∞

∑
n=0

n

∑
l=0

S1(n, l)bn

n!

∫
Zp

xldµ−1(x)tn.

(20)

Theorem 3. For b ∈Q+ with (b, p) = 1 and (b, t) = 1, we have,
n

∑
m=0

m!Am(b,b)S2(n,m) = En(b),

where En(b) are the Apostrol-Euler numbers.

Proof. Let
∞

∑
n=0

An(b,b)tn =
∫
Zp

(b+bt)xdµ−1(x).(21)

Replacing t by et −1 in (21), from (3), from (10), the left-hand side of (21) is∫
Zp

(b+b(et −1))xdµ−1(x) =
∫
Zp

(bet)xdµ−1(x) =
2

bet +1
=

∞

∑
n=0

En(b)
tn

n!
.(22)

By (13), the right-hand side of (21) is
∞

∑
m=0

Am(b,b)(et −1)m =
∞

∑
m=0

m!Am(b,b)
(et −1)m

m!

=
∞

∑
m=0

m!Am(b,b)
∞

∑
n=m

S2(n,m)
tn

n!

=
∞

∑
n=0

n

∑
m=0

m!Am(b,b)S2(n,m)
tn

n!
.

(23)

+, b ∈ Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, we consider the generating
function of An(a,b|x) which are derived from the Fermionic p-adic integral on Zp as follows:

∫
Zp

(a+bt)y+x dµ−1(y) =
∞

∑
n=0

An(a,b|x)tn.(24)

By comparing the coefficients of (22) and (23), we get the desired identity.

For a ∈ Q

By comparing the coefficients of both sides of (20), we get the desired result.
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6 New numbers and polynomials which derived from the Fermionic p-adic integral on Zp

When x = 0, An(a,b) = An(a,b|0). From (3), we have
∞

∑
n=0

An(a,b|x)tn =
2

(a+1)+bt
(a+bt)x.(25)

We note that n!An(1,1|x) =Chn(x) and An(1,−1|x) = (−1)n

n! Chn(x).

Theorem 4. For a ∈Q+, b ∈Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

An(a,b|x) =
bn

n!an ax
∫
Zp

(y+ x)nay dµ−1(y).

In addition, we have ∫
Zp

(y+ x)nay dµ−1(y) =
n

∑
m=0

n!(−1)n−mAm(a,1).

Proof. We observe that∫
Zp

(a+bt)y+x dµ−1(y) =
∞

∑
n=0

∫
Zp

(
y+ x

n

)
ay+x−nbn dµ−1(y)tn

=
∞

∑
n=0

∫
Zp

(y+ x)nay axbn

n!an dµ−1(y)tn.

(26)

By comparing the coefficients of (24) and (26), we have the first identity.
In particular, when b = 1, we observe that∫

Zp

(1+ t)y+xay dµ−1(y) =
∞

∑
n=0

∫
Zp

(
y+ x

n

)
aytn dµ−1(y)

=
∞

∑
n=0

∫
Zp

(y+ x)nay dµ−1(y)
tn

n!
.

(27)

On the other hand, from (3), we get∫
Zp

(1+ t)y+xay dµ−1(y) =
2

(a+1)+ t
(1+ t)x =

∞

∑
m=0

Am(a,1)tm
∞

∑
l=0

(−1)lt l

=
∞

∑
n=0

n

∑
m=0

n!(−1)n−mAm(a,1)
tn

n!
.

(28)

In the same way as Theorem 2 and 3, we have the following theorem.

Theorem 5. For b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

An(1,b|x) =
bn

n!

n

∑
l=0

S1(n, l)El(x)

and
n

∑
m=0

m!Am(b,b|x)S2(n,m) = En(b|x),

where En(x) and En(b|x) are the Euler polynomials and the Apostrol-Euler polynomials.

By comparing the coefficients of (27) and (28), we have the second identity.
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Theorem 6. For b ∈Q−{0}, we have

An(1,b|x) =
n

∑
l=0

l

∑
j=0

(−1)n−lbn

l!2n−l x j.

Proof. From (12), we observe that

(1+bt)x =
∞

∑
j=0

x j 1
j!
(log(1+bt)) j

=
∞

∑
j=0

x j
∞

∑
l= j

S1(l, j)
blt l

l!
=

∞

∑
l=0

( l

∑
j=0

S1(l, j)
bl

l!
x j
)

t l.

