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Abstract Many data exploration methods include matrices inversion tasks.
Exploration of large data sets require quick and accurate inversion of high-
dimensional matrices. The presented paper describes concept of inverting ma-
trices with the basis exchange algorithms which are based on the Gauss-Jordan
vector transformation. An illustrative numerical example is also included in
the article.
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1 Introduction

The complexity of large matrices inversion is currently an important challenge
in many practical problems in data exploration methods [5,6,4].

Various numerical techniques aimed at efficient and precise inverting of
large matrices are currently being developed [10]. Basis exchange algorithms
are also examined in this context [1–3]. They are based on the Gauss-Jordan
transformation and as a result are similar to the Simplex algorithm used in
linear programming [11].
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A new version of the basis exchange algorithm specified for matrices in-
version with a Gauss-Jordan transformation is proposed and examined in the
presented paper. A multistage process of reversing matrices with gradually
increased computational complexity is described.

2 Sequence of inverted matrices

Consider a square, non-singular matrix X of the dimension n× n:

X = [x1, . . . ,xn]T . (2.1)

The rows of the non-singular matrix X (2.1) are assumed to be composed
of n linearly independent feature vectors xj = [xj,1, . . . , xj,n]T belonging to a
given n-dimensional feature space F[n] (xj ∈ F[n]). In this case, there exists
the inverse matrix X−1 (XX−1 = I, where I = [e1, . . . , en] is the unit matrix):

X−1 = [r1, . . . , rn]. (2.2)

The inverse matrix X−1 is composed of n columns ri = [ri,1, . . . , ri,n]T

which fulfill the below equations:

(∀j ∈ {1, . . . , n}) xT
j rj = 1

and (∀i ∈ {1, . . . , n; i 6= j}) xT
j ri = 0.

(2.3)

New methods for reversing the matrix are proposed and implemented to
increase the efficiency of calculations and the size of the inverted matrices [10,
8]. In this context, we propose using the basis exchange algorithms for matrices
inversion.

Let us consider the below family of the non-singular matrices (bases) Bk:

(∀k ∈ {1, . . . , n})
Bk = [xj(1), . . . ,xj(k), ek+1, . . . , en]T ,

(2.4)

where j(k) is the index of the feature vector xj(k) inserted to the basis Bk−1 (2.4)
during the k-th stage.

The k-th basis Bk (2.4) is composed of k feature vectors xj(l) (l = 1, . . . , k)
and n− k unit vectors el (l = k + 1, . . . , n).

The selected feature vectors xj(i) (i = 1, . . . , k) and n − k unit vectors ei

(i = k + 1, . . . , n) constituting the rows of the nonsingular matrix Bk (2.4)
form the base of the n-dimensional feature space F[n]. The bases Bk (2.4) are
ranked in the below sequence:

B0,B1, . . . ,Bn−1,Bn. (2.5)

The first matrix B0 in this sequence is equal to the unit matrix I (B0 = I),
and the k-th base matrix Bk is composed of k feature vectors xj(k) (j(k) ∈
{1, . . . , n}) and n − k unit vectors ei (i = k + 1, . . . , n). The last matrix
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Bn = [xj(1), . . . ,xj(n)]
T in the sequence (2.5) is composed of n feature vectors

xj (j = 1, . . . , n).
The Gauss-Jordan transformation makes it possible to generate the fol-

lowing sequence of the inverted matrices B−1k obtained from the non-singular
matrices Bk (2.4) [2]:

B−10 ,B−11 , . . . ,B−1n−1,B
−1
n . (2.6)

The k-th inverted matrix B−1k can be represented in the following manner:

(∀k ∈ {1, . . . , n}) B−1k = [r1(k), . . . , rn(k)], (2.7)

where the symbol ri(k) stands for the i-th column of the k-th inverse matrix
B−1k .

