
Existence of positive solutions for the Kirchhoff type

equations involving general critical growth in RN

Abstract: In this paper, we consider the following nonlinear Kirchhoff type problem

−
(
a+ λ

∫
RN

|∇u|2dx
)
∆u+ V (x)u = f(u), x ∈ RN ,

where N ≥ 3, a is a positive constant, λ ≥ 0 is a parameter. Under some sufficient assump-

tions on V (x) and f(u), the existence of positive solution to the above problem is proved

by variational methods and Mountain Pass Theorem. Specially, with the aid of a cut-off

function and a monotonic trick, we obtain the boundedness of Palais-smale sequences. Our

results improve the previous results in the literature.
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1. Introduction

Consider the following Kirchhoff type problem{
−(a+ λ

∫
RN |∇u|2dx)∆u+ V (x)u = f(u), x ∈ RN ,

u ∈ H1(RN ), u > 0,
(1.1)

where N ≥ 3, a is a positive constant, λ ≥ 0 is a parameter, F (t) =
∫ t

0
f(s)ds. V (x) is a positive continuous

potential. This type of equation is an extension of the classic d’Alembert wave equations for free vibration of

elastic strings, because it takes into account the effects of the strings’ length changes during vibration. For

the purpose of stating our statement, V (x) and f(u) are assumed to satisfy the following basic assumptions:

(V0) V (x) ≤ lim inf |x|→∞ V (x) := V∞ < ∞ for any x ∈ RN .

(F1) f(x) ∈ C(R+,R+), R+ = [0,+∞) and there exists C > 0 such that |f(t)| ≤ C(|t| + |t|p−1) for all

t ∈ R+ and some p ∈ (2, 2∗), where 2∗ = 2N
N−2 for N ≥ 3.

As problem (1.1) involves the term
∫
RN |∇u|2dx, it is no longer a local problem, which causes some

analytical difficulties. Moreover, in recent years, in purely mathematical research and practical applications,

non-local operators have appeared in the description of various phenomena, such as physics and chemistry

[1], obstacle problems [2], optimization and finance [3], etc.
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If we consider problem (1.1) on a bounded smooth region Ω and λ ≡ b is a positive constant, then

problem (1.1) becomes to the following problem{
−
(
a+ b

∫
Ω
|∇u|2dx

)
∆u+ V (x)u = f(u), in Ω,

u = 0, on ∂Ω.
(1.2)

Problem (1.2) originally derived from the following problem

utt −
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u), (1.3)

which is a practical equation proposed by Kirchhoff [4] in the process of studying the classical D’Alembert

wave equation of the free vibration of the retractable rope. For more details of problem (1.3) in physical

aspects, please see [5, 6] and the references therein. The early classical research of Kirchhoff equations is

dedicated by Bernstein [6] and Pohožaev [7]. However, the Kirchhoff-type equation was greatly brought into

focus only after Lions [8] investigated problem (1.2) involving an abstract framework. For more researches

on Kirchhoff-type equations, please refer to the literature [9, 10] and the references therein. Under various

conditions on potential V (x) and nonlinearity f(x), the existence, non-existence and multiplicity of problem

(1.2) have been studied in the literature by variational methods. On unbounded domains, many existence

and multiplicity results are also obtained for problem (1.2). For example, in [11], Xie discussed problem

(1.2) with an asymptotically 4-linear nonlinearity f and the existence of a least energy nodal solution for

the problem was obtained by variational methods. With the aid of a monotonic technique and a new version

of global compactness lemma, Li and Ye [12] proved that problem (1.2) has a positive ground state solution

when f(u) = |u|p−1u with p ∈ (2, 5). Chen and Tang [13] obtained the existence of infinitely many high

energy solutions for problem (1.2) on R3 by using Symmetric Mountain Pass Theorem. Especially, they

introduced some new techniques to overcome the competitive effect of non-local terms. For more recent

results related to Kirchhoff equations, please see e.g. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24].

Although the Kirchhoff-type Dirichlet problem have been extensively studied, as far as we know, there is

very little literature on Kirchhoff-type problems (such as (1.1)), which involved parameters. Very recently,

Xu [25] studied the following nonlinear Kirchhoff type equations{
−(a+ λ

∫
Rn |∇u|2dx)∆u+ V (x)u = |u|p−1u, x ∈ RN ,

u ∈ H1(RN ), u > 0,
(1.4)

where N ≥ 3, a is a positive constant, λ is a parameter, 1 < p < max{3, N+2
N−2} and the potential V (x) satisfies

(V0). We point out that they obtained the existence of at least one positive solution and nonexistence of

nontrivial solutions for problem (1.4) by using variational methods and a cut-off technique. Problem (1.4)

is the special form of the problem (1.1), in other words, problem (1.1) is more general than problem (1.4).

