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Abstract

This paper provides a new and alternative convolution methodology to compute OPCAR that is
applicable across a large variety of continuous probability distributions for risk severity and includes
a comparison of their results with Monte Carlo risk simulation methods. The Basel Committee has,
throughout its Basel II-IV requirements and recommendations, sought after simplicity so as not to
burden banks with added complexity, it still requires sufficient rigor and substantiated theory. Monte
Catrlo risk simulation methods pass the test on both fronts and are, hence, the recommended path
when modeling OPCAR. The next experiment is to look at the convolution simulation of two
distributions, specifically, a Poisson discrete distribution to model the frequency of occurrence, and a
Lognormal continuous distribution to model the impact of each occurrence. Monte Carlo risk
simulation methods are the recommended path when it comes to modeling OPCAR and depending
on whether a more conservative distribution is needed or a wider distribution is required, the
relevant method can be applied.
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Introduction

In October 2014, the Basel Committee on Banking Supervision released a Basel Consultative
Document entitled, “Operational Risk: Revisions to the Simpler Approaches,” and in it describes the
concepts of operational risk as the sum product of frequency and severity of risk events within a
one-year time frame and defines the Operational Capital at Risk (OPCAR) as the tail-end 99.9%
Value at Risk (Basel Committee, 2014). The Basel Consultative Document describes a Single Loss

Approximation (SLA) model defined as Fg'(p) = Fy?' [1 — I—Tp] + (A1 - 1E[X]
inverse of the compound distribution Fg'is the summation of the unexpected losses UL =
Fit [1 _1—Tp] and expected losses EL = (1 —1)E[X]; A4 is the Poisson distribution’s input

parameter (average frequency per period; in this case, 12 months); and X represents one of several
types of continuous probability distributions representing the severity of the losses (e.g., Pareto, Log
Logistic, etc.). The Document further states that this is an approximation model limited to

where the

b

subexponential-type distributions only and is fairly difficult to compute. The X distribution’s
cumulative distribution function (CDF) will need to be inverted using Fourier transform methods,
and the results are only approximations based on a limited set of inputs and their requisite
constraints. Also, as discussed below, the SLA model proposed in the Basel Consultative Document
significantly underestimates OPCAR. The OPCAR methodology estimates a bank’s operational risk
capital through the convolution of a single severity distribution and a single frequency distribution.
Each bank’s OPCAR estimate was assumed to refer to a unique operational risk category, having a
specific aggregated frequency and severity of losses (Basel Committee, 2014).



The concept of significant loss events attributed to operational risk was introduced in the Basel
II-IV accords by the Bank of International Settlements. Loss processes that contribute most to
capital risk, the so-called high consequence, low frequency loss processes, with heavy tailed loss
process modelling where implications of such tail assumptions for the severity risk model is
important in operational risk calculations (Peters, Targino, and Shevchenko 2013).

This paper provides a new and alternative convolution methodology to compute OPCAR that is
applicable across a large variety of continuous probability distributions for risk severity and includes
a comparison of their results with Monte Carlo risk simulation methods. As will be shown, both the
new algorithm using numerical methods to model OPCAR and the Monte Catlo risk simulation
approach tends to the same results and seeing that simulation can be readily and easily applied in the
CMOL software and Risk Simulator software (source: www.realoptionsvaluation.com), we
recommend using simulation methodologies for the sake of simplicity. While the Basel Committee
has, throughout its Basel II-IV requirements and recommendations, sought after simplicity so as not
to burden banks with added complexity, it still requires sufficient rigor and substantiated theory.
Monte Carlo risk simulation methods pass the test on both fronts and are, hence, the recommended
path when modeling OPCAR.

Problem with Basel OPCAR

We submit that the SLA estimation model proposed in the Basel Consultative Document is
insufficient and significantly underestimates an actual OPCAR value. A cursory examination shows

that with various A values, such as A =1,4=10,4= 100,14 = 1000, the UL = F;l [1 _1—Tp

will yield [1 - 1'7”] probability values (17) of 0.999, 0.9999, 0.99999, and 0.999999. UL = Fx *[5] for

any severity distribution X will only yield the severity distribution’s values and not the total
unexpected losses. For instance, suppose the severity distribution (X) of a single risk event on
average ranges from $1M (minimum) to $2M (maximum), and, for simplicity, assume it is a
Uniformly distributed severity of losses. Further, suppose that the average frequency of events is
1,000 times per year. Based on back-of-the-envelope calculation, one could then conclude that the
absolute highest operational risk capital losses will never exceed $2B per year (this assumes the
absolute worst-case scenario of $2M loss per event multiplied by 1,000 events in that entire year).
Nonetheless, using the inverse of the X distribution at 7 = 0.999999 will yield a value close to $2M
only, and adding that to the adjusted expected value of EL (let’s just assume somewhere close to
$1.5B based on the Uniform distribution) is still a far cry from the upper end of $2B.