3 Gauss-Jordan vector transformation

The sequence of the inverse matrices B−1k (2.6) results from the multistage pro-
cess of the matrices Bk (2.5) transformations. During the k-th stage the matrix
Bk (2.4) is transformed into the basis Bk+1:

(∀k ∈ {1, . . . , n− 1}) Bk → Bk+1. (3.1)

The basis Bk+1 is obtained as the result of replacing the (k + 1)-th unit
vector ek+1 in the matrix Bk (2.4) by the j(k + 1)-th feature vector xj(k+1).
In accordance with the Gauss-Jordan vector transformation the replacement
of the unit vector ek by the feature vector xj(k+1) (3.1) causes the following

modifications of the columns ri(k) of the inverse matrix B−1k (2.7) [3]:

(∀k ∈ {0, . . . , n− 1})
rk+1(k + 1) = (1/rk+1(k)Txj(k+1))rk+1(k)

and (∀i 6= k)

ri(k + 1) = ri(k)− (ri(k)Txj(k+1))rk+1(k + 1) =

= ri(k)− (ri(k)Txj(k+1)/rk+1(k)Txj(k+1))rk+1(k),

(3.2)

where j(k + 1) is the index of the feature vector xj(k+1) inserted to the basis
Bk (2.4).

Remark 3.1 The Gauss-Jordan transformation (3.2) linked to the replacement
of the unit vector ek+1 by the feature vector xj(k+1) cannot be performed when
the below condition is met:

rk+1(k)Txj(k+1) = 0. (3.3)

The condition ( 3.3) would result in the division by zero in the equation (3.2).
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Remark 3.2 The k-th column of the inverse matrix
B−1k = [r1(k), . . . , rn(k)] (2.6) is the vector
rk(k) = [rk,1(k), . . . , rk,n(k)]T with the last n − k components rk,l(k) equal
to zero:

(∀k ∈ {0, 1, . . . , n− 1}) (∀l ∈ {k + 1, . . . , n})
rk,l(k) = 0.

(3.4)

The above property results directly from the matrix inverse equations (2.3).
The k-th column rk(k) of the inverse matrix B−1k (2.7) is perpendicular to all
vectors xj(l) belonging to to the basis Bk (2.4) except the vector xj(k) [2]:

(∀k ∈ {1, . . . , n− 1}) (∀l ∈ {1, . . . , k − 1})
rk(k)Txj(l) = 0.

Given the conditions (3.4), the above equations can be represented as follows:

(∀k ∈ {1, . . . , n− 1}) (∀l ∈ {1, . . . , k − 1})
r[k]Txj(l)[k] = 0,

(3.5)

where the symbol rk[k] means the k-th column rk(k) = [rk,1(k), . . . , rk,n(k)]T

of the inverse matrix B−1k (2.7) after reducing the last n−k components rk,i(k):

(∀k ∈ {1, . . . , n− 1})
rk[k] =[rk,1(k), . . . , rk,k(k)]T .

Similarly, the symbol xj [k] = [xj,1, . . . , xj,k]T means the reduced vector ob-
tained from the feature vector xj = [xj,1, . . . , xj,n]T after reducing the last
n− k components xj,i:

(∀j ∈ {1, . . . , n}) xj [k] = [xj,1, . . . , xj,k]T . (3.6)

During step k we try to replace the (k + 1)-th unit vector ek+1 in the
matrix Bk (2.4) by the j(k + 1)-th feature vector xj(k+1). In accordance with
the vectoral Gauss-Jordan transformation (3.2) such replacement is impossible
if the condition (3.3) appears.

Lemma 3.1 If the reduced vector xj(k+1)[k] (3.6) during the k-th step is a
linear combination of the basis reduced vectors xj(i)[k] with i ≤ k, then the
condition rk(k)Txj(k+1) = 0 (3.3) appears, when:

xj(k+1)[k] = αj(k+1),1xj(1)[k] + . . .+ αj(k+1),kxj(k)[k], (3.7)

where (∀i ∈ {1, . . . , k}) αj(k+1),i ∈ R1.
The lemma can be directly proved by using the equations (3.5).

Remark 3.3 The collinearity condition (3.7) which appears during the k-th
step may disappear during the (k + 1)-th step.
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The disappearance of the collinearity condition (3.7) may result from tak-
ing into account the additional component xj(k+1),k+1 of the reduced feature
vector
xj(k+1)[k + 1].

The condition (3.3) provides a possibility to block the insertion of almost
linearly dependent vectors
xj(k+1)[k + 1] (3.7) into the nonsingular matrix Bk (2.4).