Hence, our results can be seemed as the complementary work of [25].

In [26], Li et al. considered the following nonlinear Kirchhoff type equation(
a+ λ

∫
RN

|∇u|2dx+ λb

∫
RN

u2dx

)
[−∆u+ bu] = f(u), in RN , (1.5)

where N ≥ 3, λ is a parameter, a, b are positive constants. When the nonlinearity f is subcritical, the

existence of at least one positive radial solution was proved in [26] for λ ≥ 0 is small, by using variational

methods and a cut-off functional.

Motivated by the above mentioned literatures, we consider more general nonlinear Kirchhoff type elliptic

problem (1.1) in this paper. The main purpose of this paper is to obtain the existence and multiplicity of pos-

itive solutions for problem (1.1) when f is subcritical. To prossess this, we must overcome the following three
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main difficulties: (I) Due to the emergence of the term
∫
RN |∇u|2dx, problem (1.1) is a non-local problem,

which means that equation (1.1) is not a point-wise identity. This causes some mathematical difficulties and

makes the study of (1.1) more interesting; (II) The second main difficulty comes from subcritical growth. We

should show the boundedness of Palais-Smale ((PS) for short) sequences without the Ambrosetti-Rabinowitz

((AR) for short) condition. Indeed, it is not easy to verify the existence of bounded (PS) sequences. In order

to overcome this difficulty, we shall adopt the technique used in [26]; (III) We need to get the convergent

subsequence of the bounded (PS) sequence. Since V(x) is non-constant, the method used in [25] cannot be

applied to our results. We will make some assumptions on ∇V (x) and use some tricks to solve this problem.

In this paper, due to focusing on the positive solution of (1.1), we assume that f(s) = 0 when s < 0.

Moreover, we shall make the following assumptions.

(V1) (∇V (x), x) ∈ L2(RN ), (∇V (x), x) ≤ aθ
2x2 for x ∈ RN , where (·, ·) denotes the usual inner product,

θ ∈ (0, 1).

(F2) limt→0+
f(t)
t = 0.

(F3) limt→∞
f(t)
t = ∞.

Our main results are given in the following.

Theorem 1.1. Assume that N ≥ 3, a is a positive constant, λ ≥ 0 is a parameter. If the conditions

(V0)-(V1) and (F1)-(F3) hold. Then there exists λ0 > 0 such that for all λ ∈ [0, λ0), problem (1.1) has at

least one positive solution.

When λ = 0, V (x) ≡ b, the problem (1.1) reduces to

−a∆u+ bu = f(u), in RN . (1.6)

Then we have the following corollary.

Corollary 1.2. Assume N ≥ 3 and b is a positive constant. If the conditions (F1)-(F3) hold, then problem

(1.6) has at least one positive solution.

Theorem 1.3. Under the conditions of Theorem 1.1 and N > 3, there exists λ1 > 0 such that problem

(1.1) has no nontrivial solution when λ ≥ λ1.

Remark 1.4. In this paper, we considered the existence and multiplicity of positive solutions for the more

general Kirchhoff type problems than the work in the literature. We must point out that the authors in [25]

and [26] both considered the general nonlinearity f which only involves subcritical growth. Compared to [26],

the nonlinearity f(u) in our results is more general. Besides, since V (x) is not a constant, the methods used

in [25] is not suitable for problem (1.1). So we use a ”monotonic” trick and make assumption on ∇V (x)

to obtain our results. In Section 2, the condition (V1) guarantees that for enough large T > 0, there exists

λ0 > 0 such that
∫
RN |∇un|2 ≤ T 2 for any 0 < λ < λ0 in Lemma 2.9. It is pointed out that our results

extend the mentioned results to a certain extent.

The rest of this paper is organized as follows: in Section 2, some framework are demonstrated. In Section

3, the proofs of the main results are given. In section 4, the conclusion is given. In the following, Ci denotes

different positive constants in different spaces.

2. Preliminaries

In this section, we first introduce some marks. Let H := H1(RN ) be the usual Sobolev space equipped
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with the inner product and norm

⟨u, v⟩H =

∫
RN

(∇u∇v + uv)dx, ∥u∥H = ⟨u, u⟩ 1
2 .

We define the working space by

E =

{
u ∈ H :

∫
RN

V (x)u2dx < +∞
}

endowed with the inner product and norm

⟨u, v⟩ =
∫
RN

(a∇u∇v + V (x)uv)dx, ∥u∥ = ⟨u, u⟩ 1
2 .

