
Global existence for compressible Euler equations with
damping in partial space-period domains

Abstract

In this paper, we are concerned with the global existence of solutions to isentropic compressible
Euler equations with damping in partial space-period domains. Based on the uniform energy estimates,
we obtain the global existence for any spatial dimension if the initial data is sufficiently close to an
equilibrium. Simultaneously, we show that the vorticity and its derivatives decay exponentially to zero
in two and three dimensions.
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1 Introduction

In this paper, we consider the isentropic compressible Euler equations with damping for (t, x) ∈ [0,+∞)×
Ω: {

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u+ p Id) = −ρu,
(1.1)

where Ω = Tn × Rm,Tn = [0, 2π]n is the n-dimensional torus, m + n = d, n ≥ 1, d ≥ 2, ρ is the
density, u = (u1, u2, ..., ud) is the velocity, p = p(ρ) is the pressure with state equation p(ρ) = Aργ

with constants A > 0 and γ > 1. From now on, for convenience, we assume that A = 1
γ .

The initial data of the system (1.1) are given as follows

(ρ(0, x), u(0, x)) = (1 + ερ0(x), εu0(x)), x ∈ Ω, (1.2)

where 1 + ερ0(x) > 0 for all x ∈ Ω, ε > 0 is sufficiently small. There are many literatures on the global
existence of the Cauchy problem (1.1)-(1.2). In one-dimensional case, the global existence was proved by
T. Nishida in [11] and the long-time behavior of (ρ, u) was established in [5]-[7]. For more results about
the L∞ entropy weak solution and the BV solution, one can see [2], [12] and the references therein.
When it comes to the general multi-dimensional case, the global existence and long-time behavior of
the solution were established in [13]-[17]. In particular, Lu used the semigroup method and proved the
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1 solution
in the framework of Besov space in [3]. It should be pointed out that the smallness of the parameter ε
plays a key role in the above results. For instance, the authors in [14] proved that the C1 solutions will
blow up for large amplitude initial data in three dimension. For the non-isentropic compressible Euler
equations with constant damping, the global solutions were also obtained, we refer it to [19], [20] and the
references therein. Moreover, the work on the general hyperbolic systems including (1.1) was studied in
[4], [8], [18] and so on.

In the present paper, we will consider the problem in partial space-period domains. Motivated by
the energy method in [14], we establish the uniform energy estimates and obtain the global existence
for any spatial dimension. In addition, we can also obtain that the vorticity and its derivatives decay
exponentially to zero for d = 2, 3.

For convenience, we shall use the following convention throughout this paper:

• f . g means there exists a generic constant C such that f ≤ Cg;

• The differential operator ∂ denotes the time-spatial derivatives, i.e. ∂ = (∂t, ∂x1 , ..., ∂xd);

• The Latin letters a, b, c denote multiple indices, for example, a = (a0, a1, ..., ad), |a| = a0 + a1 +
...+ ad is its length;

• For two multiple indices a, b, b ≤ a means bi ≤ ai for all i = 0, 1, ..., d;

• Define the operator ∂a = ∂a0t ∂
a1
x1 ...∂

ad
xd

and ∂≤a =
∑

0≤b≤a
∂b, where ai is some non-negative integer

for all i = 0, 1, ..., d;

• ‖f(t, ·)‖2 stands for ‖f(t, x, y)‖L2
x(Tn)L2

y(Rm) and ‖f(t, ·)‖∞ stands for ‖f(t, x, y)‖L∞x (Tn)L∞y (Rm).

At first, we reformulate the Cauchy problem (1.1)-(1.2). Let

σ(ρ) =
2

γ − 1
(c(ρ)− 1), (1.3)

where c(ρ) =
√
p′(ρ) = ρ

γ−1
2 is the sound speed. Then the problem (1.1)-(1.2) can be rewritten as the

following symmetric form 
∂tσ + u · ∇σ + divu+ γ−1

2 σdivu = 0,

∂tu+ u · ∇u+ u+∇σ + γ−1
2 σ∇σ = 0,

σ(0, x) = 2
γ−1 [(1 + ερ0(x))

γ−1
2 − 1],

u(0, x) = εu0(x).

