
H∞ PID control for discrete-time network control

systems with redundant channels under dynamic

event-triggered scheme I

Abstract

This paper is concerned with the H∞ proportional-integral-derivative

(PID) control problem for a class of discrete-time network control systems

(NCSs). First, a dynamic event-triggered control (DETC) scheme has been

introduced to save the constrained network bandwidth. Moreover, in order

to improve the reliability of network communication, a redundant channels

transmission mechanism has been constructed during the transmission pro-

cess. Then, with the aid of an appropriate Lyapunov function, some sufficient

conditions are established to guarantee the exponentially stability and the

prescribed H∞ performance for the controlled system. Meanwhile, the gains

of the PID controller can be derived by solving linear matrix inequalities

(LMIs). Finally, a simulation example is presented to demonstrate the va-

IThis work was supported in part by the National Natural Science Foundation of China
under Grants 11661028; the Natural Science Foundation of Guangxi, PR China under
Grants 2020GXNSFAA159141.

∗

Preprint submitted to Journal of Advances in Mathematics and Computer ScienceMarch 4, 2022

UNDER PEER REVIEW

Editor-39
Typewritten text
Original Research Article



lidity of the proposed method.

Keywords: Proportional-integral-derivative (PID) control; Redundant

channels; Dynamic event-triggered control (DETC); H∞ performance.

1. Introduction

In the development and application of automatic control, with the com-

plexity of the practical systems, various control methods have been pro-

posed. Among these control methods, the proportional-integral-derivative

(PID) control is considered to be one of the most effective control methods.

The success of the PID control method is mainly due to its simple structure,

strong flexibility and easy adjustment [1]. Hence, the PID control problem

has aroused widespread attention, and certain research results have been ob-

tained, see [2]-[6]. Specifically, in [2], a new type PID-like neural network

controller has been constructed by using a mix locally recurrent neural net-

work for multivariable single-input/multi-oupput system. A novel fuzzy PID

control method combining the PID cntrol and the optimal fuzzy resoning

model has been proposed in [5] to enhance the robustnesss of the control

system. Most of the existing study on PID control issues is based on the

assumption that the states of the system is fully available. However, in the

actual industrial process, the system states is often not directly available.

Therefore, it has become one of the most popular methods to obtain the

measurement system state through the observer. In recent decades, a lot of

results about complex dynamic network state measurement have been pro-

posed [7]-[10]. Therefore, it is very meaningful to study the observer-based

PID control in most network systems where the system states is unavailable.
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For several decades, network control systems (NCSs) have been widely

used in many fields for their advantages in reducing costs, saving energy, and

improving flexibility and reliability. The signals between the various com-

ponents of the NCSs are exchanged through some communication network

medium [11]. However, the communication resources of these communica-

tion networks are usually limited. Specifically, the limited network band-

width will inevitably cause network-induced phenomenon(e.g. data packet

dropouts, data congestion and communication delays) and these behaviors

have attracted considerable research attention, see [12]-[14]. Therefore, how

to effectively save limited bandwidth resources and improve the utilization

efficiency of network bandwidth has significant research value and attracted

widespread attention in the field of control and signal processing [15]-[18].

In the past few years, event-triggered schemes have been extensively stud-

ied to reduce the communication burden [19]-[21]. Under the event-triggered

schemes, data will be released only when the trigger conditions are met. It

is worth noting that the above studies are based on static event-triggered

schemes. However, in actual research, due to the existence of network-

induced phenomenon and network delays, the data transmission rate may

be time-varying, so the real-time states of bandwidth utilization should be

considered. Therefore, a dynamic event-triggered control (DETC) scheme is

proposed, which can dynamically adjust the threshold parameters according

to the external environment. Recently, control issues based on the dynamic

event-triggered schemes have begun to receive attention, see [22]-[26]. For

example, in [22], under the framework of observer-based PID control system,

a DETC scheme has been presented to improve resource utilization efficien-
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cy. The DETC scheme and the complex dynamic network synchronization

controller has been integrated in [23], and the usefulness of the dynamic

event-triggered synchronization control law has been confirmed by a simula-

tion example. However, to the best of the authors knowledge, PID control

based on dynamic event-triggered schemes has not been fully studied, which

is one of our research motivations.

In addition to the aforementioned event-triggered schemes, introducing

the transmission protocol in the data transmission process is another way

to improve the reliability of network transmission. And the frequently-used

communication protocols include stochastic communication (SC) protocol

[27],[28], round-robin (RR) protocol [29],[30], try-once-discard (TOD) pro-

tocol [31]-[32] and redundant channel transmission (RCT) protocol [33]-[34].