The norm of the usual Lebesgue space Lp(RN ) is denoted by ∥ · ∥p. Since V (x) satisfies the condition (V0),

∥ · ∥ is equivalent to the standard norm ∥u∥H on H1(RN ). Since the embedding E ↪→ Lp(RN ) is continuous

for p ∈ (2, 6), there exists γp such that

∥u∥p ≤ γp∥u∥, ∀u ∈ E.

From [27], we can know that the continuous embedding E ↪→ Lp(RN ) is compact for p ∈ (2, 6). In this

paper, we consider the existence of positive solution of problem (1.1), so we suppose that f(s) = 0 for s < 0.

Obviously, assume that the conditions (F1)-(F3) hold, then, weak solutions to problem (1.1) are the critical

points of the functional Iλ(u) defined in H1(RN ) by

Iλ(u) =
1

2

∫
RN

(a|∇u|2 + V (x)u2)dx+
λ

4

(∫
RN

|∇u|2dx
)2

−
∫
RN

F (u)dx. (2.1)

By the condition (F1), it is easy to examine that Iλ ∈ C1(E,R) for all λ > 0, and

⟨I ′λ(u), v⟩ =
(
a+ λ

∫
RN

|∇u|2dx
)∫

RN

∇u∇vdx+

∫
RN

V (x)uvdx−
∫
RN

f(u)vdx, u, v ∈ E. (2.2)

Firstly, we shall show that Iλ has the mountain path geometry when λ is small.

Lemma 2.1. For λ ≥ 0 small, the functional Iλ satisfies the following conditions.

(i) There exists α > 0, ρ > 0 such that Iλ(u) > α for ∥u∥ = ρ.

(ii) There exists an e ∈ Bc
ρ(0) such that Iλ(e) < 0, where Bρ(0) is a ball centred at origin with radius ρ.

Proof. (i) From the Sobolev embedding H1(RN ) ↪→ Lp(RN ) for 2 < p < 2N
N−2 and the condition (F1), we

obtain

Iλ(u) ≥ I0(u) ≥
1

2
∥u∥2 − C

2
|u|22 −

C

p
|u|pp,

where C > is a constant. Let {ej} is an orthogonal basis of E and define Xj = Rej ,

Ym =

m⊕
j=1

Xj , Zm =

∞⊕
j=m+1

Xj , m ∈ Z.

Set

ηm(s) = sup
u∈Zm,∥u∥=1

∥u∥s, ∀ m ∈ N, 2 < s < 2∗.

Due to the result of [27], since the embedding E ↪→ Lp(RN ) is compact for p ∈ (2, 6), there holds

ηm(s) → 0 as m → ∞. (2.3)
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Then we have

Iλ(u) ≥
1

2
∥u∥2 − C

2
η2m(2)∥u∥2 − C

p
ηpm(p)∥u∥p

By (2.3), there exists an integer M ≥ 1 such that

η2m(2) ≤ 1

2C
and ηpm(p) ≤ p

4C
, ∀ m ≥ M. (2.4)

Hence, we can take some ρ ∈ (0, 1) with ∥u∥ = ρ such that

Iλ(u) ≥
1

4
∥u∥2(1− ∥u∥p−2) = α > 0.

(ii) Take e ∈ H1(RN ) such that I0(e) < 0, Obviously, e ∈ Bc
ρ(0). Then for 0 ≤ λ ≤ −8I0(e)

3(
∫
RN |∇e|2dx)2 ,

Iλ(e) = Iλ(e) +
λ

4

(∫
RN

|∇e|2dx
)2

≤ 1

3
I0(e) < 0.

Lemma 2.2. When N = 4 with λ large or when N ≥ 5 with λ ≥ 0, Iλ is bounded from below in H1(RN ).

Proof. By (F1) and (2.1), we have

Iλ(u) ≥
a

2
∥∇u∥22 +

1

2

∫
RN

V (x)u2dx+
λ

4
∥∇u∥42 −

C

2
∥u∥22 −

C

p
∥u∥pp. (2.5)

From Holder’s inequality, we have

|u|p ≤ |u|r2|u|1−r
2N

N−2

, u ∈ L2(RN ) ∩ L
2N

N−2 (RN ), (2.6)

where r
2 + (N−2)(1−r)

2N = 1
p . From Sobolev imbedding Theorem, there exists a constant d > 0 such that

∥u∥ 2N
N−2

≤ d∥∇u∥2, u ∈ H1(RN ). (2.7)