4 Matrix inversion through basis exchange

Simplex algorithm from linear programming is defined by the exit criterion,
entry criterion and the stop criterion [11]. Any basis exchange algorithm can
also be defined by such criteria. The basis exchange algorithm oriented to
matrices inversion is defined by the following criteria:

1. exit criterion
The unit vector ek+1 leaves the basis Bk (2.4) during the step k.

2. entry criterion
The feature vector xj(k+1) which enters the basis Bk (2.4) during the step
k has the smallest index j(k + 1) among all such vectors xj which fulfill
the below collinearity condition (3.3):

|rk+1(k)Txj(k+1)| ≥ ε (4.1)

where ε is a small, positive parameter (ε > 0).
3. stop criterion

The algorithm is stopped during the step k (k ≤ n) if no vector xj(k+1)

(xj(k+1) /∈ Bk) can be inserted into the basis Bk (2.4) in accordance with
the condition (4.1). The choice of the value of the parameter ε in the entry
condition (3.5) gives the possibility to control the level of ill-conditioning
of the inverted matrices Bk (2.7) Fulfillment of the stop criterion during
the k-th step (k < n) means that the matrix X (2.1) is not reversible at
the acceptable ε-level of ill-conditioning (4.1).

Properties of the basis exchange algorithm defined by the above criteria
can be analyzed by using the convex and piecewise linear (CPL) criterion
functions.

5 The inversion criterion function

The convex and piecewise linear (CPL) criterion functions are used, among
others, for the purpose of examining the linear separability of data sets or for
extracting collinear patterns [3]. Similar CPL criterion functions can also be
useful in examining the nonsingularity of high-dimensional matrices X (2.1).
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The following penalty functions ϕj(w) can be used for this purpose [1]:

(∀j ∈ {1, . . . , n})
1− xT

j w if xT
j w ≤ 1

ϕ(w) = |1− xT
j w| =

xT
j w − 1 if xT

j w > 1

(5.1)

where w = [w1, . . . , wn]T is the parameter (weight) vector (w ∈ Rn).
The inversion criterion function Φinv(w) is the sum of the penalty func-

tions ϕj(w):

Φinv(w) =
∑

j=1,...,n

ϕj(w). (5.2)

Two types of the dual hyperplanes h1j and h0i in the n-dimensional parame-
ter space Rn are introduced in order to explore the properties of the inversion
criterion function Φinv(w) (5.2) [3]. Each of n feature vectors xj (2.1) defines
the below dual hyperplane h1j :

(∀j ∈ {1, . . . , n}) h1j = {w : xT
j w = 1}. (5.3)

Similarly, each of n unit vectors ei = [0, . . . , 1, . . . , 0]T defines the hyper-
plane h0i :

(∀i ∈ {1, . . . , n}) h0i = {w : eT
i w = 0} = {w : wi = 0}, (5.4)

where w = [w1, . . . , wn]T ∈ Rn.
Let us consider the k-th subset Sk of n linearly independent feature vectors

xj (2.1) and unit vectors ei:

Sk = {xj : j ∈ Jk} ∪ {ei : i ∈ Ik}. (5.5)

The set Sk is composed of k feature vectors xj (j ∈ Jk) and n − k unit
vectors ei (i ∈ Ik).

Definition 5.1 The vertex wk of the rank rk is defined as the intersection
point of the rk hyperplanes h1j (5.3) where j ∈ Jk, and the n− rk hyperplanes

h0i (5.4) which are determined by the unit vectors ei (i ∈ Ik) from the subset
Sk (5.5).

The below linear equations are fulfilled in the vertex wk of the rank rk:

(∀j ∈ Jk) wT
k xj = 1 (5.6)

and
(∀i ∈ Ik) wT

k ei = 0. (5.7)

The equations (5.6) and (5.7) can also be represented by using the matrix
Bk (2.4):

Bkwk = 1′ = [1, . . . , 1, 0, . . . , 0]T

and (3.7)
wk = B−1k 1′ = r1(k) + . . .+ rk(k). (5.8)
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Remark 5.1 The vertex wk (5.8) of the rank rk can be represented as the
below vector wk = [wk,1, . . . , wk,n]T with the last n − rk components wk,i

equal to zero:

wk = [wk,1, . . . , wk,rk , 0, . . . , 0]T . (5.9)

The components wk,i of the vertex wk (5.8) equal to zero are linked to the
n− rk unit vectors ei (i ∈ Ik) (5.7) in the basis Bk (2.4).