(29)

On the other hand, we have

2
2+bt

(1+bt)x =
∞

∑
i=0

(
− b

2

)i

t i
∞

∑
l=0

( l

∑
j=0

bl

l!
x j
)

t l

=
∞

∑
n=0

( n

∑
l=0

l

∑
j=0

(−1)n−lbn

l!2n−l x j
)

tn.

(30)

For r ∈ N, a ∈ Q+, and b ∈ Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1,, we consider the
generating functions of A(r)

n (a,b) and A(r)
n (a,b|x) of order r, which are derived from the multivariate

Fermionic p-adic integral on Zp, respectively as follows:

∫
Zp

· · ·
∫
Zp

(a+bt)x1+x2+···+xr dµ−1(x1)dµ−1(x2) · · ·dµ−1(xr)

=

(
2

(a+1)+bt

)r

=
∞

∑
n=0

A(r)
n (a,b)tn,

(31)

and

∫
Zp

· · ·
∫
Zp

(a+bt)x1+x2+···+xr+x dµ−1(x1)dµ−1(x2) · · ·dµ−1(xr)

=

(
2

(a+1)+bt

)r

(a+bt)x =
∞

∑
n=0

A(r)
n (a,b|x)tn.

(32)

It easy to see that n!A(r)
n (1,1) =Ch(r)n and n!A(r)

n (1,1|x) =Ch(r)n (x).

Theorem 7. For a ∈Q+ and b ∈Q−{0} with (a, p) = (b, p) = 1 and (b, t) = 1, we have

A(r)
n (a,b|x) =

(
b
a

)n ∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)nax1+···+xr+x dµ−1(x1) · · ·dµ−1(xr).

In particular, when x = 0, we have

A(r)
n (a,b) =

(
b
a

)n ∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr)nax1+···+xr dµ−1(x1) · · ·dµ−1(xr).

By comparing the coefficients of (29) and (30), we get the desired result.
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8 New numbers and polynomials which derived from the Fermionic p-adic integral on Zp

Proof. We observe that∫
Zp

· · ·
∫
Zp

(a+bt)x1+···+xr+x dµ−1(x1) · · ·dµ−1(xr)

=
∞

∑
n=0

∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xr + x

n

)
ax1+···+xr−n dµ−1(x1) · · ·dµ−1(xr)bntn

=
bn

an

∞

∑
n=0

∫
Zp

· · ·
∫
Zp

(x1 + · · ·+ xr + x)nax1+···+xr dµ−1(x1) · · ·dµ−1(xr)tn.

(33)

Theorem 8. For r ∈ N, a ∈Q+, and b ∈Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

A(r)
n (a,b) = ∑

j1+ j2+···+ jr=n

(
n

j1 j2 · · · jr

)
A j1(a,b)A j2(a,b) · · ·A jr(a,b).

Proof. We observe that(
2

(a+1)+bt

)r

=
∞

∑
n=0

(
∑

j1+ j2+···+ jr=n

(
n

j1 j2 · · · jr

)
A j1(a,b)A j2(a,b) · · ·A jr(a,b)

)
tn

n!
.(34)

Theorem 9. For r ∈ N, b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

A(r)
n (1,b|x) =

n

∑
l=0

l

∑
j=0

bl

l!
S1(l, j)A(r)

n−l(1,b)x
j.

In addition, when x = 0, we have

A(r)
n (1,b) =

n

∑
l=0

bl

l!
A(r)

n−l(1,b)x
j.

Proof. From (12) and (32), we observe that

∞

∑
n=0

A(r)
n (1,b|x)tn =

(
2

2+bt

)r

(1+bt)x =
∞

∑
m=0

A(r)
m (1,b)tm

∞

∑
l=0

( l

∑
j=0

S1(l, j)
bl

l!
x j
)

t l

=
∞

∑
n=0

( n

∑
l=0

l

∑
j=0

bl

l!
S1(l, j)A(r)

n−l(1,b)x
j
)

tn.

(35)

Combining (32) and (33), we get the desired result.

From (34), we ge the desired identity.