(1.4)

By the standard method in [10], the problem (1.4) has a local solution (σ, u) ∈ C1([0, t]×Rd) for some
t > 0. To obtain the global existence, the main task is to derive the uniform prior estimates by making
full use of the damping term. To this end, for any k ∈ N+, we define the energy functionals

E[f ](t) = ‖f(t, ·)‖2, Ek[f ](t) =
∑

1≤|a|≤k

E[∂af ](t) (1.5)

and the dissipation functionals

D[f ](t) =

(∫ t

0

∫
Tn×Rm

f2(τ, x, y)dxdydτ

) 1
2

, Dk[f ](t) =
∑

1≤|a|≤k

D[∂af ](t). (1.6)

2

exponential stability of constant steady state on torus in [9]. Fang and Xu obtained the globalC
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Denote
E[f1, f2](t) = E[f1](t) + E[f2](t), Ek[f1, f2](t) = Ek[f1](t) + Ek[f2](t) (1.7)

and the similar definitions for D[f1, f2](t), Dk[f1, f2](t).
Our main results are

Theorem 1.1 Assume that (ρ0(x), u0(x)) ∈ H2N+1(Rd), whereN = [m2 ]+[n2 ]+2, 1+ερ0(x) > 0 for
all x ∈ Ω, ε > 0 is sufficiently small. Then there exists a global solution (ρ, u) ∈ C([0,+∞), H2N+1(Tn×
Rm)) ∩ C1([0,+∞), H2N (Tn × Rm)) for the problem (1.1)-(1.2) and the solution satisfies

‖(ρ− 1)(t, ·)‖H2N+1(Rd) + ‖u(t, ·)‖H2N+1(Rd) . ε, ∀ t > 0. (1.8)

Theorem 1.2 Under the conditions in theorem 1.1, for any C1 solution (ρ, u), we have that the vorticity
ω = ∇× u and its derivatives decay exponentially to zero when d = 2, 3.

Remark 1.1 The condition that 1+ερ0(x) > 0 for all x ∈ Ω is very important to exclude the appearance
of vacuum for the classical solutions to (1.1)-(1.2). In fact, for any solution (ρ, u) ∈ C1([0, t] × Ω) to
(1.1)-(1.2), if we set

dx

dt
= u(t, x), x(0) = x0,

then by the method of characteristic and the first equation of (1.1), we can get

ρ(t, x(t)) = (1 + ερ0(x0)) exp

(
−
∫ t

0
divu(s, x(s))ds

)
> 0.

Remark 1.2 The unknown function transformation (1.3) is valid without vacuum. In this sense, for any
t > 0, (ρ, u) ∈ C1([0, t] × Ω) solves the problem (1.1)-(1.2) with ρ > 0, then (σ, u) ∈ C1([0, t] × Ω)
solves the problem (1.4) with γ−1

2 σ + 1 > 0; Conversely, if (σ, u) ∈ C1([0, t] × Ω) solves the problem
(1.4) with γ−1

2 σ + 1 > 0, let ρ = c−1(γ−12 σ + 1), then (ρ, u) ∈ C1([0, t] × Ω) solves the problem
(1.1)-(1.2) with ρ > 0.

Remark 1.3 Our result has no restriction on the spatial dimensions. In addition, based on the method
in this paper, the conclusion can be extended to the compressible Euler equations with constant damping
in the half space Rd+.

2 Proof of Theorem 1.1

Throughout this section, we will always assume that

sup
0≤τ≤t

E[σ, u](τ) + sup
0≤τ≤t

E2N [σ, u](τ) . ε, (2.1)

where N = [m2 ] + [n2 ] + 2. First, we introduce a Sobolev embedding theorem, one can see [1] for details.