Figure 1 shows a more detailed calculation that proves the Basel Consultative Document’s SLA
approximation method significantly understates the true distributional operational Value at Risk
amount. In the figure, we test four examples of a Poisson—Weibull convolution. The Poisson
distribution with Lambda risk event frequency 4 = 10,4 = 25,4 =50, and 4 = 100 are tested,
together with a Weibull risk severity distribution: & = 1.5 and f§ = 2.5. These values are shown as
highlighted cells in the figure. Using the Basel OPCAR model, we compute the UL and EL. In the
UL computation, we use UL = Fy* [1 - 1—Tp] = FyY[n]. The column labeled PROB is 1. The

ICDF X column denotes the UL = Fy }[n]. By applying the inverse of the Weibull CDF on the
probability, we obtain the UL values. Next, the EL calculations are simply EL = (1 — 1)E[X] with

E[X] being the expected value of the Weibull distribution X, where E[X] = BT [1 + ﬂ The
OPCAR is simply UL + EL. The four OPCAR results obtained are 31.30, 65.87, 122.82, and 2306.18.



We then tested the results using Monte Carlo risk simulation using the Risk Simulator software
(source: www.realoptionsvaluation.com) by setting four Poisson distributions with their respective A
values and a single Weibull distribution with & = 1.5 and f = 2.5. Then, the Weibull distribution is
multiplied by each of the Poisson distributions to obtain the four Total Loss Distributions. The
simulation was run for 100,000 trials and the results are shown in Figure 1 as forecast charts at the
bottom. The Left Tail < 99.9% quantile values were obtained and can be seen in the charts (116.38,
258.00, 476.31, and 935.25). These are significantly higher than the four OPCAR results.

Next, we ran a third approach using the newly revised convolution algorithm we propose in this
article. The convolution model shows the same values as the Monte Carlo risk simulation results:
116.38, 258.00, 476.31, and 935.25, when rounded to two decimals. The inverse of the convolution
function computes the corresponding CDF percentiles and they are all 99.9% (rounded to one
decimal; see the Convolution and Percentile columns in Figure 1). Using the same inverse of the
convolution function and applied to the Basel Consultative Document’s SLA model results, we
found that the four SLA results were at the following OPCAR percentiles: 75.75%, 66.94%, 62.78%,
and 60.38%, again significantly different than the requisite 99.9% Value at Risk level for operational
risk capital required by the Basel Committee.

Therefore, due to this significant understatement of operational capital at risk, the remainder of
this article focuses on explaining the theoretical details of the newly revised convolution model we
developed that provides exact OPCAR results under certain conditions. We then compare the results
using Monte Carlo risk simulation methods using Risk Simulator software as well as the Credit,
Market, Operational, and Liquidity (CMOL) Risk software (soutce: www.realoptionsvaluation.com).
Finally, the caveats and limitations of this new approach as well as conclusions and
recommendations are presented.
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Figure 1: Comparing Basel OPCAR, Monte Carlo Risk Simulation, and the
Convolution Algorithm



Theorical Constructs

Convolution is one of the primary concepts of linear system theory. It gives the answer to the
problem of finding the system zero-state response due to any input—the most important problem
for linear systems (Gajic, 2003). In developing convolution for continuous time, the procedure is
much the same as in discrete time although in the continuous-time case the signal is represented first
as a linear combination of narrow rectangles (basically a staircase approximation to the time
function). As the width of these rectangles becomes infinitesimally small, they behave like impulses.
The superposition of these rectangles to form the original time function in its limiting form becomes
an integral, and the representation of the output of a linear, time-invariant system as a linear
combination of delayed impulse responses also becomes an integral. The resulting integral is referred
to as the convolution integral and is similar in its properties to the convolution sum for discrete-time
signals and systems (Oppenheim and Willsky, 1996). An associated approach, the convolutional
neural network is a feed-forward neural network that is generally used to analyze visual images by
processing data with grid-like topology. In convolution operation, the arrays are multiplied element-
wise, and the product is summed to create a new array. The first three elements of the matrix a are
multiplied with the elements of matrix b. The product is summed to get the result. The next three
elements from the matrix a are multiplied by the elements in matrix b, and the product is summed
up. This process continues until the convolution operation is complete (SimplilLearn, 2022).