From (2.6) and (2.7), we have∫
RN

|u|pdx ≤ d∥u∥
2N+(2−N)p

2
2 ∥∇u∥

N(p−2)
2

2 , u ∈ H1(RN ). (2.8)

Since p ∈ (2, 2∗), we have 0 < 2N+(2−N)p
2 < 2, then from Young’s inequality and (2.8), for any ε > 0, there

exists a constant d(ε) > 0 such that∫
RN

|u|pdx ≤ ε

∫
RN

|u|2dx+ d(ε)

(∫
RN

|∇u|2dx
) N

N−2

. (2.9)

By (2.3), we can choose ε such that (pC+2Cε
2p )η2k(2) <

1
4 , then from (2.5) and (2.9), we have

Iλ(u) ≥ a

2
∥∇u∥22 +

1

2

∫
RN

V (x)u2dx+
λ

4
∥∇u∥42 −

(
C

2
+

Cε

p

)
∥u∥22 −

Cd(ε)

p
∥∇u∥

2N
N−2

2

≥ 1

2
∥u∥2 + λ

4
∥∇u∥42 −

(
C

2
+

Cε

p

)
η2k(2)∥u∥2 −

Cd(ε)

p
∥∇u∥

2N
N−2

2

≥ 1

4
∥u∥2 + λ

4
∥∇u∥42 −

Cd(ε)

p
∥∇u∥

2N
N−2

2 . (2.10)

When N = 4, if λ
4 ≥ Cd(ε)

p , then Iλ(u) ≥ 0 for all u ∈ E. When N ≥ 5, we have 2N
N−2 ≤ 4, then when

∥∇u∥2 ≥ ( 4Cd(ε)
pλ )

N−2
2N−8 , we can get Iλ(u) ≥ 0. Hence, it is obvious that Iλ is bounded from below when

N ≥ 5 for all λ > 0.
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It is crucial to obtain the boundedness of (PS) sequences for the associated functional Iλ. However, the

standard arguments is not available for proving the boundedness of the (PS) sequences. In order to overcome

the difficulty, following the idea of [28, 29], we use a cut-off function φ ∈ (R+, [0, 1]) satisfying
φ(t) = 1, t ∈ [0, 1]

0 ≤ φ(t) ≤ 1, t ∈ (1, 2)

φ(t) = 0, t ∈ [2,∞)

0 ≤ φ′(t) ≤ 2.

For any T > 0, we modify the original functional Iλ to a new functional ITλ,µ defined by

ITλ,µ(u) =
1

2
∥u∥2 + 1

4
λhT (u)

(∫
RN

|∇u|2dx
)2

− µ

∫
RN

F (u)dx, u ∈ E. (2.11)

It can be verified that ITλ,µ is of class C1 and for any u, v ∈ E,

⟨(ITλ,µ)′(u), v⟩ =

[
a+ λhT (u)

∫
RN

|∇u|2dx+
λ

2T 2
h′
T (u)

(∫
RN

|∇u|2dx
)2

]∫
RN

∇u∇vdx

+

∫
RN

V (x)uvdx− µ

∫
RN

f(u)vdx, (2.12)

where

hT (u) = φ

(∫
RN |∇u|2dx

T 2

)
.

Since hT (u)
(∫

RN |∇u|2dx
)2 ≤ 4T 4, the functional ITλ,µ has a mountain path critical level for any fixed T > 0.

Actually, for T > 0 sufficiently large and λ > 0 sufficiently small, we can find a bounded (PS) sequence

{un} of ITλ,µ such that
∫
RN |∇un|2dx ≤ T 2 for all n large, which is also a (PS) sequence of Iλ. We recall the

following result. The ”monotonic trick” introduced in [30, 31] is the core of the following Theorem.

Theorem 2.3.[30, 31] Let (X, ∥.∥) be a Banach space and J ∈ R+ be an interval. Consider the family of

C1 − functional on X

φλ,µ(u) = A(u)− µB(u), ∀λ ∈ J,

with B nonnegative and either A(u) → +∞ or B(u) → +∞ as ∥u∥ → ∞ and such that φλ,µ(0) = 0.

For any µ ∈ J , we set

Γµ = {γ ∈ C([0, 1], X) : γ(0) = 0, φλ,µ(γ(1)) < 0} .

If for every µ ∈ J , the set Γµ is nonempty and

cλ,µ = inf
γ∈Γµ

max
t∈[0,1]

φλ,µ(γ(t)) > 0,

then for almost every µ ∈ J , there is a sequence {un} ⊂ X such that

(i) {un} is bounded;

(ii) φλ,µ(un) → cλ,µ;

(iii) φ′
λ,µ(un) → 0 in the dual X∗ of X.