Lemma 2.1 Assume that f(t, x, y) ∈ HN (Ω), (x, y) ∈ Tn × Rm, then we have

‖f(t, ·)‖∞ . ‖∂
≤[n

2
]+1

x ∂
≤[m

2
]+1

y f(t, x, y)‖2 . E[f ](t) + EN [f ](t). (2.2)
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Thus it follows from lemma 2.1 and the assumption (2.1) that

sup
0≤τ≤t

‖∂aσ(τ, ·)‖∞ + sup
0≤τ≤t

‖∂au(τ, ·)‖∞ . ε, 0 ≤ |a| ≤ N. (2.3)

In the following, to prove theorem 1.1, we split the process into several lemmas.

Lemma 2.2 Under the assumption (2.1), for all t > 0, we have the following connection between the
dissipation functionals Dk[σ](t) and Dk[u](t) that

Dk[σ](t) . Dk[u](t) +D[u](t), 1 ≤ k ≤ 2N + 1. (2.4)

Proof. Rewrite the equations in (1.4) as follows{
∂tσ = −divu− u · ∇σ − γ−1

2 σdivu,
∇σ = −∂tu− u− u · ∇u− γ−1

2 σ∇σ.
(2.5)

By taking the L2 norm of (2.5), squaring, integrating them over [0, t] and adding up the two resulting
equalities, we arrive at

D2
1[σ](t) . D2

1[u](t) +D2[u](t)

+

∫ t

0

∫
Tn×Rm

(
|u · ∇σ|2 + |u · ∇u|2 + |σdivu|2 + |σ∇σ|2

)
dxdydτ. (2.6)

This together with (2.3) yields

D2
1[σ](t) . D2

1[u](t) +D2[u](t) + ε2D2
1[σ, u](t).

By the smallness of ε and Young’s inequality, we conclude that

D1[σ](t) . D1[u](t) +D[u](t), (2.7)

which implies that (2.4) holds for k = 1. Next we prove (2.4) for k > 1. Applying the operator
∂a(1 ≤ |a| ≤ 2N) to (2.5) together with the Leibniz’s rule derives

∂t(∂
aσ) = −div(∂au)−Qa1, Qa1 =

∑
b+c=a

CabcQ
bc
1 ,

∇(∂aσ) = −∂t(∂au)− ∂au−Qa2, Qa2 =
∑

b+c=a

CabcQ
bc
2 ,

(2.8)

where

Qbc1 = ∂bu · ∇(∂cσ) +
γ − 1

2
∂bσdiv(∂cu), Qbc2 = ∂bu · ∇(∂cu) +

γ − 1

2
∂bσ∇(∂cσ), (2.9)

and Cabc are some constants. Employing the similar process as (2.6) together with (2.7), we can get

D2
2[σ](t) . D2

2[u](t) +D2[u](t) +
∑

|b|+|c|≤1

D2[Qbc1 , Q
bc
2 ](t). (2.10)

By Hölder inequality and the estimate (2.3), one has∑
|b|+|c|≤1

D2[Qbc1 , Q
bc
2 ](t) . ε2D2

2[σ, u](t).
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This together with (2.10) yields (2.4) holds for k = 2. After an iterative process, we have

D2
k[σ](t) . D2

k[u](t) +D2[u](t) +
∑

|b|+|c|≤k−1

D2[Qbc1 , Q
bc
2 ](t), 1 ≤ k ≤ 2N + 1. (2.11)

By Hölder inequality and taking the L∞ norm in Qbc1 , Q
bc
2 for those terms with |b| ≤ N or |c| ≤ N − 1

along with (2.3), one has∑
|b|+|c|≤k−1

D2[Qbc1 , Q
bc
2 ](t) . ε2D2

k[σ, u](t), 1 ≤ k ≤ 2N + 1. (2.12)

Substituting (2.12) into (2.11) and using the smallness of ε derive

Dk[σ](t) . Dk[u](t) +D[u](t), 1 ≤ k ≤ 2N + 1,

where we have used the Young’s inequality. Thus the proof of lemma 2.2 is finished. �
Now, we begin to estimate the L2 norm of the solution (σ, u).