Let X, Y, and Z be real-valued random variables whereby X and Y are independently distributed
with no correlations. Further, we define Fx, Fy, and F as their corresponding CDFs, and fy, fy, f;

are their corresponding PDFs. Next, we assume that X is a random variable denoting the Frequency
of a certain type of operational risk occurring and is further assumed to have a discrete Poisson
distribution. ¥ is a random variable denoting the Severity of the risk (e.g., monetary value or some
other economic value) and can be distributed from among a group of continuous distributions (e.g.,
Fréchet, Gamma, Log Logistic, Lognormal, Pareto, Weibull, etc.). Therefore, Frequency X
Severity equals the Total Risk Losses, which we define as Z, where Z = X X Y.

Then the Total Loss formula, which is also sometimes known as the Single Loss Approximation
(SLA) model, yields:

F,(0)=PZ<t) =% PXY<t|X=k)x PX=k).
F,t) =PZ<t)=Y PlkY <t)x PX=k).

where the term with X = 0 is treated separately:

F,(t) = P(0 < t|X = 0) x P(X = 0) + zkiop(y < %) x P(X = k).
Fz(6) = Ziwo fr UOFy (5) + P(X = 0) (Equation 1)

The next step is the selection of the number of summands in Equation 1. As previously assumed,

k-2
fx(k) = P(X = k) is a Poisson distribution where P(X = k) = Ae

k!

and the rate of convergence

: . Ak
in the series depends solely on the rate of convergence to 0 of o and does not depend on t, whereas

the second multiplier P (Y < i) < 1! Therefore, for all values of t and an arbitrary § > 0 there is

value of n such that:



Ake—2 t .
Yksn % Fy (;) <é (Equation 2)

In our case, § can be set, for example, to 1/1000. Thus, instead of solving the quantile equation
for t,, with an infinite series, on the left-hand side of the equation we have:

£\ Ake=2A .
Fr()=PZ<t) =% P(Y <1)—=p (Equation 3)
We can then solve the equation:
}Lk -2 t )
F,(t,n) = ZkSn%Fy (E) =p (Equation 4)

with only n summands.

For example, if we choose p = 0.95, § = 1/1000, and n such that Equation 2 takes place, then
the solution t,,(n) of Equation 4 is such that:

1

|FZ (t» (n)) — Fy(t, (n),n)| <— (Equation 5)

In other words, a quantile found from Equation 4 is almost the true value, with a resulting error
precision in probabilities less than 0.1%.

The only outstanding issue that remains is to find an estimate for n given any level of §. We have:

Ake—2 t _ Ak .
Zk>n YR Fy (E) < e Yisn T (Equation 6)

kn+1€l

k
The exponential seties R, (A) = Zk>n% in Equation 6 is bounded by by applying Taylot’s

(n+1)!
Expansion Theorem, with the remainder of the function left for higher exponential function
expansions. By substituting the upper bound for R, (A) in Equation 6, we have:

Ake=2 t ATt .
Lie>n T Fy (E) < m+1)! (Equation 7)

Now we need to find the lower bound in n for the solution of the inequality:

An+1

oD <4 (Equation 8)

Consider the following two cases:

An+1

1. IfA<1, then

M+ — (n+1)! <(n+ 1)—(n+1)en‘ Consequently, we can solve the inequality

(n+ 1)~ Den < §. Since n™ grows quickly, we can simply take n > —In 8. For example,
for§ = 1()1% it is sufficient to set 1 = 7 to satisfy Equation 8.



2. If A > 1, then, in this case, using the same bounds for the factotial, we can choose 7 such that:

n+D(n(n+1)—-MmA-1)>—-In6 -1 (Equation 9)

To make the second multiplier greater than 1, we will need to choose n > etind 1,

Approximation to the solution of the equation Fz(t) = p for a quantile value

From the previous considerations, we found that instead of solving F,(t) = p for t, we can solve
Ake—2 . o .