The inversion criterion function Φinv(w) (5.2) is convex and piecewise lin-
ear (CPL) and their minimum can be located in one of the vertices wk (5.9) [3].

(∃w∗k)(∀w)Φinv(w) ≥ Φinv(w∗k) = Φ∗inv ≥ 0. (5.10)

The basis exchange algorithms allow efficient finding the optimal vertex w∗k
constituting the minimal value Φinv(w∗k) (5.10) even in the case of large ma-
trices X (2.1) [3].

Remark 5.2 The minimal value Φinv(w∗k) of the CPL criterion function
Φinv(w) (5.2) is equal to zero if and only if each of n dual hyperplanes h1j (5.3)
passes through the optimal vertex w∗k (5.10):

(Φinv(w∗k) = 0)⇔ ((∀j ∈ {1, . . . , n})(w∗k)Txj = 1). (5.11)

The above property results directly from the definition (5.2) of the penalty
functions ϕj(w) (5.1). If the relation (5.11) holds, then each of penalty func-
tions ϕj(w) (5.1) is equal to zero in the optimal vertex w∗k.

Remark 5.3 The optimal vertex w∗n (5.10) of the rank n can be linked to the
final basis Bn = [xj(1), . . . ,xj(n)]

T (2.4) composed of n linearly independent
vectors xj(k) (k ∈ {1, . . . , n}). In this case, the vector w∗k (5.10) is the sum of n
columns ri(n) of the inverse matrix
B−1n = [r1(n), . . . , rn(n)] (2.7):

w∗n = B−1n 1 = r1(n) + . . .+ rn(n). (5.12)

Remark 5.4 If all the unit vectors ek (k = 1, . . . , n) in the matrix I = [e1, . . . , en]
have been replaced in accordance with the Gauss-Jordan equations (3.2) by
the feature vectors xk, then the matrix X−1 (2.2) is equal to the inverted basis
B−1n (2.7) (X−1 = B−1n ).

The above remark specifies the sufficient conditions for the equality X−1 =
B−1n (2.7). It was assumed in this remark, that the j-th unit vectors ej was al-
ways replaced by the j-th feature vector xj (j = 1, . . . , n). The collinearity con-
dition (3.3) can cause a situation when the final matrix Bn = [xj(1), . . . ,xj(n)]

T (2.7)
in the sequence (2.5) will be different from the data matrix X = [x1, . . . ,xn]T (2.1).
In this case, the equality X−1 = (B′n)−1 can be reached by changing the or-
der of the rows xT

j(i) in the final basis Bn (2.7) and the columns ri(n) in the

inverted matrix B−1n = [r1(n), . . . , rn(n)] (2.7).
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Changing the order of the rows xT
j(i) in the matrix Bn = [xj(1), . . . ,xj(n)]

T

should be accompanied by such changing of the columns ri(n) order in the
inverse matrix B−1n (2.7) that the inverse equation BnB−1n = I is preserved:

(∀i ∈ {1, . . . , n}) xT
j(i)ri(n) = 1

and (∀i′ ∈ {1, . . . , n; i′ 6= i}) xT
j(i)ri′(n) = 0

Remark 5.5 The equation BnB−1n = I is preserved during the replacement of
the j(i)-th vector xj(i) in the matrix Bn = [xj(1), . . . ,xj(n)]

T (2.4) to the i-th
row of this matrix if it is accompanied by the replacement of the j(i)-th column
of the inverse matrix B−1n = [r1(n), . . . , rn(n)] (2.6) to the i-th column.

The replacement of the rows xT
j(i) in the matrix Bn = [xj(1), . . . ,xj(n)]

T (2.4)

and the columns ri(n) in the inverse matrix B−1n = [r1(n), . . . , rn(n)] (2.6) in
accordance with the Remark 8 allows to find the inversed matrix X−1 (2.2)
on the basis of the matrix B−1n .

Theorem 5.1 The matrix X (2.1) is reversible (X−1 exists) if and only if the
minimal value Φinv(w∗k) (5.10) of the inversion criterion function Φinv(w) (5.2)
is equal to zero and the rank rk (Definition 1 ) of the optimal vertex w∗k (5.10)
is equal to n (rk = n).