In most existing networks, data is transmitted via a single channel. When

a severe communication environment occurs on the network, the data trans-

mitted in the channel may occur packet dropouts. In practical, however, two

or more channels can be used at the same time to improve the reliability

of communication services. Therefore, inserting redundant channels in net-

work transmission can reduce the probability of packet dropouts. The key

idea of the redundant channels transmission mechanism is that if the main

channel suffers certain communication failure, other channels will be intro-

duced for signal transmission to protect data transmission, thereby greatly

improving the reliability of network communication. As an effective way to

deal with data packet dropouts, redundant channels transmission has been

widely adopted in networked evaluation/control systems. The redundan-

t channels transmission mechanism has received special attention, and has
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achieved fruitful results in [35]-[39]. Specifically, in order to improve the

reliability of data transmission, the redundant channels transmission mech-

anism has been employed for the singularly perturbed systems in [35]. By

taking time-varying random delays into account, a novel state estimator has

been designed in [36] for neural networks via redundant channels. However,

a thorough literature search showed that the related research work has not

been extended to the observer-based PID control problem under the DETC

schemes, which constitutes another research motivation of ours.

To summarize the discussions above, this paper focuses on the H∞ PID

control problem for discrete-time network control systems with redundant

channels under DETC scheme. The main contributions of this article are

stressed as follows: (1)A new H∞ PID control problem is addressed for the

discrete-time NCSs where both the redundant channels transmission mecha-

nism and the dynamical event-triggered scheme are considered; (2)Sufficien-

t conditions are proposed to guarantee the exponetial stability as well as

the prescribed H∞ performance of the controlled systems; (3)Based on the

Lyapunov stability theory and the matrix inequality approach, an easy-to-

implement PID controller parameter design method is derived.

The organization of the rest of this paper is given as follows. Section 2

presents the main problem considered in this paper. The observer-based H∞
PID control issue for discrete-time NCSs subject to redundant channels and

the DETC scheme has been addressed in Section 3. Section 4 provides an

example to examine the presented method. Finally, conclusions are drawn

in Section 5.

Notations: Rn×m denotes the set of all n×m real matrices. E{·} stands
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for the expectation and diag{·} refers to a block diagonal matrix. λmin(·)

and λmax(·) denote, respectively, the minimal and maximal eignvalues of

a matrix. I and 0 represent identity matrix and zero matrix respectively.

sym(Z) = Z + ZT . If there are no special instructions, the matrices are

considered to have appropriate dimensions.

2. Preliminaries

Consider the following discrete-time network control systems (NCSs)x(k + 1) = Ax(k) +Bu(k) +D$(k)

z(k) = Fx(k)

(1)

where x(k) ∈ Rnx is the state vector and u(k) ∈ Rnu denotes the control

input; $(k) ∈ (l2[0,∞),Rnω) and z(k) ∈ Rnz represents, respectively, the

system noise and the control output. A, B, D, F are known constant matrices

with suitable dimensions and assume the matrix B is of full column rank.

In networked systems, the single channel of data transmisson is often

unreliable due to the existence of packet loss. Therefore, in order to reduce

the probability of data packet loss, this article considers introducing the

following redundant channels transmission mechanism as shown in Fig.1,

and its mathematical model is as follows:

y(k) = δ1(k)C1x(k) +
N∑
i=2

{
i−1∏
j=1

(1− δj(k))δi(k)Cix(k)

}
(2)

where y(k) ∈ Rny is the measurement output and Ci with i ∈ [1, N ] are know

real matrices. The random variablies δi(k)(i = 1, · · · , N) which denotes the
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randomly occurring packet dropout phenomenon for the ith channel, are

mutally independent Bernoulli distributions with the following probailities:

Prob {δi(k) = 1} = δ̄i, P rob {δi(k) = 0} = 1− δ̄i.

where δ̄i ∈ [0, 1] are known constants.

Remark 2.1. In order to reduce the probability of packeet loss, the redun-

dant channels transmission protocol is introduced in this paper. Under this

protocol, when δ1(k) = 1 implies that there is no packet loss occurred in

the first channel, and the other channels will not be activated. Moreover,

when δi(k) = 0(i = 1, 2, · · · , q − 1) and δq(k) = 1, which implies that the

packet loss happen from channel 1 to channel q − 1 at time k, then the in-

formation will be transmitted through the qth channel. In particular, when

δi(k) = 0(i = 1, 2, · · · , N), which means that all channels are nont availiable.

As such, compared with the traditional one-channel transmisson system, the

probability of data packet loss is reduced from 1 − δ̄1 to
∏N

i=1(1 − δ̄i) af-

ter imploying the redundant channels transmission protocol. Based on the

above discussions, although the introduction of redundant channels in the

data transmission process will increase the cost of equipment, the reliability

of the data transmission is guaranteed. Therefore, in engineering practice,

the number of redundant channels should be determined after weighing data

reliability and cost.

Now, considering the effect of redundant channels transmission mecha-

nism, we introuce the following mathematical notations:

δ(k) , δ1(k)C1 +
N∑
i=2

{
i−1∏
j=1

(1− δj(k)) δi(k)Ci

}
(3)
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E{δ(k)} = δ̄1C1 +
N∑
i=2

{
i−1∏
j=1

(
1− δ̄j

)
δ̄iCi

}
, δ̄ (4)

Then, (2) can be represented by the following form:

y(k) = δ(k)x(k) (5)

In this paper, the DETC scheme is introduced to reduce the burden of the

communication network. We employ the event-generator function f(., ., .) as

follows:

f(ψ(k), φ(k), θ) = ψT (k)ψ(k)− 1

σ
φ(k)− θyT (k)y(k) (6)

where ψ(k) = y(kt)− y(k)(k ∈ [kt, kt+1)). k and kt denote, respectively, the

sampling instant and the latest triggered time; σ > 0 and θ > 0 are given

scalars. φ(k) is an internal dynamical variable satisfyingφ(k + 1) = λφ(k) + θyT (k)y(k)− ψT (k)ψ(k)

φ(0) = 0

(7)

where λ ∈ (0, 1) is a given scalar.