F,(t,n) = stn%Fy (é) = p with n set at the level indicated above. The value for t,, resulting

from such a substitution will satisfy the inequality |F 7 (tp (n)) —F Z(tp (n), n)| < 6.

Solution of the equation F;(t,n) = p givenn and &

By moving t to the left one unit at a time, we can find the first occurrence of the event ¢ = a such
that F;(a,n) < p. Similarly, moving t to the right we can find b such that F,(b,n) = p. Now we
can use a simple Bisection Method or other search algorithms to find the optimal solution to

FZ(trn) = p

Empirical Results: Convolution versus Monte Carlo
Risk Simulation for OPCAR

Based on the explanations and algorithms outlined above, the convolution approximation models
are run, and the results are compared with Monte Carlo risk simulation outputs. These comparisons
will serve as empirical evidence of the applicability of both approaches.

Figure 2 shows the 10 most commonly used Severity distributions, namely, Exponential,
Fréchet, Gamma, Logistic, Log Logistic, Lognormal (Arithmetic and Logarithmic inputs), Gumbel,
Pareto, and Weibull. The Frequency of risk occutrences is set as Poisson, with Lambda (4) or
average frequency rate per period as its input. The input parameters for the 10 Severity distributions
are typically Alpha (&) and Beta (f8), except for the Exponential distribution that uses a rate
parameter, Rho (p), and Lognormal distribution that requires the mean (1) and standard deviation
(0) as inputs. For the first empirical test, we set A = 10, a = 1.5, f = 2.5, p = 0.01, x = 1.8, and
o = 0.5 for the Poisson frequency and 10 severity distributions. The Convolution Model row in
Figure 2 was computed using the algorithms outlined above, and a set of Monte Carlo risk
simulation assumptions were set with the same input parameters and simulated 100,000 trials with a
prespecified seed value. The results from the simulation were pasted back into the model under the
Simulated Results row and the Convolution Model was calculated based on these simulated outputs.
Figure 2 shows 5 sets of simulation percentiles: 99.9%, 99.0%, 95.0%, 90.0%, and 50.0%. As can be
seen, all of the simulation results and the convolution results on average agree to approximately
within +0.2%.

Figure 3 shows another empirical test whereby we select one specific distribution; in the
illustration, we used the Poisson—Weibull compound function. The alpha and beta parameters in
Weibull were changed, in concert with the Poisson’s lambda input. The first four columns show
alpha and beta being held steady while changing the lambda parameter, whereas the last six columns



show the same lambda with different alpha and beta input values (increasing alpha with beta
constant and increasing beta with alpha constant). When the simulation results and the convolution
results were compared, on average, they agree to approximately within £0.2%.

Figure 4 shows the Credit, Market, Operational, and Liquidity (CMOL) risk software’s
operational risk module and how the simulation results agree with the convolution model. The
CMOL software uses the algorithms as described above. The CMOL software settings are 100,000
Simulation Trials with a Seed Value of 1 with an OPCAR set to 99.90%.

Figures 5-8 show additional empirical tests where all 10 severity distributions were perturbed,
convoluted, and compared with the simulation results. The results agree on average around +0.3%.
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Figure 3: Comparing Convolution to Simulation Results Il
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Figure 4: Comparing Convolution to Simulation Results Ill
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0.06% -0.06% 0.35% 0.03% -0.15% 0.00% 0.21% 0.00% 0.10% 0.01%

[ 90.0% | 90.2% | 90.1% [ 90.1% | 90.2% [ 90.0% | 90.1% | 90.0% | 89.9% | 90.1% |
0.00% -0.17% -0.08% -0.08% -0.17% -0.02% -0.07% -0.01% 0.10% -0.12%

| 50.0% | 50.2% | 50.1% | 50.1% | 50.1% [ 50.1% | 50.1% | 50.1% | 50.0% | 50.1% |
0.05% -0.15% -0.05% -0.08% -0.13% -0.10% -0.05% -0.06% 0.01% -0.11%

Figure 5: Empirical Results 1: Small Value Inputs




Frequency: Poisson (A=50) and Severity: 10 Distributions (=3, B=5, p=0.10, p=5, c=1)

SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN THE LEFT TAIL VALUE)