Proof If the optimal vertex w∗k (5.10) has the rank rk equal to n (rk = n),
then the basis Bn (2.4) linked to this vertex is composed of n vectors xj(i)

(Definition 1 ). The last matrix The last matrix Bn = [xj(1), . . . ,xj(n)]
T in the

sequence (2.5) is composed of linearly independent vectors xj(k) (k = 1, . . . , n).
In this case, the inverse matrix X−1 (2.2) can be obtained from the matrix
B−1n = [r1(n), . . . , rn(n)] (2.6) through the replacement of the columns ri(n)
(Remark 8 ). If the matrix X−1 (2.2) exists, then the vector w∗n (5.10) is the
sum (5.12) of n columns ri(n) (2.6) and the rank rk of this vertex is equal to
n (rk = n) �.

The sequence of the bases Bk (2.5) is stopped at the stage k when there is
no vector xj(k+1) (xj(k+1) /∈ Brk) that could be inserted into matrix
Bk = [xj(1), . . . ,xj(k), ek+1, . . . , en]T (2.4) in accordance with the condition
|rk+1(k)Txj(k+1)| ≥ ε (4.1). Such situation occurs in the k vertex wk =
[wk,1, . . . , wk,k, 0, . . . , 0]T (5.9) when each reduced, non-basis vector xj(k+1)[k]
(xj(k+1) /∈ Bk) is a linear combination (3.7) of the basis vectors xj(i)[k+1] (3.6)
with i ≤ k [2]:

(∀xj(k+1) /∈ Bk)xj(k+1)[k + 1] =

αj(k+1),1xj(1)[k + 1] + . . .+ αj(k+1),kxj(k)[k + 1],
(5.13)

where (∀i ∈ {1, . . . , k})αj(k+1),i ∈ R1.
Let us regard the parameters αj(k+1),i (5.13) which for some reduced fea-

ture vector xj(k+1)[k + 1] (3.6) fulfill the below standardizing condition [1]:

αj(k+1),1 + . . .+ αj(k+1),k = 1. (5.14)
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Lemma 5.1 If the parameters αj(k+1),i (5.13) fulfill the standardizing condi-
tion (5.14) for some feature vector xj(k+1) then the dual hyperplane h1j(k+1) (5.3)

defined by this vector passes through the vertex wk (5.8) [1]:

wT
k xj(k+1) = 1.

Definition 5.2 The vertex wk (5.8) of the rank k is degenerated if the number
nk of dual hyperplanes h1j(k+1) (5.3) passing through this vertex is greater than

k (nk > k). The degree of degeneration of this vertex is defined as dk = nk−k.

Theorem 5.2 The minimal value Φinv(w∗k) (5.10) of the inversion criterion
function Φinv(w) (5.2) is equal to zero in the degenerated vertex wrk (5.8)
of the rank k (k < n) if the degree of degeneration of this vertex is equal to
dk = n− k.

Proof The optimal vertex w∗k (5.10) constitutes the minimal value Φinv(w∗k) of
the criterion function
Φinv(w) (5.2). The minimal value Φinv(w∗k) is equal to zero (Φinv(w∗k) = 0)
if each of the n dual hyperplanes h1j (5.3) passes through the vertex w∗k (5.10).
The optimal vertex w∗k (5.10) has the rank rk = k. It means that the vertex
w∗k is located on the k hyperplanes h1j (∀j∈Jk

) (5.3), and on the n − k the

hyperplanes h0i (∀i∈Ik) (5.4). As a result dk = n− k = n− rk. �.

The minimization of the criterion function
Φinv(w) (5.2) can be a useful tool in examining the matrix X (2.1) singularity.
As it results from the Theorem 1, the matrix X (2.1) is nonsingular if the min-
imal value Φinv(w∗k) (5.10) of the inversion criterion function Φinv(w) (5.2) is
equal to zero and the rank rk of the optimal vertex w∗k is equal to n. If the opti-
mal vertex w∗k (5.10) has the rank rk less than n (rk < n), then the sequence of
the bases Bk (2.5) is stopped at such base Brk (2.4) which contains rk feature
vectors xj(i)(i = 1, . . . , rk) and n − rk unit vectors ei (i = rk + 1, . . . , n). In
this case, the matrix X (2.1) singular. We infer, on the basis of the Theorem 2,
that the maximal nonsingular submatrix X′ (X′ ⊂ X) can be extracted from
the matrix X (2.1) under the condition that Φinv(w∗k) = 0 (5.10). The subma-
trix X′ extracted in this case by neglecting n− rk rows and the same number
of columns in the matrix X (2.1) selected according to zero components w∗k,i
(w∗k,i = 0) of the optimal vertex w∗k) (5.10) [1].