In our case, X = E,

A(u) =
1

2
∥u∥2 + 1

4
λhT (u)

(∫
RN

|∇u|2dx
)2

, B(u) =

∫
RN

F (u)dx.
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In the following, we will prove that ITλ,µ satisfies the conditions of Theorem 2.3.

Lemma 2.4. Γµ ̸= ∅ for all µ ∈ J = [δ, 1], where δ ∈ (0, 1) is a positive constant.

Proof. For any µ ∈ J , a radial function ω ∈ E can be chosen with ω > 0 and
∫
RN |∇ω|2dx = 1. By (F2) and

(F3), we have that, for any C1 > 0 with (µC1 − V∞
2 )

∫
RN |ω|2dx > a, there exists C2 such that

F (s) ≥ C1|s|2 − C2, ∀ s ∈ R+. (2.13)

For any t ≥ 2
√
T , from (2.13), we have

ITλ,µ(tω) =
1

2
at2

∫
RN

|∇ω|2dx+
1

2

∫
RN

V (x)t2ω2dx

+
1

4
λφ

(
t2
∫
RN |∇ω|2dx

T 2

)(∫
RN

|∇tω|2dx
)2

− µ

∫
RN

F (tω)dx

≤ 1

2
at2 +

1

2

∫
RN

V∞t2ω2dx+
1

4
λφ

(
t2

T 2

)(∫
RN

|∇tω|2dx
)2

− µ

∫
RN

F (tω)dx

≤ 1

2
at2 +

1

2
V∞t2

∫
RN

ω2dx− µC1t
2

∫
RN

|ω|2dx+ µC2. (2.14)

Hence, (2.14) implies that ITλ,µ(tω) < 0 for t sufficiently large. The proof is completed.

Lemma 2.5. For any µ ∈ J , there exists θ > 0 such that cλ,µ = infγ∈Γµ maxt∈[0,1] I
T
λ,µ(γ(t)) ≥ θ > 0.

Proof. For any u ∈ E and µ ∈ J , by (F1) and (F2), for any ϵ > 0, there exist C(ϵ) > 0 such that

ITλ,µ(u) ≥
1

2
∥u∥2 + 1

4
λhT (u)

(∫
RN

|∇u|2dx
)2

− ϵ∥u∥22 − C(ϵ)∥u∥pp

≥ 1

2
∥u∥2 − ϵ∥u∥22 − C(ϵ)∥u∥pp.

Similar to the proof of Lemma 2.1 (i), there exists ρ ∈ (0, 1) such that Iλ,µ(u) ≥ θ > 0 for any µ ∈ J and

u ∈ E with 0 < ∥u∥ ≤ ρ. By the continuity of γ and the definition of Γγ , we have ∥γ(1)∥ > ρ, then there

exists tγ ∈ (0, 1) such that ∥γ(tγ)∥ = ρ. Hence, for any µ ∈ J ,

cλ,µ = inf
γ∈Γµ

max
t∈[0,1]

ITλ,µ(γ(t)) ≥ θ > 0.

The proof is completed.

Lemma 2.6. For any µ ∈ J and 4λT 2 < 1, each bounded (PS) sequence of the functional ITλ,µ admits a

convergent subsequence.

Proof. It is easy to see that A(u) → +∞ as ∥u∥ → +∞. From (F2), we have B(u) → +∞ as ∥u∥ → +∞.

From Theorem 2.3, Lemma 2.4 and Lemma 2.5, we know that there exists a bounded sequence {un} ⊂ E.

Without loss of generality, for any µ ∈ J , let {un} be a bounded (PS) sequence of ITλ,µ, that is, {un} and

ITλ,µ are bounded and (ITλ,µ)
′(u) → 0 in E∗. Up to a subsequence, assume that there exists u ∈ E such that

un ⇀ u in E,

un → u in Lp
(
RN

)
,

un → u a.e. in RN .