Exponential Frechet Gamma Logistic Log Logistic Lognormal Lognormal Gumbel Pareto Weibull
[ 99.9% | 99.8% | 99.9% | 99.8% | 99.8% | 99.8% | 99.8% | 99.8% | 99.8% | 99.8% |
0.04% 0.05% -0.01% 0.06% 0.06% 0.07% 0.06% 0.09% 0.08% 0.09%
| 98.9% | 99.0% | 99.0% | 99.0% | 98.9% | 98.9% | 99.0% | 98.9% | 98.9% | 98.9% |
0.08% -0.01% -0.05% -0.04% 0.08% 0.08% 0.03% 0.06% 0.06% 0.08%
| 95.0% | 95.0% | 95.1% | 94.9% | 95.1% | 94.9% | 95.0% | 94.9% | 94.9% | 95.1% |
0.02% -0.02% -0.05% 0.06% -0.10% 0.10% 0.03% 0.05% 0.09% -0.07%
[ 90.2% | 90.0% | 90.0% | 90.0% | 90.2% | 90.0% | 89.9% | 90.0% | 89.8% | 90.1% |
-0.15% -0.03% 0.00% 0.04% -0.20% 0.00% 0.07% 0.03% 0.16% -0.05%
| 49.8% | 50.0% | 50.0% | 50.1% | 49.4% | 50.0% | 50.1% | 50.0% | 50.0% | 50.1% |
0.18% 0.00% 0.00% -0.10% 0.65% 0.00% -0.10% 0.00% 0.00% -0.10%

Figure 6: Empirical Results 2: Average Value Inputs

Frequency: Poisson (A=100) and Severity: 10 Distributions (=25, B=35, p=0.025, p=2.5, 6=0.9)
SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN THE LEFT TAIL VALUE)

Exponential Frechet Gamma Logistic Log Logistic Lognormal Lognormal Gumbel Pareto Weibull
| 99.9% | 99.9% | 99.8% | 99.9% | 99.8% | 99.8% | 99.8% | 99.8% | 99.9% | 99.8% |
0.05% 0.04% 0.06% 0.04% 0.07% 0.07% 0.05% 0.07% 0.03% 0.08%
| 99.5% | 99.0% | 99.0% | 99.0% | 99.0% | 99.0% | 98.9% | 98.9% | 98.9% | 99.0% |
0.54% 0.03% 0.01% -0.02% -0.02% 0.05% 0.10% 0.11% 0.06% 0.01%
| 97.2% | 95.0% | 95.2% | 95.0% | 95.1% | 95.0% | 95.0% | 94.9% | 94.9% | 95.0% |
-2.20% 0.00% -0.17% 0.00% -0.10% 0.5% 0.00% 0.15% 0.13% 0.00%
| 93.7% | 90.0% | 90.0% | 90.0% | 90.0% | 90.1% | 89.9% | 90.0% | 90.0% | 90.3% |
-3.70% 0.00% 0.05% 0.00% 0.00% -0.05% 0.15% 0.00% 0.00% -0.25%
| 56.2% | 50.0% | 50.1% | 50.0% | 50.0% | 50.0% | 50.0% | 50.1% | 50.0% | 50.0% |
6.21% 0.00% -0.05% -0.01% -0.01% 0.00% -0.01% -0.06% 0.05% 0.00%

Figure 7: Empirical Results 3: Medium Value Inputs

Frequency: Poisson (A=15) and Severity: 10 Distributions (=80, B=25, p=5, p=25, 6=3)
SIMULATION RESULTS (APPROXIMATE PERCENTILE FROM SIMULATION GIVEN THE LEFT TAIL VALUE)

Exponential Frechet Gamma Logistic Log Logistic Lognormal Lognormal Gumbel Pareto Weibull

| 99.9% | 99.8% | 99.9% | 99.9% | 99.9% | 99.8% | 99.8% | 99.8% | 99.9% | 99.8% |
0.05% 0.06% 0.04% 0.05% 0.03% 0.12% 0.12% 0.08% 0.05% 0.06%