Lemma 2.3 Under the assumption (2.1), for all t > 0, it holds that

E2[σ, u](t) +D2[u](t) . E2[σ, u](0) + εD2
1[u](t). (2.13)

Proof. Multiplying the first equation of (1.4) by σ and the second one by u, and adding the resulting
equations together derive

1

2
∂t(σ

2 + |u|2) + |u|2 + div(σu) +
γ − 1

2
div(σ2u) = −σu ·∇σ−〈u ·∇u, u〉+ γ − 1

2
σ∇σ ·u, (2.14)

where 〈·, ·〉 represents the standard inner product in Rd. Integrating (2.14) by parts over [0, t]× Ω gives

E2[σ, u](t) +D2[u](t) . E2[σ, u](0) +

∫ t

0

∫
Tn×Rm

|σ||u||∇σ|dxdydτ

+

∫ t

0

∫
Tn×Rm

|∇u||u|2dxdydτ. (2.15)

Applying Cauchy-Schwarz inequality to (2.15) and using (2.3), one can obtain

E2[σ, u](t) +D2[u](t) . E2[σ, u](0) + εD2[u](t) + εD2
1[σ](t),

which together with lemma 2.2 yields

E2[σ, u](t) +D2[u](t) . E2[σ, u](0) + εD2[u](t) + εD2
1[u](t). (2.16)

Combining (2.16) and the smallness of ε derives the desired result (2.13). �
Next, we establish the estimate of the derivatives for the solution (ρ, u).

Lemma 2.4 Under the assumption (2.1), for all t > 0, 1 ≤ k ≤ 2N + 1, it holds that

E2
k [σ, u](t) +D2

k[u](t) . E2
k [σ, u](0) + εD2[u](t). (2.17)
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Proof. Multiplying the first equation of (2.8) by ∂aσ and the second one by ∂au, and adding the resulting
equations together give

1

2
∂t
(
|∂aσ|2 + |∂au|2

)
+ |∂au|2

+ div
[
∂aσ∂au+

1

2
u
(
|∂aσ|2 + |∂au|2

)
+
γ − 1

2
σ∂aσ∂au

]
=

1

2
divu

(
|∂aσ|2 + |∂au|2

)
+
γ − 1

2
∂aσ∂au · ∇σ

−
∑
b+c=a
|c|<|a|

(
∂aσQbc1 + ∂au ·Qbc2

)
, (2.18)

whereQbci , i = 1, 2 are defined in (2.9) and the multi-index a satisfies 1 ≤ |a| ≤ k ≤ 2N+1. Integrating
(2.18) by parts over [0, t]× Ω and adding the resulting equalities with |a| from 1 to k, we can obtain

E2
k [σ, u](t) +D2

k[u](t) . E2
k [σ, u](0)

+
∑
|a|≤k

{∫ t

0

∫
Tn×Rm

|divu|
(
|∂aσ|2 + |∂au|2

)
dxdydτ

+

∫ t

0

∫
Tn×Rm

|∂aσ||∂au||∇σ|dxdydτ

+
∑
b+c=a
|c|<|a|

∫ t

0

∫
Tn×Rm

(
|∂aσ||Qbc1 |+ |∂au||Qbc2 |

)
dxdydτ

}
. (2.19)

Applying (2.3) to the terms divu and ∇σ in the second and third terms of (2.19) on the right-hand side,
we arrive at∑

|a|≤k

∫ t

0

∫
Tn×Rm

{
|divu|

(
|∂aσ|2 + |∂au|2

)
+ |∂aσ||∂au||∇σ|

}
dxdydτ . εD2

k[σ, u](t), (2.20)

where the Cauchy-Schwarz inequality has been used. Taking the L∞ norm of in Qbc1 , Q
bc
2 for |b| ≤ N or

|c| ≤ N − 1 and using (2.3) again, one has∑
|a|≤k

∑
b+c=a
|c|<|a|

∫ t

0

∫
Tn×Rm

(
|∂aσ||Qbc1 |+ |∂au||Qbc2 |

)
dxdydτ . εD2

k[σ, u](t). (2.21)

Substituting (2.20), (2.21) into (2.19), we get

E2
k [σ, u](t) +D2

k[u](t) . E2
k [σ, u](0) + εD2

k[σ, u](t).