(2.15)
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By (F1) and (F2), for any ε ∈ (0, 1
2 ), there exists Cε such that

|f(t)| ≤ ε|t|+ Cε|t|p−1, t ∈ R. (2.16)

Hence, by (2.16), we have∫
RN

(f(un)− f(u))(un − u)dx ≤
∫
RN

|f(un)− f(u)||un − u|dx

≤
∫
RN

(|f(un)|+ |f(u)|)|un − u|dx

≤ ε

∫
RN

(|un|+ |u|)|un − u|dx+ Cε

∫
RN

(|un|p−1 + |u|p−1)|un − u|dx

≤ ε(∥un∥2 + ∥u∥2)∥un − u∥22 + Cε(∥un∥p−1
p + ∥u∥p−1

p )∥un − u∥p

≤ (∥un∥2 + ∥u∥2)∥un − u∥2 + Cε(∥un∥p−1
p + ∥u∥p−1

p )∥un − u∥p. (2.17)

It follows from (2.15) and (2.17) that∫
RN

(f(un)− f(u))(un − u)dx → 0, as n → ∞. (2.18)

Then, by (2.11) and let XT
λ (u) =

λ
2T 2φ

′
( ∫

RN |∇u|2

T 2

)
(
∫
RN |∇u|2)2, we have

⟨(ITλ,µ)′(un)− (ITλ,µ)
′(u), un − u⟩

= a

∫
RN

|∇(un − u)|2dx+

∫
RN

V (x)|un − u|2dx+ λhT (un)

(∫
RN

|∇un|2dx
)∫

RN

|∇(un − u)|2dx

+XT
λ (un)

∫
RN

|∇(un − u)|2dx+ [XT
λ (un)−XT

λ (u)]

∫
RN

∇u∇(un − u))dx

−λhT (u)

(∫
RN

|∇u|2dx
)∫

RN

∇u∇(un − u)dx+ λhT (un)

(∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u)dx

−µ

∫
RN

(f(un)− f(u))(un − u)dx

≥ ∥un − u∥2 −
(
λhT (u)

∫
RN

|∇u|2dx− λhT (un)

∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u)dx

−[XT
λ (u)−XT

λ (un)]

∫
RN

∇u∇(un − u))dx− µ

∫
RN

(f(un)− f(u))(un − u)dx. (2.19)

Hence, from (2.19), we have

∥un − u∥2 ≤
(
λhT (u)

∫
RN

|∇u|2dx− λhT (un)

∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u)dx

+[XT
λ (u)−XT

λ (un)]

∫
RN

∇u∇(un − u))dx+ µ

∫
RN

(f(un)− f(u))(un − u)dx

+⟨(ITλ,µ)′(un)− (ITλ,µ)
′(u), un − u⟩. (2.20)

In the following, in order to obtain our result, we should discuss
∫
RN ∇u∇(un − u)dx. Define a functional

Hu : E → R by

Hu(v) =

∫
RN

∇u∇vdx, ∀ v ∈ E.

It is clearly that Hu is a linear functional on E. Since

|Hu(v)| ≤
∫
RN

|∇u∇v|dx ≤ ∥u∥∥v∥,
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we have that Hu is bounded on E, i.e., Hu ∈ E∗. Therefore, limn→∞ Hu(un) = Hu(u) if un ⇀ u in E,

hence, we have ∫
RN

∇u∇(un − u)dx → 0 as n → ∞. (2.21)

Since {un}, XT
λ and hT are bounded, from (2.20), we have,(

λhT (u)

∫
RN

|∇u|2dx− λhT (un)

∫
RN

|∇un|2dx
)∫

RN

∇u∇(un − u)dx → 0, as n → ∞, (2.22)

and

[XT
λ (u)−XT

λ (un)]

∫
RN

∇u∇(un − u))dx → 0, as n → ∞. (2.23)

It is obvious that ⟨(ITλ,µ)′(un)− (ITλ,µ)
′(u), un−u⟩ → 0 since (ITλ,µ)

′(u) → 0 and un ⇀ u in E. Consequently,

from (2.18), (2.20), (2.22) and (2.23), we have

∥un − u∥2 → 0.

Hence, for any µ ∈ J and 4λT 2 < 1, each bounded (PS) sequence of the functional ITλ,µ has a convergent

subsequence. The proof is completed.

Lemma 2.7. Let 4λT 2 < 1, then for almost every µ ∈ J , there exists uµ ∈ E\{0} such that (ITλ,µ)
′(uµ) = 0,

and (ITλ,µ)(u
µ) = cλ,µ.

Proof. By the definition of A(u) and B(u), we can see that A(u) → ∞ as n → ∞ and B(u) is nonnegative.

According to Lemma 2.1 and Theorem 2.3, for almost µ ∈ J , there exists a bounded sequence {uµ
n} such

that

(ITλ,µ)
′(uµ

n) = 0, and ITλ,µ(u
µ
n) = cλ,µn .