[ 98.9% | 98.9% | 99.0% | 99.0% | 99.0% | 99.0% | 99.0% | 98.9% | 99.1% | 99.0% |
0.07% 0.06% -0.02% 0.03% 0.04% 0.01% 0.01% 0.08% -0.07% 0.04%

| 95.0% | 95.0% | 95.0% | 95.1% | 95.0% | 95.0% | 95.0% | 95.0% | 95.0% | 95.0% |
0.04% 0.00% 0.01% -0.06% 0.00% 0.02% 0.02% 0.02% 0.0% 0.05%

| 90.0% | 90.0% | 90.2% | 90.0% | 90.2% | 90.0% | 90.0% | 89.9% | 90.0% | 90.1% |
0.00% 0.00% -0.16% 0.01% -0.17% 0.01% 0.01% 0.09% 0.00% -0.10%

| 49.9% | 50.1% | 50.1% | 50.0% | 49.9% | 50.0% | 50.0% | 50.1% | 50.0% | 50.0% |
0.08% -0.05% -0.05% 0.05% 0.10% 0.00% 0.00% -0.10% 0.00% 0.00%

Figure 8: Empirical Results 4: High Value Inputs



High Lambda and Low Lambda Limitations

As seen in Equation 4, we have the F,(t,n) = ZkSn)l:—'AFy (i) = p convolution model. The
results are accurate to as many decimal-points precision as desired as long as n is sufficiently large,
but this would mean that the convolution model is potentially mathematically intractable. When A
and k are high (the value k depends on the Poisson rate A), such as A = 10,000, the summand
cannot be easily computed. For instance, Microsoft Excel 2013 can only compute up to a factorial of
170! where 171! and above returns the #NUM! error. Banks whose operational risks have large A
rate values (extremely high frequency of risk events when all risk types are lumped together into a
comprehensive frequency count) have several options: Create a breakdown of the various risk types
(broken down by risk categories, by department, by division, etc.) such that the A is more
manageable; use a continuous distribution approximation as shown below; or use Monte Carlo risk

simulation techniques, where large A values will not pose a problem whatsoever.

Poisson distributions with large A values approach the Normal distribution, and we can use this
fact to generate an approximation model for the convolution method. The actual deviation between
Poisson and Normal approximation can be estimated by the Berry—Esseen inequality. For a more
accurate and order of magnitude tighter estimation we can use the Wilson—Hilferty approximation
instead. For the large lambda situation, we can compute the CDF of the compound of two
continuous distributions whose PDFs are defined as f(x) defined on the positive interval of (a, b)
for the random variable X, and g(y) defined on the positive interval of (¢, d), for the random
variable Y. In other words, we have 0 < a <b <o and 0 < ¢ < d < . The joint distribution
Z = XY has the following characteristics:

For = [ reog (2) 2ax

CCHIVCE f f] F0g (2)5

The integration can be applied analytically using numerical integration methods, but the results
will critically depend on the integration range of x and v. The values of a, b, ¢, d can be computed
by taking the inverse CDF of the distributions at 0.01% and 99.99% respectively (e.g., in the Normal
distribution, this allows us to obtain real values instead of relying on the theoretical tails of —o0 and
+00). Table 1: The following table summarizes the integration ranges:

When AD < BC When AD = BC When AD > BC

v v
j=zifac<v<ad j=zifac<v<ad j=—if ac<v<bc

S ol

j=bif ad<v<bd |j=bif bc<v<ad

v
j=zif ad <v <bc

j=b if bc<v<bd i=aif ac<v<ad j=b if ad <v <bd

i=aif ac<v<ad i=§ifad<v<bd i=a if ac<v<bc

i=gifad<v<bc i=aif bc<v<ad




i=£ifbc<v<bd i=gifad<v<bd

To obtain the values of m and n, we can first run a Monte Carlo Risk Simulation of the two
independent distributions, then multiply them to obtain the joint distribution, and from this joint
distribution, we obtain the left tail 0.01% wvalue, and set this as m. The value of n is the left tail
VaR% (e.g., 99.95%) value. The second integral when run based on this range, will return the CDF
percentile of the OPCAR VaR. Alternatively, as previously described, the Bisection Method can be
used to obtain the lowest value of m by performing iterative searches such that the CDF returns
valid results at 0.01% and then a second search is performed to identify the upper range or n, where
the resulting n that makes the integral equal to the user-specified VaR%, i.e., the OPCAR value.