By comparing the coefficients of both sides of (35), we get the desired result.
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3. THE GENERALIZED CATALAN NUMBERS AND POLYNOMIALS ARISING FROM THE
FERMIONIC p-ADIC INTEGRAL ON Zp

In this section, we study new numbers of polynomials as one generalization of Catalan numbers
and polynomials which derived from the Fermionic p-adic integral on Zp, called the generalized
Catalan numbers and polynomials. We also explore interesting properties.

For t ∈ Cp with |t|p < p−
1

p−1 , a ∈ Q+, and b ∈ Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1,
let f (x) = a+bt.

From (3), we observe that∫
Zp

(a+bt)
x
2 dµ−1(x) =

2√
a+bt +1

=
∞

∑
n=0

Wn(a,b)tn.(36)

In particular, when a = 1, b =−4, we get the generating function of Catalan numbers as follows:∫
Zp

(1−4t)
x
2 dµ−1(x) =

2√
1−4t +1

and Wn(1,−4) =Cn.(37)

When a = 1, b = 4, we get

∫
Zp

(1+4t)
x
2 dµ−1(x) =

2√
1+4t +1

and Wn(1,4) = (−1)nCn.(38)

To proof of next theorem, we observe that
√

1+bt =
∞

∑
n=0

(1
2
n

)
tn =

∞

∑
n=0

(
1
2

)
n

1
n!

bntn

=
∞

∑
n=0

1
2(

1
2 −1)(1

2 −2) · · ·(1
2 −n+1)

n!
bntn

=
∞

∑
n=0

(−1)n−11 ·3 ·5 · · ·(2n−3)
n!2n bntn

=
∞

∑
n=0

(−1)n−11 ·2 ·3 ·4 · · ·(2n−2)(2n−3)(2n−1)(2n)
n!2n2 ·4 ·6 · · ·(2n−2)(2n−1)(2n)

bntn

=
∞

∑
n=0

(−1)n−1(2n)!
n!4n(2n−1)(n!)

tn =
∞

∑
n=0

(−1)n−1

4n(2n−1)

(
2n
n

)
bntn.

(39)

Theorem 10. For b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

n!Wn(1,b) = bn
∫
Zp

(
x
2

)
n

dµ−1(x),

and

∫
Zp

(
x
2

)
n

dµ−1(x) =
2(−1)n+1

4n+1(2n+1)

(
2(n+1)

n+1

)
.

Proof. First, we observe that∫
Zp

(1+bt)
x
2 dµ−1(x) =

∞

∑
n=0

∫
Zp

( x
2
n

)
bndµ−1(x)tn

=
∞

∑
n=0

bn

n!

∫
Zp

(
x
2

)
n
dµ−1(x)tn.

(40)
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Combining (36) and (40), we get the first identity.
From (39), we get

2
1+

√
1+bt

=
2(1−

√
1+bt)

bt
=

2
bt

∞

∑
n=1

bn(−1)n

4n(2n−1)

(
2n
n

)
tn

= 2
∞

∑
n=0

bn(−1)n+1

4n+1(2n+1)

(
2(n+1)

n+1

)
tn.

(41)

Theorem 11. For b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

Wn(1,b) =
n

∑
l=0

bn

n!2l S1(n, l)El,

where En are the Euler numbers.

Proof. From (9) and (12), we observe that
∞

∑
n=0

Wn(1,b)tn =
∫
Zp

(1+bt)
x
2 dµ−1(x)

=
∫
Zp

e
x
2 log(1+bt) dµ−1(x)

=
∞

∑
l=0

∫
Zp

(
x
2

)l 1
l!
(log(1+bt))l dµ−1(x)

=
∞

∑
l=0

∞

∑
n=l

S1(n, l)
bn

n!

∫
Zp

(
x
2

)l

dµ−1(x)tn

=
∞

∑
n=0

n

∑
l=0

bn

n!2l S1(n, l)Eltn.

(42)

The next theorem is the inverse formula of Theorem 11.

Theorem 12. For b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have
n

∑
m=0

m!2n

bm S2(n,m)Wm(1,b) = En,

where En are the ordinary Euler numbers.

Proof. Let

2√
1+bt +1

=
∞

∑
n=0

Wn(1,b)tn.(43)

By replacing t by 1
b(e

2t −1) in (43), by (9), the left-hand side of (43) is

2
et +1

=
∞

∑
n=0

En
tn

n!
.(44)

By comparing the coefficients of (40) and (41), we get the second identity.