This together with lemma 2.2 yields

E2
k [σ, u](t) +D2

k[u](t) . E2
k [σ, u](0) + ε(D2

k[u](t) +D2[u](t)) (2.22)

which implies (2.17) by the smallness of ε. Thus we complete the proof of lemma 2.4. �

Based on lemma 2.3-2.4, we are ready to prove theorem 1.1.
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Proof of theorem 1.1 By lemma 2.3-2.4 and the smallness of ε, we get

E2[σ, u](t) + E2
2N+1[σ, u](t) +D2[u](t) +D2

2N+1[u](t) . E2[σ, u](0) + E2
2N+1[σ, u](0).

Since (ρ0(x), u0(x)) ∈ H2N+1(Rd), then we have

E2[σ, u](t) + E2
2N+1[σ, u](t) . ε2. (2.23)

Combining (2.23) with the local existence result and the continuation argument, we obtain the global C1

solution (ρ, u) to (1.1). �

3 Proof of Theorem 1.2

When d = 3, by the second equation of (1.1), we get the equation of the vorticity that

∂tω + ω + u · ∇ω + ω divu = ω · ∇u, (3.1)

where ω = curlu = (∂2u3−∂3u2, ∂3u1−∂1u3, ∂1u2−∂2u1)T . Applying the operator ∂a(0 ≤ |a| ≤ 3)
to (3.1) gives

∂t(∂
aω) + ∂aω + u · ∇∂aω

= −
∑

0<b≤a
Ka,b∂

bu · ∇∂a−bω

−
∑

0≤c≤a
Ka,c(∂

cω ∂a−cdivu− ∂cω · ∇∂a−cu), (3.2)

where Ka,b,Ka,c are some constants. Multiplying (3.2) by the factor ∂aω and integrating the resulting
equality over Ω derive

d

dt
‖∂aω(t, ·)‖22 + ‖∂aω(t, ·)‖22

.
∫
Tn×Rm

|divu||∂aω|2dxdy

+
∑

0<b≤a

∫
Tn×Rm

|∂bu||∇∂a−bω||∂aω|dxdy

+
∑

0≤c≤a

∫
Tn×Rm

(|∂cω||∂a−cdivu||∂aω|+ |∂cω||∂a−cu||∂aω|)dxdy. (3.3)

Then summing up (3.3) with |a| from 0 to 3 yields

d

dt
‖∂a≤3ω(t, ·)‖22 + ‖∂a≤3ω(t, ·)‖22

. ‖∂a≤3u(t, ·)‖∞‖∂a≤3ω(t, ·)‖22
+‖ω(t, ·)‖∞‖∂a≤3ω(t, ·)‖2‖∂a≤4u(t, ·)‖2. (3.4)

By lemma 2.1, we have ‖ω(t, ·)‖∞ . ‖∂a≤3ω(t, ·)‖2. Since ‖∂a≤3u(t, ·)‖∞ . ε, ‖u(t, ·)‖H4 . ε, then
(3.4) becomes

d

dt
‖∂a≤3ω(t, ·)‖22 + ‖∂a≤3ω(t, ·)‖22 . ε‖∂a≤3ω(t, ·)‖22. (3.5)
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This together with the smallness of ε yields

d

dt
‖∂a≤3ω(t, ·)‖22 + ‖∂a≤3ω(t, ·)‖22 ≤ 0. (3.6)

Thus it follow from (3.6) that
‖∂a≤3ω(t, ·)‖2 ≤ εe−

t
2 (3.7)

and we obtain the exponential decay of the vorticity and its derivatives when d = 3.

Remark 3.1 For d = 2, the equation of the vorticity becomes

∂tω + ω + u · ∇ω + ω divu = 0, (3.8)

where ω = curlu = ∂1u2 − ∂2u1. Compared with the equation of the vorticity for d = 3, (3.8) is much
simpler. One only needs to remove the term deriving from ω · ∇u in the proof for d = 3 above and can
also obtain the exponential decay of the vorticity and its derivatives when d = 2. Thus we finish the
proof of theorem 1.2.
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