It is obvious that once the triggering condition f(ψ(k), φ(k), θ) > 0 is

satisfied, the measurement output y(k) is sent to the observer. Let us define

the triggering time as 0 < k0 < k1 < · · · < kt < · · · . Then the next

transmitted instant kt+1 can be described as

kt+1 = min {k ∈ N |k > kt, f(ψ(k), φ(k), θ) > 0} (8)

Remark 2.2. It can be observed from (6) that the triggering threshold is

time-varying, which depends on the time-varying φ(k). Compared with the

traditional static event-triggered scheme proposed in [19], the dynamic event-

triggered scheme whose threshold parameters can be dynamically adjusted can
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better meet the engineering needs. In particularly, when σ approaching to in-

finity, the dynamic event-triggered scheme can be regarded as the traditional

static event-triggered scheme proposed in [19]. Therefore, the proposed dy-

namic event-triggered method includes the static one as a special case.

Plant

Sensor 1

Sensor 2

Sensor N

Primary 

Channel 1

Redundant 

Channel 2

Redundant 

Channel N

Event-trigger

Generator

Observer

PID controllerActuator

  

Figure 1: Discrete-time PID control system under redundant channels and DETC scheme.

In practice, it is difficult to directly obtain the states information of the

system. Thus, the observer is designed to estimate the system states. The

specific design is that

x̂(k + 1) = Ax̂(k) +Bu(k) + L(y(kt)− ŷ(k)) (9)

where x̂(k) ∈ Rnx is the estimate of x(k) and ŷ(k) ∈ Rny is the estimate of

y(k), L is the observer gain.

Then, the considered observer-based PID controller is described as fol-

lows:

u(k) = KP x̂(k) +KI

k−1∑
s=k−d

x̂(s) +KD(x̂(k)− x̂(k − 1)) (10)
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where KP , KI , KD are the controller gains and d > 1 is a give scalar repre-

senting the length of time window.

Remark 2.3. Considering the fact that the state of system is often obtained

directly unavailiable, this paper introduces an observer to measure the state

of system. Moreover, due to the strong practicability of the PID controller

in engineering practice, the observer-based PID controller has been designed.

The PID controller consists of three parts: the proportional part (reflecting

the present), the integral part (reflecting the past), and the derivative part

(reflecting the future). In particular, a time window of finite length is applied

in the integral part, which greatly reduces the computational burden.

Defining e(k) = x(k)− x̂(k) as the estimation error. Then, according to

(1) and (9), the estimation error system can be obtained as follows:

e(k + 1) = (A− Lδ(k))e(k) +D$(k)− Lψ(k) (11)

Now, based on the system (11) and the observer-based PID control law

(10), we derive the following closed-loop system:X (k + 1) = (Ā+ Ã)X (k) + B̄η(k) + D̄$(k) + L̄ψ(k)

z(k) = F̄X (k)

(12)

where

X (k) = [xT (k) eT (k)]T , η(k) = [X T (k − 1) X T (k − 2) · · · X T (k − d)]T ,

Ā =

A+B(KP +KD) −B(KP +KD)

0 A− Lδ̄

 , Ã =

0 0

0 −Lδ̃(k)

 ,
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B̄ =

BK̄
0

 , D̄ =

D
D

 , L̄ =

 0

−L

 , F̄ =
[
F 0

]
,

K̄ =

K̄1 − K̄2 K̄1 K̄1 · · · K̄1︸ ︷︷ ︸
d−1

 , K̄1 = [KI −KI ] ,

K̄2 = [KD −KD] , δ̃(k) = δ(k)− δ̄.

Definition 2.1. The closed-loop system (12) with $(k) = 0 is exponentially

stable if there exist two scalars α(α > 0) and β(0 < β < 1), satisfying

E
{
‖X (k)‖2

}
≤ αβk max

−d≤q≤0
E
{
‖Ψ(q)‖2

}
(13)

Definition 2.2. The considered system (1) under the DETC scheme and

the redundant channels transmission mechanism is exponentially stable and

satisfy a prescribed H∞ performance index γ, if the following requirements

are satisfied simultaneously

(1)The considered system is exponentially stable in the sense of Definition

(2.1).