By comparing the coefficients of both sides of (42), we get the desired result.
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On the other hand, from (13), the right-hand side of (43) is
∞

∑
m=0

Wm(1,b)
(

1
b
(e2t −1)

)m

=
∞

∑
m=0

m!
bmWm(1,b)

∞

∑
n=m

S2(n,m)
2ntn

n!

=
∞

∑
n=0

( n

∑
m=0

m!2n

bm S2(n,m)Wm(1,b)
)

tn

n!
.

(45)

For a ∈Q+ and b ∈Q= {0} we consider the generating function of Wn(a,b|x) which are derived
from the multivariate Fermionic p-adic integral on Zp as follows:

∫
Zp

(a+bt)
y+x

2 dµ−1(y) =
∞

∑
n=0

Wn(a,b|x)tn.(46)

When x = 0, Wn(a,b) =Wn(a,b|0). From (3), we have
∞

∑
n=0

Wn(a,b|x)tn =
2√

a+bt +1
(a+bt)

x
2 .(47)

We note that Wn(1,−4|x) =Cn(x) and Wn(1,4|x) = (−1)nCn(x).

Theorem 13. For a ∈Q+, and b ∈Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1,

Wn(a,b|x) =
bn

n!an a
x
2

∫
Zp

(
y+ x

2

)
n
a

y
2 dµ−1(y),

and

Wn(a,b|x) =
n

∑
k=0

bn

n!an22k a
x
2 S1(n,k)Ek(x;a

1
2 ),

where Ek(x; µ) are the Apostrol-Euler polynomials.

Proof. From (10) and (12), we observe that∫
Zp

(a+bt)
y+x

2 dµ−1(y) =
∞

∑
n=0

∫
Zp

( y+x
2
n

)
a

y+x
2 −nbntn dµ−1(y)

=
∞

∑
n=0

bn

n!an a
x
2

∫
Zp

(
y+ x

2

)
n
a

y
2 dµ−1(y)tn

=
∞

∑
n=0

bn

n!an a
x
2

n

∑
k=0

S1(n,k)
1
2k

∫
Zp

(
y+ x

2

)k

a
y
2 dµ−1(y)tn

=
∞

∑
n=0

n

∑
k=0

bn

n!an2k a
x
2 S1(n,k)Ek(x;a

1
2 )

(
1
2

)k

tn.

(48)

For r ∈ N, we consider the generating functions of W (a,b) and W (a,b|x) of order r, which are
derived from the multivariate Fermionic p-adic integral on Zp, respectively as follows:

By comparing the coefficients of (44) and (45), we have the desired result.

Combining (47) with (48), we attain the desired result.
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∫
Zp

· · ·
∫
Zp

(a+bt)
x1+x2+···+xr

2 dµ−1(x1)dµ−1(x2) · · ·dµ−1(xr)

=

(
2√

a+bt +1

)r

=
∞

∑
n=0

W (r)
n (a,b)tn,

(49)

and

∫
Zp

· · ·
∫
Zp

(a+bt)
x1+x2+···+xr+x

2 dµ−1(x1)dµ−1(x2) · · ·dµ−1(xr)

=

(
2√

a+bt +1

)r

(a+bt)
x
2 =

∞

∑
n=0

W (r)
n (a,b|x)tn.

(50)

From (7), we note that W (r)
n (1,−4) =C(r)

n and W (r)
n (1,−4) =C(r)

n (x).

The following theorem can be obtained in the same way as in Theorem 7.

Theorem 14. For a ∈Q+ and b ∈Q−{0} with (a, p) = (b, p) = 1 and (b, t) = 1, we have

W (r)
n (a,b|x) =

(
b
a

)n ∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xr + x

2

)
n
a

x1+···+xr+x
2 dµ−1(x1) · · ·dµ−1(xr).

In particular, when x = 0, we have

W (r)
n (a,b) =

(
b
a

)n ∫
Zp

· · ·
∫
Zp

(
x1 + · · ·+ xr + x

2

)
n
a

x1+···+xr
2 dµ−1(x1) · · ·dµ−1(xr).