6 Matrix inversion based on the Gauss-Jordan transformation

We have assumed a natural order of the of unit vectors ek replacement in the
proposed multistage procedure. During the k-th stage, the unit vectors ek is
replaced by the j(k)-th feature vector xj(k). During the first stage (k = 1)

the unit vector e1 in the matrix B0 = B−10 = I = [e1, . . . , en] is replaced
by the feature vector xj(1) = [xj(1),1, . . . , xj(1),n]T , the nonsingular matrix
B1 = [xj(1), e2, . . . , en]T (2.5) appears, and:

B−11 = [r1(1), . . . , rn(1)]. (6.1)
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The columns ri(1) of the matrix B−11 (6.1) are determined by the Gauss-
Jordan transformation (3.2):

r1(1) = (1/eT
1 xj(1))e1 = (1/xj(1),1)e1

and

(∀i ∈ {2, . . . , n})
ri(1) = ei − (ri(1)Txj(1))r1(1) =

ei − (eT
i xj(1)/e

T
1 xj(1))e1 =

ei − (xj(1),i/xj(1),1)e1.

Remark 6.1 The feature vector xj(1) = [xj(1),1, . . . , xj(1),n]T enters the basis
B0 = [e1, . . . , en]T if xj(1),1 ≥ ε (4.1).

During the second stage (k = 2) the unit vector e2 in the matrix B1 =
[xj(1), e2, . . . , en]T is replaced by the feature vector xj(2) = [xj(2),1, . . . , xj(2),n]T

and the below basis B2 appears:

B2 = [xj(1),xj(2), e3 . . . , en]T .

The columns ri(2) (i = 1, . . . , n) of the inverse matrix B−12 = [r1(2), . . . , rn(2)]
can be computed in the following manner (3.2):

r2(2) = [1/r2(1)Txj(2)]r2(1) =

=[1/(e2 − (xj(1),2/xj(1),1)e1)Txj(2)]

(e2 − (xj(1),2/xj(1),1)e1) =

=[1/(xj(2),2 − (xj(1),2/xj(1),1)xj(2),1)]

(e2 − (xj(1),2/xj(1),1)e1),

r1(2) = r1(1)− r1(1)Txj(2)r2(2) =

= [1/(e2 − (xj(1),2/xj(1),1)e1)Txj(2)]

(e2 − (xj(1),2/xj(1),1)e1) =

= [1/(xj(2),2 − (xj(1),2/xj(1),1)xj(2),1)]

(e2 − (xj(1),2/xj(1),1)e1),

and

(∀i ∈{3, . . . , n})
ri(2) = ri(1)− (ri(1)Txj(2))r2(2) =

ei − (xj(1),i/xj(1),1)e1 − (xj(2),1/xj(1),1)

[1/(xj(2),2 − (xj(1),2/xj(1),1)xj(2),1)]

(e2 − (xj(1),2/xj(1),1)e1).

UNDER PEER REVIEW



According to the proposed method, the inverse matrix X−1 (2.2) can be
obtained through the n stages of the computations of the inverted matrices
B−1k (2.6) with n rows qi(k):

(∀k ∈ {1, . . . , n})B−1k = [q1(k), . . . ,qn(k)]T . (6.2)

The rows qi(k) of the inverted matrices B−1k (6.2) can be treated as the
computational layers (i = 1, . . . , n). When calculating the inverse matrix
B−1k (6.2) most calculations are performed in the first layer q1(k). The first
layer q1(k) has to be computed n times. Least calculations must be performed
in the last layer qn(k). The last layer qn(k) has to be computed only once.

7 Example of experimental results

Experimental verification of the method presented in the paper has been done
with a code written in Python using the NumPy library [9]. The random matrix
of the size 1000x1000 was inverted and the results validated via multiplication
by original data to test if they give the identity matrices. The random matrix
of the 1000x1000 were inverted in 6 seconds on the personal computer (Intel
Core i7-740QM processor with 8GB RAM).