Finally, for low lambda values, the algorithm still runs but will be a lot less accurate. Recall in

k-1
Equation 2 that 2k>n%Fy (i) < 8 where § signifies the level of etror precision (the lower the

value, the higher the precision and accuracy of the results). The problem is, with low A values, both
k and n, which depend on A, will also be low. This means that in the summand there would be an
insufficient number of integer intervals, making the summation function less accurate. For best
results, A should be between 5 and 100.

Convoluted Simulation vs. Simulation Multiplication

The next experiment is to look at the convolution simulation of two distributions, specifically, a
Poisson discrete distribution to model the frequency of occurrence, and a Lognormal continuous
distribution to model the impact of each occurrence. On the one hand, the test is applied by
simulating these two independent distributions for 100,000 trials each, and in each trial, we multiply
the results of the two simulated values. This will then generate a probability distribution of 100,000
losses. On the other hand, we will convolute these two probability distributions into a single
simulation process to generate the sale 100,000 losses. Figures 9— 12 illustrate the results of these
two competing simulation approaches.

In Figure 9, the same Lognormal distribution with a mean of 1,000 and standard deviation of
100 is used, while we vary the Poisson distribution, starting with a A (the average number of
incidents) parameter of 10, 15, 20, all the way to 20,000. The analysis proceeds by the simple
multiplication of the simulated distributions. A second parallel experiment was run with a
convolution simulation. We then compare a few distributional moments of the results of these two
methods, such as the mean, interquartile range (the first and third quartiles), and 90% confidence
interval (5th and 95th percentiles). Their mean absolute deviations (MAD) were then computed. We
clearly see a heteroskedastic trend in the MAD values as A increases.

Conversely, Figure 10 shows the situation where the Poisson distribution is held constant, with a
A of 100, while we vary the Lognormal distribution, whete the mean is changed from 10, 50, 100, to
15,000,000 to model the impact of a loss distribution. We can see a more homoskedastic spread of
MADs, regardless of the loss amounts.

Figure 11 shows what happens when we combine the two experiments, with varying Poisson
and Lognormal distributional parameters. However, in all three experiments, we see that the first
moments, the mean and median of all the combinations, tend to be similar, whether we ran a



multiplicative simulation or convoluted simulation. We can quickly conclude that only the spreads of
the total loss distributions differ, whereas the expected values remain the same.

20% Lognormal (1000,100) with Changing Poisson (Lambda)
15%
10%

5%

0.3%
0%

-5%
! Mean, Interquartile Range,
10% and 90% Confidence Interval of
the Mean Absolute Deviation (MAD)

between Convolution Simulation

-15% L. . . .
and Multiplicative Simulation
20% -
10 15 20 40 80 100 200 500 1K 5K 10K 20K
Max 0.0% -4.9% -2.2% -10.2% -7.7% -13.8% -12.4% -16.2% -18.4% -16.8% -21.5% -21.3%
95% 0.0% -2.3% -2.7% -3.0% -3.9% -4.3% -5.0% -6.1% -6.5% -7.8% -8.0% -8.2%
T5% 0.0% -1.9% -2.9% -3.8% -5.0% -5.6% -7.0% -8.7% -9.9% -11.8% -12.2% -12.6%
25% 0.0% -1.2% -1.3% -2.2% -3.5% -3.6% -5.0% -6.7% -7.8% -9.2% -9.8% -10.0%

5% 0.0% -6.9% 16.2% -16.1% -2.9% -1.5% -200% = -30.8% | -19.3% = -325% | -282% @ -34.4%
Min -0.3% 9.6% -12.7% 20.9% 9.4% 8.6% 29.1% 42.4% 32.6% 48.3% 44.8% 51.5%
Mean  -0.3% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0%

Figure 9: Different Poisson Assumptions with Identical Lognormal Distributions



Poisson (Lambda 100) with Changing Lognormal (x, 0.1x)

20%

15%

10%

5%

0%

-5%

10% Mean, Interquartile Range, and 90% Contidence Interval of

the Mean Absolute Deviation (MAD) between Convolution Simulation
15% and Multplicative Simulation
20% -