Theorem 15. For r ∈ N, a ∈Q+, and b ∈Q−{0} with (a, p) = 1 = (b, p) and (b, t) = 1, we have

W (r)
n (a,b) = ∑

j1+ j2+···+ jr=n

(
n

j1 j2 · · · jr

)
Wj1(a,b)Wj2(a,b) · · ·Wjr(a,b).

Proof. We observe that(
2√

a+bt +1

)r

=
∞

∑
n=0

(
∑

j1+ j2+···+ jr=n

(
n

j1 j2 · · · jr

)
Wj1(a,b)Wj2(a,b) · · ·Wjr(a,b)

)
tn.(51)

Theorem 16. For r ∈ N, b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

W (r)
n (1,b|x) =

n

∑
l=0

l

∑
j=0

(−1)n− jbn− j+l

l!22n− j Cn− jS1(l, j)x j,

where Cn are the Catalan numbers.

Proof. From (12), we observe that

(1+bt)
x
2 =

∞

∑
j=0

(
x
2

) j 1
j!
(log(1+bt)) j

=
∞

∑
j=0

(
x
2

) j ∞

∑
l= j

S1(l, j)
blt l

l!
=

∞

∑
l=0

( l

∑
j=0

S1(l, j)
bl

2 jl!
x j
)

t l.

(52)

Combining (49) with (51), we ge the desired identity.
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By (6) and (52), we have(
2

1+
√

1+bt

)r

(1+bt)
x
2 =

(
2

1+
√

1−4(−b
4 t)

)r

(1+bt)
x
2

=
∞

∑
m=0

Cm

(
− b

4

)m

tm
∞

∑
l=0

( l

∑
j=0

S1(l, j)
bl

2 jl!
x j
)

t l

=
∞

∑
n=0

( n

∑
l=0

l

∑
j=0

(−1)n− jbn− j+l

l!22n− j Cn− jS1(l, j)x j
)

tn.

(53)

Theorem 17. For r ∈ N, b ∈Q−{0} with (b, p) = 1 and (b, t) = 1, we have

W (r)
n (1,b|x) =

n

∑
l=0

l

∑
j=0

bl

l!2 j S1(l, j)W (r)
n−l(1,b)x

j.

Proof. From (12) and (50), we observe that

∞

∑
n=0

W (r)
n (1,b|x)tn =

∞

∑
m=0

W (r)
m (1,b)tm

∞

∑
l=0

( l

∑
j=0

S1(l, j)
bl

2 jl!
x j
)

t l

=
∞

∑
n=0

( n

∑
l=0

l

∑
j=0

bl

l!2 j S1(l, j)W (r)
n−l(1,b)x

j
)

tn.

(54)

4. CONCLUSION

In this paper, we introduced two new numbers and polynomials derived from the (multivari-
ate) Fermionic p-adic integral on Zp. One is the generalized Changhee numbers and polynomials
A(r)

n (a,b|x) of order r (r ∈ N) and the other is the generalized Catalan numbers and polynomials
W (r)

n (a,b|x) of order r (r ∈ N). In particular, we found that we could not generalize to two new
numbers and polynomials derived from the Fermionic p-adic integral on Zp (Section 2: Remark)
when a ∈Q− (Section 2: Remark). From our definitions, we observed that n!A(r)

n (1,1|x) =Ch(r)n (x)
and W (r)

n (1,−4|x) =C(r)
n (x), where Ch(r)n (x) and C(r)

n are the Changhee polynomials of order r and
the Catalan polynomials of order r, respectively. In Section 2, we obtained relations of between
the generalized Changhee polynomials (numbers) of order r and the Euler polynomials (numbers)
of order r in Theorem 2 and 5. In particular, the Apostrol-Euler polynomials was expressed by the
finite some of the Stirling numbers of the second kind and An(b,b|x) in Theorem 5. In Section 3, we
showed relations of between the generalized Catalan numbers and the Euler numbers in Theorem
11 and 12. In Theorem 13, the generalized Catalan polynomials was expressed by the finite sum
of the Stirling numbers of the first kind and the Apostrol-Euler polynomials. In addition, we ob-
tained various different explicit formulas. As a result, for future projects, we would like to conduct
research into some potential applications of the numbers and polynomials derived in this paper.

By comparing the coefficients of (50) and (53), we get the desired result.

By comparing the coefficients of both sides of (54), we get the desired result.
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