By Lemma 2.6, we can conclude that there exists uµ ∈ E such that uµ
n → uµ. Therefore, (ITλ,µ)

′(uµ) = 0,

and (ITλ,µ)(u
µ) = cλ,µ. From f(s) = 0 for s < 0 and the Lemma 2.5, we have uµ ∈ E\{0}.

From Lemma 2.7, there exists {un} ∈ J with µn → 1− and a sequence {un} ⊂ E such that

(ITλ,µn
)′(un) = 0, and ITλ,µn

(un) = cλ,µn .

Next, we will introduce the following Pohožaev identity, which is crucial to obtain that
∫
RN |∇un|2dx < T 2.

So we give the following Lemma.

Lemma 2.8. Let 4λT 2 < 1 and N ≥ 3, if u ∈ H is a weak solution of

−

[
a+ λhT (u)

∫
RN

|∇u|2dx+
λ

2T 2
φ′

(∫
RN |∇u|2

T 2

)(∫
RN

|∇u|2dx
)2

]
∆u+ V (x)u = µf(u), x ∈ RN ,

then, u satisfies the following Pohožaev identity

Nµ

∫
RN

F (u)dx− 1

2

∫
RN

(∇V (x), x)u2dx

=
N − 2

2

∫
RN

|∇u|2dx
[
a+ λhT (u)

∫
RN

|∇u|2dx

+
λ

2T 2
φ′

(∫
RN |∇u|2

T 2

)(∫
RN

|∇u|2dx
)2

]
+

N

2

∫
RN

V (x)u2dx. (2.24)
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Proof. Similar to Lemma 2.2 in [32], we can prove the above conclusion. Here, we omit the details of

proof.

The following Lemma implies that
∫
RN |∇un|2dx ≤ T 2, which is the core of this paper.

Lemma 2.9. Let {un} be a (PS) sequence of ITλ,µn
at level cλ,µn , then for T > 0 sufficiently large, there

exists λ0 > 0 with 4λ0T
2 < 1 such that for any λ ∈ [0, λ0),

∫
RN |∇un|2dx ≤ T 2 for all n ∈ Z.

Proof. We will discuss by contradiction. Assume that there exists no subsequence {un} such that
∫
RN |∇un|2dx

is bounded by T . Then we can suppose
∫
RN |∇un|2dx > T 2.

Firstly, since (ITλ,µn
)′(un) = 0, by (2.24), {un} satisfies the following Pohoz̆aev identity:

Nµn

∫
RN

F (un)dx− 1

2

∫
RN

(∇V (x), x)u2
ndx

=
N − 2

2

∫
RN

|∇un|2dx
[
a+ λhT (un)

∫
RN

|∇un|2dx

+
λ

2T 2
φ′

(∫
RN |∇un|2

T 2

)(∫
RN

|∇un|2dx
)2

]
+

N

2

∫
RN

V (x)u2
ndx. (2.25)

Since ITλ,µn
(un) = cλ,µn , we have

cλ,µnN =
N

2

∫
RN

(a|∇un|2 + V (x)u2
n)dx+

λN

4
hT (un)

(∫
RN

|∇un|2dx
)2

− µnN

∫
RN

F (un)dx (2.26)

Then, according to (2.25), (2.26), (V1) and Hardy inequality, we can get that

a

∫
RN

|∇un|2dx ≤

[
a+ λhT (un)

∫
RN

|∇un|2dx+
λ

2T 2
φ′

(∫
RN |∇un|2dx

T 2

)(∫
RN

|∇un|2dx
)2

]∫
RN

|∇un|2dx

= cλ,µnN +
N

4
λhT (un)

(∫
RN

|∇un|2dx
)2

+
1

2

∫
RN

(∇V (x), x)u2
ndx

+
Nλ

4T 2
φ′

(∫
RN |∇un|2dx

T 2

)(∫
RN

|∇un|2dx
)3

≤ cλ,µn
N +

N

4
λhT (un)

(∫
RN

|∇un|2dx
)2

+ θa

∫
RN

|∇un|2dx

+
Nλ

4T 2
φ′

(∫
RN |∇un|2dx

T 2

)(∫
RN

|∇un|2dx
)3

. (2.27)

From (2.27), we have

(1− θ)a

∫
RN

|∇un|2dx ≤ Ncλ,µn +
N

4
λhT (un)

(∫
RN

|∇un|2dx
)2

+
Nλ

4T 2
φ′

(∫
RN |∇un|2dx

T 2

)(∫
RN

|∇un|2
)3

.