(2)Under zero initial condition, for all nonzero $(k) ∈ l2[0,∞), there

exist a scalar γ > 0, such that the controlled output z(k) satisfies

E

{
∞∑
k=0

zT (k)z(k)

}
≤ γ2E

{
∞∑
k=0

$T (k)$(k)

}
(14)

Lemma 2.1. [35] For stochastic varying matrix δ̃(k) = δ(k)− δ̄, a positive-

definite matrix P and a real matrix M , it has:

E{Mδ̃(k)} = 0; (15)

E{(Mδ̃(k))TP (Mδ̃(k))}
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= −δ̄TMTPMδ̄ + δ̄1C
T
1 M

TPMC1

+
N∑
i=2

{
i−1∏
j=1

(1− δ̄j)δ̄iCT
i M

TPMCi

}
. (16)

Lemma 2.2. [40] For given positive matrix Y , any matrix X and any scalar

θ, the following inequality holds:

−XTY X ≤ θ2Y −1 − θX − θXT (17)

Lemma 2.3. [41] For positive definite matrix R ∈ Rnx×nx, and vectors

x(x > 0), y(y > 0), it has:

2xTy ≤ xTRx+ yTR−1y (18)

Lemma 2.4. [42] Suppose that the matrix Q with appropriate dimension,

the following two items are equivalent:

1. There exist two symmetric and positive-definitive matrices X, Y such

that −X ∗

Q −Y −1

 < 0

2. There exist two symmetric and positive-definitive matrices X, Y , and

constant matrix Z satisfying−X ∗

ZQ sym(−Z) + Y

 < 0

Lemma 2.5. [43] For the DETC scheme consists of (6) and (7) with the

initial value φ(0) ≥ 0, the internal dynamic variable satisfies φ(k) ≥ 0 for

all k ≥ 0 if the parameters σ(σ > 0) and λ(0 < λ < 1) satisfy λσ ≥ 1.
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3. Main Results

In this section, sufficient conditions are given to guarantee the H∞ per-

formance requirement for designed systems (1) under DETC scheme and

redundant channels transmission mechanism.

Theorem 3.1. Consider the matrices KP , KI , KD and L are given. A-

summe that the parameters σ(σ > 0) and λ(0 < λ < 1) satisfy λσ ≥

1. If there exist positive scalar θ, τ , positive definite matrices P , Qi(i =

1, 2, · · · , d) satisfying the following matrix inequalities:

Π̄ =

Π̄11 ∗

Π̄21 Π̄22

 < 0 (19)

where

Π̄11 =


Q̄+ τ̄ Ĉ − P + Σ ∗ ∗ ∗

0 −Q ∗ ∗

0 0 −( 1
σ

+ τ)Iny ∗

0 0 0 λ+τ−1
σ

I1

 ,

Π̄21 =



PĀ PB̄ P L̄ 0

PΛ1 0 0 0

PΛ2 0 0 0
...

...
...

...

PΛN 0 0 0


,

Π̄22 = diag

−P,−P, · · · ,−P︸ ︷︷ ︸
N+1

 , Q̄ =
d∑
i=1

Qi, Σ = Σ1 − Σ2 − Σ3,

Σ1 =

0 ∗

0 P̂

 , Σ2 =

0 ∗

0 δ̄TLT P̂

 , Σ3 =

0 ∗

0 P̂Lδ̄

 ,
13
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P = diag{P̂ , P̂}, Q = diag {Q1, Q2, · · · , Qd} ,

Ĉ =

−δ̄T δ̄ + δ̄1C
T
1 C1 +

∑N
i=2

{∏i−1
j=1(1− δ̄j)δ̄iCT

i Ci

}
∗

0 0

 ,
τ̄ = θ(

1

σ
+ τ), Λ1 =

0 ∗

0
√
δ̄1LC1

 ,
Λn =

0 ∗

0
√∏n−1

j=1 (1− δ̄j)δ̄nLCn

 , n = 2, 3, · · · , N.

then the closed-loop system (12) is exponentially stable and satisfies the pre-

scribed H∞ performance index.

Proof. First, we choose the following Lyapunov functional:

V (k) =
3∑
i=1

Vi(k) (20)

where

V1(k) = X T (k)PX (k)

V2(k) =
d∑
i=1

k−1∑
q=k−i

X T (q)QiX (q)

V3(k) =
1

σ
φ(k).

Then, according to the state evolution of the system (12), calculating the

difference of V (k), and taking the mathematical expectation, we have

E {4V1(k)} =E
{
X T (k + 1)PX (k + 1)−X T (k)PX (k)

}
=E{((Ā+ Ã)X (k) + B̄η(k) + D̄$(k) + L̄ψ(k))TP ((Ā+ Ã)X (k)

+ B̄η(k) + D̄$(k) + L̄ψ(k))−X T (k)PX (k)}
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=E{X T (k)(ĀTPĀ+ 2ĀTPÃ+ ÃTPÃ− P )X (k)

+ ηT (k)B̄TPB̄η(k) +$T (k)D̄TPD̄$(k) + ψT (k)L̄TPL̄ψ(k)

+ 2X (Ā+ Ã)TPB̄η(k) + 2X T (k)(Ā+ Ã)TPD̄$(k)

+ 2X T (k)(Ā+ Ã)TPL̄ψ(k) + 2ηT (k)B̄TPD̄$(k)

+ 2ηT (k)B̄TPL̄ψ(k) + 2$T (k)D̄TPL̄ψ(k)} (21)