The complete process of matrix inversion during the successive k (k = 5)
stages is demonstrated on the example of the following matrix X = [x1, . . . ,x5]T

(2.1) with five rows xj (Table 7.1). Each inverse matrix B−1k = [r1(k), . . . , rn
j(k).

X =


1 −3 0 −1 0
0 0 −2 0 3
2 0 0 0 0
0 4 0 −4 0
5 0 −5 0 6



X−1 =


0 0 1/2 0 0
−1/4 0 1/8 1/16 0

0 2 2.5 0 −1
−1/4 0 1/8 −3/16 0

0 5/3 5/3 0 −2/3


As the order of the feature vectors xj entering the base is the following:

[1, 3, 2, 4, 5], the final inverse matrix has its columns rj(k) to be reordered
accordingly – the second and the third ones are swapped.

8 Concluding Remarks

The described multistage procedure of the matrix inversion X (2.1) is based
on the successive replacements (3.1) of the unit vectors ek in the matrix I =
[e1, . . . , en] by some feature vector xj(k) (5.2). The replacement of the vector

(k)]
(2.6) is composed of five columns r
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Table 7.1 The complete process of matrix inversion during the successive stages.

k Bk B−1
k Remarks

0


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


The process of the matrix
X = [x1, . . . ,x5]T inversion
starts with the unit matrix
B0 = I = [e1, . . . , en] (2.5)

1


1 −3 0 −1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




1 3 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 The first feature vector
x1 = [1,−3, 0,−1, 0]T

enters the base B1.

2


1 −3 0 −1 0
2 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




0 3 0.5 0 0
−1/3 1/6 0 −1/3 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Third feature vector
x3 = [2, 0, 0, 0, 0]T

enters the base B2,
because xT

2 r2(2) = 0
and xT

3 r2(2) 6= 0

3


1 −3 0 −1 0
2 0 0 0 0
0 0 −2 0 3
0 0 0 1 0
0 0 0 0 1




0 1/2 0 0 0
−1/3 1/6 0 −1/3 0

0 0 −1/2 0 1.5
0 0 0 1 0
0 0 0 0 1


Second feature vector
x2 = [0, 0,−2, 0, 3]T

enters the base B3,
as xT

2 r3(3) 6= 0

4


1 −3 0 −1 0
0 0 −2 0 3
2 0 0 0 0
0 4 0 −4 0
0 0 0 0 1




1/2 0 0 0
−1/4 1/8 0 1/16 0

0 0 −1/2 0 1.5
−1/4 1/8 0 −3/16 0

0 0 0 0 1

 Fourth feature vector
x4 = [0, 4, 0,−4, 0]T

enters the base B4.

5


1 −3 0 −1 0
0 0 −2 0 3
2 0 0 0 0
0 4 0 −4 0
5 0 −5 0 6




0 1/2 0 0 0
−1/4 1/8 0 1/16 0

0 2.5 2 0 −1
−1/4 1/8 0 −3/16 0

0 5/3 5/3 0 −2/3


Fifth feature vector
x5 = [5, 0,−5, 0, 6]T

enters the base B5.
B−1

5 is not equal to X−1

because the columns rj(5)
have to be reordered

ek by the feature vector xj(k) (5.2) causes the modification of the columns

ri(k) of the k-th inversed basis B−1k (2.6). New columns ri(k + 1) of the
inverted basis B−1k (2.6) are efficiently computed with the Gauss-Jordan vector
transformation (3.2).

The proposed method of inversion could make it possible to increase the
size of the inverted matrices. This possibility is based on similarity to the
Simplex algorithm of linear programming [7].

It is also expected that the computational efficiency of the new procedure
of large matrices inversion will be high. In an attempt to increase the com-
putational efficiency the parallel implementations of the inversion algorithms
based on the vector Gauss-Jordan transformation could be examined [10,8,
12].

The presented stepwise method gives a possibility for a partial inversion of
large matrices. A partial inversion of a given matrix means that the inversion
procedure is stopped during the k-th stage (k < n) before all unit vectors
ei in the matrix Bk (2.4) have been replaced by the feature vectors xj(i).
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Earlier stopping of the inverting process may be caused by the condition (4.1)
protecting against an excessive increase of the matrix ill-conditioning.
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