10 50 100 500 1K 5K 10K 50K 100K 1M 10M 15M

Max 0.0% -8.2% -12.5% -11.7% -8.0% -8.2% -11.7% -13.0% -13.5% -7.6% -13.6% -10.5%
95% 0.0% -4.3% -4.3% -4.0% -4.1% -4.2% -4.1% -4.1% -4.2% -4.2% -4.2% -4.1%
75% 0.0% -5.5% -5.5% -5.6% -5.7% -5.5% -5.4% -5.7% -5.5% -5.3% -5.4% -5.7%
25% 0.0% -4.0% -3.8% -3.7% -3.8% -3.8% -3.8% -3.9% -3.5% -3.7% -3.9% -3.7%
5% 0.0% -10.2% -15.1% 3.2% -4.9% -7.4% -1.9% -6.1% -5.4% -7.1% -22.6% -12.8%

Min 0.0% 17.7% 22.2% 3.9% 12.1% 14.5% 9.1% 13.4% 12.4% 14.1% 29.8% 19.9%
Mean  0.0% 0.1% -0.1% 0.0% -0.1% 0.0% 0.1% 0.0% 0.0% 0.1% -0.1% -0.1%

Figure 10: Different Lognormal Assumptions with Identical Poisson Distributions

20% Changing Poisson (Lambda) with Changing Lognormal (Mean, 0.1 Mean)
15%
10%
5%

0%

0%

-5%

-10%
Mean, Interquartile Range, and 90% Confidence Interval of
15% the Mean Absolute Deviation (MAD) between Convolution Simulation and
Multiplicative Simulation
20% — — — —
10,100 | 10,1K | 10,10K 100,100 100, 1K | 100, 10K 1K, 100 | 1K 1K | 1K, 10K | 10K 100 | 10K 1K 10K, 10K
Max 0.0% -12.8% -7.5% -15.1% -13.9% -8.5% -12.5% -18.4% -13.5% -20.3% -17.7% -17.8%
95% 0.0% 21% -1.8% -4.0% -4.1% -4.1% -6.5% -6.6% -6.6% -8.0% -8.0% -7.9%
75% 0.0% -2.9% -3.2% -5.6% -5.4% -5.6% -9.9% -9.8% -10.0% -12.2% -12.3% -12.2%
25% 0.0% 1.6% 0.4% -3.9% -4.0% -3.9% -7.8% -1.7% -7.4% -9.8% -9.8% -9.8%
5% 0.0% 1.0% 2.2% -2.4% -18.8% -10.0% -18.5% -25.3% -31.0% -33.3% -31.2% -38.3%
Min 0.0% 0.0% 0.0% 9.7% 26.2% 17.2% 31.9% 38.6% 44.0% 49.9% 47.9% 55.0%
Mean | 0.0% 0.1% 0.0% 0.1% 0.1% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1%

Figure 11: Different Poisson and Different Lognormal Assumptions



Figure 12 more clearly shows a visual of the spread. Specifically, we see the left column charts
where the Poisson A parameter is allowed to increase. In all cases, the expected values are the same,
but when convolution simulation is applied, the spread of the convoluted distribution is usually less
wide and more conservative than the multiplicative simulation results. The difference is most
obvious when the 4 is large.

The right column shows the results when the Poisson distribution is held constant while the
Lognormal parameters are allowed to change. Just like in the homoskedastic chart, we see that the
differential spreads between the multiplicative simulation and convolution simulation tend to be
relatively stable (typically when the parameter is such that 5 < 4 < 100).
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Figure 12: Simulated Multiplication vs. Convolution Simulation



CAVEATS, CONCLUSIONS, AND RECOMMENDATIONS

Based on the theory, application, and empirical evidence above, one can conclude that the
convolution of Frequency X Severity independent stochastic random probability distributions can be
modeled using the algorithms outlined above as well as using Monte Carlo simulation methods. On
average, the results from these two methods tend to converge with some slight percentage variation
due to randomness in the simulation process and the precision depending on the number of
intervals in the summand or numerical integration techniques employed. However, as noted, the
algorithms described above are only applicable when the A patameter 5 < 4 <100, else the
approximation using numerical integration approach is required.

In contrast, Monte Carlo risk simulation methods using a standard multiplicative model vs. a
convoluted simulation approach tends to yield the same expected value or central tendency results,
i.e., the same mean values. But as A increases, the distributional width for the convoluted simulation
approach tends to be more conservative and smaller, as compared to the multiplicative model.
Monte Cartlo risk simulation methods are the recommended path when it comes to modeling
OPCAR and depending on whether a more conservative distribution is needed or a wider
distribution is required, the relevant method can be applied.
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