E {V2(k)} =E

{
d∑
i=1

k∑
q=k+1−i

X T (q)QiX (q)−
d∑
i=1

k−1∑
q=k−i

X T (q)QiX (q)

}

=E

{
d∑
i=1

X T (k)QiX (k)−
d∑
i=1

X T (k − i)QiX (k − i)

}
(22)

E {V3(k)} =E
{

1

σ
φ(k + 1)− 1

σ
φ(k)

}
=E

{
1

σ
(λφ(k) + θyT (k)y(k)− ψT (k)ψ(k)− φ(k))

}
=E

{
λ− 1

σ
φ(k) +

θ

σ
xT (k)δT (k)δ(k)x(k)− 1

σ
ψT (k)ψ(k)

}
=E

{
λ− 1

σ
φ̄T (k)φ̄(k) +

θ

σ
X (k)T C̄T C̄X (k)− 1

σ
ψT (k)ψ(k)

}
(23)

where

φ̄(k) = φ
1
2 (k), C̄ = [δ(k) 0].

According to the dynamical event-triggered condition (6), we can obtain

τ(−ψT (k)ψ(k) +
1

σ
φ(k) + θyT (k)y(k)) ≥ 0 (24)

where τ > 0 is a given scalar.
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Letting $ = 0, by combining (20)-(24), it follows from Lemma(2.1) that

E{4V (k)} =E

{
3∑
i=1

4Vi(k)

}
≤E{X T (k)(ĀTPĀ+ ÃTPÃ− P )X (k) + ηT (k)B̄TPB̄η(k)

+ ψT (k)L̄TPL̄ψ(k) + 2X T (k)ĀTPB̄η(k)

+ 2X T (k)ĀTPL̄ψ(k) + 2ηT (k)B̄TPL̄ψ(k)

+
d∑
i=1

X T (k)QiX (k)−
d∑
i=1

X T (k − i)QiX (k − i)

+
λ− 1

σ
φ̄T (k)φ̄(k) +

θ

σ
X T (k)C̄T C̄X (k)− 1

σ
ψT (k)ψ(k)

+ τ(−ψT (k)ψ(k) +
1

σ
φ̄T (k)φ̄(k) + θyT (k)y(k))}

=ΦT
1 (k)(Π̄∗11 + ΘT

1 P
−1Θ1)Φ1(k) (25)

where

Φ1(k) =
[
X T (k) ηT (k) ψT (k) φ̄T (k)

]T
,

Π̄∗11 =


Q̄+ τ̄ Ĉ − P + Σ̂ ∗ ∗ ∗

0 −Q ∗ ∗

0 0 −( 1
σ

+ τ)Iny ∗

0 0 0 λ+τ−1
σ

I1

 ,

Θ1 =
[
PĀ PB̄ P L̄ 0

]
.

in which

Ĉ = E{C̄T C̄}

=

−δ̄T δ̄ + δ1C
T
1 C1 +

∑N
i=2

{∏i−1
j=1(1− δ̄j)δ̄iCT

i Ci

}
∗

0 0

 ,
16
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Σ̂ = E{ÃTPÃ} =

0 ∗

0 −δ̄TLT P̂Lδ̄

+ Λ,

Λ =

0 ∗

0 δ1C
T
1 L

T P̂LC1 +
∑N

i=2

{∏i−1
j=1(1− δ̄j)δ̄iCT

i L
T P̂LCi

} .
For matrix Σ̂, it follows from Lemma(2.2) that

− δ̄TLT P̂Lδ̄ ≤ P̂ − δ̄TLT P̂ − P̂Lδ̄ (26)

which implies that

Σ̂ ≤ Σ + Λ. (27)

Then, by further utilizing the Schur complement lemma, it is clear that

E{4V (k)} < 0 can be ensured by (19).

From (25), we know that there exists a sufficient small scalar ` > 0 such

that the following inequality holds:

Π̄∗11 + ΘT
1 P
−1Θ1 + `diag{I, 0, 0, I} < 0 (28)

which implies that

E{4V (k)} < −`E
{∥∥ΨT (k)

∥∥2} (29)

where

Ψ(k) =
[
X T (k) φ̄T (k)

]T
.

In the following, we shall proceed to deal with the exponential stability

analysis of the closed-loop system (12). According to the definition of V (k),

we have

E{V (k)} ≤ E

{
a ‖Ψ(k)‖2 + d̄

k−1∑
q=k−d

‖Ψ(q)‖2
}

(30)
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where

a = max{λmax(P ),
1

σ
}, d̄ = dλmax(Q).

Then, for any r > 0, it follows from (29) and (30) that

E
{
rk+1V (k + 1)

}
− E

{
rkV (k)

}
= rk+1E {4V (k)}+ rk(r − 1)E {V (k)}

≤ b1(r)r
kE
{
‖Ψ(k)‖2

}
+ b2(r)

k−1∑
q=k−d

rkE
{
‖Ψ(q)‖2

}
(31)

where

b1(r) = −`r + (r − 1)a, b2(r) = (r − 1)d̄.