(2.28)

By Lemma 2.5 and (2.13), we have

cλ,µn ≤ max
t

ITλ,µn
(tω)

= max
t

{
1

2
t2 +

1

2
t2
∫
RN

V (x)ω2dx− µn

∫
RN

F (tω)dx

}
+max

t

{
1

4
λhT (tω)

(∫
RN

|∇tω|2
)2

dx

}

≤ max
t

{
1

2
t2 +

1

2
V∞t2

∫
RN

ω2dx− µnC1t
2

∫
RN

ω2dx+ µnC2

}
+max

t

{
1

4
λφ

(
t2

T 2

)
t4
}

= C3 +A1(T ).

(2.29)
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If t >
√
2T , then φ( t2

T 2 ) = 0. Hence, we obtain

A1(T ) ≤ λT 4. (2.30)

We also get that

N

4
λhT (un)

(∫
RN

|∇un|2dx
)2

≤ λNT 4, (2.31)

and
Nλ

4T 2
φ′

(∫
RN |∇un|2dx

T 2

)(∫
RN

|∇un|2dx
)3

≤ 4λNT 4. (2.32)

From (2.28)-(2.32), we have ∫
RN

|∇un|2dx ≤ 1

(1− θ)a
(NC3 + 6λNT 4). (2.33)

Since we suppose
∫
RN |∇un|2dx > T 2, n ∈ N, then from (2.33), we have

T 2 <
1

(1− θ)a
(NC3 + 6λNT 4),

which is not true for T large and 4λT 4 < 1. So we can choose λ0 = 1
4T 4 . The proof is completed.

3. Proof of the main results

Proof of Theorem 1.1. We define T and λ0 as in Lemma 2.9. And let {un} be a sequence for ITλ,µn
. Then

by Lemma 2.9, we have ∫
RN

|∇un|2dx ≤ T 2,

and

ITλ,µn
(un) =

1

2
∥un∥2 +

1

4
λ

(∫
RN

|∇u|2dx
)2

− µn

∫
RN

F (un)dx.

Hence, we have

⟨I ′λ(un), v⟩ = ⟨(ITλ,µn
)′(un), v⟩ − (1− µn)

∫
RN

F (un)dx.

Consequently, when µn → 1, {un} is also a bounded (PS) sequence of Iλ. According to Lemma 2.6, {un}
has a convergent subsequence, we may assume un → u0. Thus I ′λ(u0) = 0. According to Lemma 2.5, we

have that Iλ(u0) = limn→∞ Iλ(un) = limn→∞ ITλ,µn
(un) ≥ θ > 0. And the condition (F1) implies that u0 is

a positive solution. The proof is completed.

Proof of Corollary 1.2. By Theorem 1.1, it is obvious that Corollary 1.2 holds.

Proof of Theorem 1.3. Assume that N ≥ 4 and u ∈ H1
0 (Ω) is a nontrivial solution of the problem (1.1).

Multiply (1.1) by u and integrate by parts, we obtain

a∥∇u∥22 +
∫
RN

V (x)u2 + λ∥∇u∥42 =

∫
RN

F (u)dx.

Similarly, by (F1) and (2.16), there exists ε1 and Cε1 such that∫
RN

F (u)dx ≤ ε1∥u∥22 + Cε1∥∇u∥2 N
N−2

.
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Now, we can choose ε1 = 1
2V0. Then, we have that

a∥∇u∥22 +
∫
RN

V (x)u2dx+ λ∥u∥42 ≤ V0

2
∥u∥22 + Cε1∥∇u∥2 N

N−2
.

Since N ≥ 4, then, 2 < 2N
N−2 ≤ 4. We can easily use Young’s inequality to obtain that

Cε1∥∇u∥2 N
N−2

≤ a∥∇u∥22 + C4∥∇u∥42.

Consequently, we get ∫
RN

V (x)u2dx+ λ∥u∥42 ≤ V0

2
∥u∥22 + C4∥∇u∥42.

If we choose λ ≥ C4, we have

∥∇u∥2 = ∥u∥2 = 0.

Hence, when N > 3 and for enough large λ, problem (2.3) has no nontrivial solution. The proof is completed.

4. Conclusion

In this paper, we first proved that the energy functional Iλ has the mountain structure. Secondly,

we defined a cut-off functional φ and established a modified functional ITλ,µ. We showed that ITλ,µ has a

bounded palais-smale sequence {un}. Then, we proved that there exists λ0 such that for any 0 < λ < λ0,∫
RN |∇un|2dx ≤ T 2, which implies the critical value of ITλ,µ is also the critical value of Iλ. Finally, we deduce

our results by the variational method. Obviously, our results are more general. We hope our results can be

widely used in the Kirchhoff system as discussed in [27].
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