Futhermore, for any m ≥ d+ 1, summing up both sides of (31) from 0 to

m− 1 with respect to k, we obtain

E{rmV (m)} − E{V (0)} ≤b1(r)
m−1∑
k=0

rkE
{
‖Ψ(k)‖2

}
+ b2(r)

m−1∑
k=0

k−1∑
q=k−d

rkE
{
‖Ψ(q)‖2

}
(32)

The last term in (32) can be computed as

m−1∑
k=0

k−1∑
q=k−d

rkE
{
‖Φ(q)‖2

}
≤(

−1∑
q=−d

q+d∑
k=0

+
m−d−1∑
q=0

q+d∑
k=q+1

+
m−1∑
q=m−d

m−1∑
k=q+1

)rkE
{
‖Φ(q)‖2

}
≤d

−1∑
q=−d

rq+dE
{
‖Φ(q)‖2

}
+ d

m−d−1∑
q=0

rq+dE
{
‖Φ(q)‖2

}
+ d

m−1∑
q=m−d

rq+dE
{
‖Φ(q)‖2

}
18
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≤drd max
−d≤q≤0

E
{
‖Φ(q)‖2

}
+ drd

m−1∑
k=0

rkE
{
‖Φ(k)‖2

}
(33)

Substituting the (33) into (32) results in

E{rmV (m)} − E{V (0)} ≤π1(r)
m−1∑
k=0

rkE
{
‖Ψ(k)‖2

}
+ π2(r) max

−d≤q≤0
E
{
‖Φ(q)‖2

}
(34)

where

π1(r) = b1(r) + drdb2(r), π2(r) = drdb2(r).

It is clear that

E {V (m)} ≥ g1E
{
‖Ψ(m)‖2

}
, (35)

E {V (0)} ≤ g2 max
−d≤q≤0

E
{
‖Φ(q)‖2

}
. (36)

where

g1 = min{λmin(P ),
1

σ
}, g2 = max{λmax(P ), dλmax(Q)}.

Duing to the fact that π1(1) = −` < 0 and lim
r→∞

= +∞, there exists a

scalar r0 > 1 such that π1(r0) = 0. Then, considering (34)-(36), we have

E
{
‖X (m)‖2

}
≤E

{
‖Ψ(m)‖2

}
≤ 1

rm0

g2 + drd0b2(r0)

g1
max
−d≤q≤0

E
{
‖Φ(q)‖2

}
. (37)

Denoting k = m, α = (g2 + drd0b2(r0))/g1, β = 1/r0 and considering

φ̄(q) = 0(−d ≤ q ≤ 0), from Definition 2.1, we can know that the system (1)

is exponentially stable. The proof is complete.

Now, we are ready to deal with the H∞ performance analysis issue for

the closed-loop system (12).
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Theorem 3.2. Assume that the parameters σ(σ > 0) and λ(0 < λ < 1)

satisfy λσ ≥ 1. And the H∞ performance index γ > 0, the matrices KP ,

KI , KD and L are given. Then, the closed-loop system (12) is exponentially

stable with the prescribed H∞ performance if there exist positive scalar θ, τ ,

and positive definite matrices P , Qi(i = 1, 2, · · · , d) satisfying

Π̂ =

Π̂11 ∗

Π̂21 Π̂22

 < 0 (38)

where

Π̂11 =



Q̄+ τ̄ Ĉ − P + FTF + Σ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗

0 0 −( 1
σ

+ τ)Iny ∗ ∗

0 0 0 λ+τ+1
σ

I1 ∗

0 0 0 0 −γ2Iω


,

Π̂21 =



PĀ PB̄ P L̄ 0 PD̄

PΛ1 0 0 0 0

PΛ2 0 0 0 0
...

...
...

...
...

PΛN 0 0 0 0


, Π̂22 = Π̄22.

and other parameters are defined in Theorem 3.1.

Proof. For any $(k) 6= 0, considering the (20)-(24), we have

E{4V (k)}+ E{ZT (k)Z(k)} − γ2E{$T (k)$(k)}

≤E{X T (k)(ĀTPĀ+ ÃTPÃ− P )X (k) + ηT (k)B̄TPB̄η(k)

+$T (k)D̄TPD̄$(k) + ψT (k)L̄TPL̄ψ(k) + 2X T (k)ĀTPB̄η(k)
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+ 2X T (k)ĀTPL̄ψ(k) + 2X T (k)ĀTPD̄$(k) + 2ηT (k)B̄TPL̄ψ(k)

+ 2ηT (k)B̄TPD̄$(k) + 2$T (k)D̄TPL̄ψ(k) +
d∑
i=1

X T (k)QiX (k)

−
d∑
i=1

X T (k − i)QiX (k − i) +
λ− 1

σ
φ̄T (k)φ̄(k) +

θ

σ
X T (k)C̄T C̄X (k)

− 1

σ
ψT (k)ψ(k) + τ(−ψT (k)ψ(k) +

1

σ
φ̄T (k)φ̄(k) + θyT (k)y(k))

+ X T (k)(FTF)X (k)− γ2$T (k)$(k)}

=ΦT
2 (k)(Π̂∗11 + ΘT

2 P
−1Θ2)Φ2(k) (39)

where

Φ2(k) =
[
X T (k) ηT (k) ψT (k) φ̄T (k) $T (k)

]T
,

Π̂∗11 =



Q̄+ τ̄ Ĉ − P + FTF + Σ̂ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗

0 0 −( 1
σ

+ τ)Iny ∗ ∗

0 0 0 λ+τ−1
σ

I1 ∗

0 0 0 0 −γ2Inω


Θ2 =

[
PĀ PB̄ P L̄ 0 PD̄

]
.

Then, by using the Schur complement lemma, it follows from (38) that

Π̂∗11 + ΘT
2 P
−1Θ2 < 0, which means

E {4V (k)}+ E
{
ZT (k)Z(k)

}
− γ2E

{
$T (k)$(k)

}
< 0 (40)

Moreover, summing up both sides of (40) frrom 0 to ∞ with respect to

k, we can obtain

E

{
∞∑
k=0

ZT (k)Z(k)

}
−γ2E

{
∞∑
k=0

$T (k)$(k)

}
< E {V (0)}−E {V (∞)} (41)
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Noting that V (0) = 0 and V (∞) ≥ 0, we have

E

{
∞∑
k=0

ZT (k)Z(k)

}
≤ γ2E

{
∞∑
k=0

$T (k)$(k)

}
(42)

The proof is accomplished.

Finally, the designed PID controller and observer are proposed in the

following theorem.

Theorem 3.3. Let the parameters σ(σ > 0) and λ(0 < λ < 1) satisfy

λσ ≥ 1 and the H∞ performance index γ > 0 be given. Assume that there

exist positive scalar θ, τ and positive definite matrices P , Qi(i = 1, 2, · · · , d),

X satisfying 
Π̃ + E1Y E

T
1 ∗ ∗

BTBK̃PE2 sym−BTBX ∗

0 P̂B −BX −Y

 < 0 (43)

where

Π̃ =

Π̃11 ∗

Π̃21 Π̃22

 , Π̃21 =



Â B̂ L̂ 0 D̂

Λ̂1 0 0 0 0

Λ̂2 0 0 0 0
...

...
...

...
...

Λ̂N 0 0 0 0


,

Π̃11 =



Q̄+ τ̄ Ĉ − P + FTF + Σ̃ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗

0 0 −( 1
σ

+ τ)Iny ∗ ∗

0 0 0 λ+τ+1
σ

I1 ∗

0 0 0 0 −γ2Inω


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Π̃22 = Π̄22, Σ̃ = Σ1 − Σ̃2 − Σ̃3, Σ̃2 =

0 0

0 δ̄T L̃T

 , Σ̃3 =

0 0

0 L̃δ̄

 ,
Â =

P̂A+B(K̃P + K̃D) −B(K̃P + K̃D)

0 P̂A− L̃δ̄

 , B̂ =

BK̂
0

 ,
D̂ =

P̂D
P̂D

 , L̂ =

 0

−L̃

 , K̂ =

K̂1 − K̂2 K̂1 K̂1 · · · K̂1︸ ︷︷ ︸
d−1

 ,
K̂1 =

[
k̃I , −K̃I

]
, K̂2 =

[
K̃D − K̃D

]
, Λ̂1 =

0 ∗

0
√
δ̄1L̃C1

 ,
Λ̂n =

0 ∗

0
√∏n−1

j=1 (1− δ̄j)δ̄nL̃Cn

 , n = 2, 3, · · · , N,

ET
1 =

[
Inx 0nx×(2(N+d+1)nx+nx+2ny+nω+1)

]
,

E2 =
[
0nx×2nx Inx 0nx×(2(N+d)nx+nx+2ny+nω+1)

]
.

and other parameters are defined in Theorem 3.1 and Theorem 3.2. More-

over, if the inequality (43) is available, the desired PID control gains and

observer gain are given by:

KP = X−1K̃P , KI = X−1K̃I , KD = X−1K̃D, L = P̂−1L̃. (44)

Proof. The inequality (38) is equivalent to

Π̃ + sym{E1(P̂B −BX)(X−1K̃P )E2} < 0 (45)

From Lemma 2.3, it is clear that there exist a positive definite matrix

Y ∈ Rnx×nx satisfying

Π̃ + E1Y E
T
1 + ET

2 (X−1K̃P )T (P̂B −BX)TY −1(P̂B −BX)(X−1K̃P )E2 < 0

(46)
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According to the Schur complement, the above inequality is equivalent toΠ̃ + E1Y E
T
1 ∗

(X−1K̃P )E2 −Ω

 < 0 (47)

where Ω = (P̂B −BX)TY −1(P̂B −BX).

Then, based on the Lemma 2.4, we haveΠ̃ + E1Y E
T
1 ∗

BTBK̃PE2 sym{−BTBX} − Ω

 < 0 (48)

Finally, by further using the Schur complement lemma, it is obvisous that

(43) can be ensured by (48). Thus, the proof is now complete.

Remark 3.1. It is worth noting that Theorem 3.3 derives a LMI-based

solution to co-design the observer and the PID controller for the discrete-

time NCSs under the redundant channel transmission protocol and the DETC

scheme. As such, the conservative effect of the results has been reduced.

Moreover, compared with other linearization methods, the linearization method

used in Theorem 3.3 can directly calculate the variable X matrix in the L-

MI, so as to quickly obtain the PID controller gain and greatly reduce the

computational complexity.

4. Examples

In this section, a numerical simulation example is presented to illustrate

the effectiveness of proposed observer-based PID controller design scheme.

Consider system (1) with the following parameters:

A =

−0.02 0.1

0.01 −0.02

 , B =

−0.2 0.03

0.2 0.03

 ,
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D =

−0.03

0.1

 , F =
[
0.2 −0.3

]
.

In this example, the redundant channels’ number is N = 3. The proba-

bilities of successfully transmitting data packets on three different channels

are taken as δ1 = 0.8, δ2 = 0.7 and δ3 = 0.6. The measurement matrices are

C1 =


0.1 0.02

0.03 −0.1

0.1 0.01

0.04 −0.1

 , C2 =


0.2 0.01

0.02 −0.2

0.2 0.03

0.01 −0.2

 , C3 =


0.3 0.03

0.01 −0.3

0.3 0.02

0.01 −0.3

 .

The target for us is to design a state observer like (9) and a PID controller

like (10) such that the controller closed-loop systems exponetially stable and

achieve the desired performace index γ = 1. The other relevant parameters

are given as θ = 0.2, σ = 5, τ = 0.3, λ = 0.6, d = 2.

By solving the linear matrix inequality in Theorem(3.3), we have:

P =


4.1659 0.0905 0 0

0.0905 4.5781 0 0

0 0 4.1659 0.0905

0 0 0.0905 4.5781

 ,

Q1 = Q2 =


1.2424 0.0387 0.0001 −0.0002

0.0387 1.3410 −0.0005 0.0007

0.0001 −0.0005 0.1236 0.0286

−0.0002 0.0007 0.0286 0.1260

 ,

X =

4.9775 0.0363

0.0363 5.5443

 , Y =

1.0221 0.0421

0.0421 1.1006

 ,
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L̃ =

0.7238 −0.0651 0.7131 −0.0257

0.1928 −0.8480 0.1510 −0.8443

 , K̃P =

0.0283 −0.0644

0.0344 −0.6450

 ,
K̃I =

0.0010 −0.0027

0.0005 −0.0135

 , K̃D =

0.0020 −0.0053

0.0010 −0.0269

 .
Then, by taking (44) into consideration, the observer gain and the con-

troller gains can be expressed as follows:

L =

0.1729 −0.0116 0.1705 −0.0020

0.0387 −0.1850 0.0296 −0.1844

 , KP =

0.0047 −0.0121

0.0062 −0.1163

 ,
KI =

0.0002 −0.0005

0.0001 −0.0024

 , KD =

0.0004 −0.0010

0.0002 −0.0049

 .
In this simulation, the initial value of the state is set to be x(0) =

[−0.3 0.4]T , and x(−2) = x(−1) = [0 0]T . The system noise is assumed to

be $(k) = 0.2sin(k)/k. The simulation results are shown in Fig.2-3. Specif-

ically, Fig.2 reveals the trajector of the system state x(k). Fig.3 plots the

trajectories of the system noise $(k) and the control output z(k), respective-

ly. It is easy to see that the fluctuation of z(k) is smaller than that of $(k).

Furthermore, by computation, the desired H∞ performance is satisfied.

In order to examine the efffectiveness of the redundant channel trans-

mission mechanism in reducing data packet loss, the random data packet

dropouts of three transmission channels are shown in Fig.4. Therefore, we

can know that compared with a single channel, the possibility of data packet

loss in the transmission channel is greatly reduced by adopting the redundant

channels.

Fig.5 and Fig.6, respectively, describe the dynamic triggering instants

and the static triggering instants. Comparing the above two figures, we can
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conclude that compared to the static event-triggered control (SETC) scheme,

the DETC scheme can better save network bandwidth resources and increase

the reliability of data transmission.

Remark 4.1. Based on the above considerations, we can summarize as fol-

lows: the network system that combines the redundant channel transmission

mechanism and DETC scheme can effectively improve the reliability of net-

work transmission. At the same time, in our future work, we can consider

applying the above framework to the more complex network system.

5. Conclusions

This paper has addressed the H∞ PID control issue for a class of discrete-

time NCSs network control under dynamic event-triggered control scheme.

The redundant channel transmission mechanism has been introduced to im-

prove the reliability of network communication during the transmission pro-

cess. Based on the Lyapunov theory, the sufficient conditions have been

proposed to guarantee the exponentially stability and the H∞ performance

index for the designed system. Futhermore, by using linear matrix inequality

technology, the PID controller gains have been obtained. Finally, an illustra-

tive example has been provided to show the validity of the proposed method.

In near futher, we will consider extending the proposed method to the PID

security control for T-S fuzzy systems under cyber attacks.
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Figure 2: State trajectories x(k) of the system with PID control.
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Figure 3: The trajectory of controller output z(k) and system noise $(k).
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Figure 4: Random packet dropouts in three channels.
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Figure 5: Dynamic triggering instants.
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Figure 6: Static triggering instants.
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